Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Chakravadhanula Manikyamba, Sohini Ganguly, Arijit Pahari. Geochemical Features of Bellara Trap Volcanic Rocks of Chitradurga Greenstone Belt, Western Dharwar Craton, India: Insights into MORB-BABB Association from a Neoarchean Back-Arc Basin. Journal of Earth Science, 2021, 32(6): 1528-1544. doi: 10.1007/s12583-021-1472-5
Citation: Chakravadhanula Manikyamba, Sohini Ganguly, Arijit Pahari. Geochemical Features of Bellara Trap Volcanic Rocks of Chitradurga Greenstone Belt, Western Dharwar Craton, India: Insights into MORB-BABB Association from a Neoarchean Back-Arc Basin. Journal of Earth Science, 2021, 32(6): 1528-1544. doi: 10.1007/s12583-021-1472-5

Geochemical Features of Bellara Trap Volcanic Rocks of Chitradurga Greenstone Belt, Western Dharwar Craton, India: Insights into MORB-BABB Association from a Neoarchean Back-Arc Basin

doi: 10.1007/s12583-021-1472-5
More Information
  • Corresponding author: Chakravadhanula Manikyamba, cmaningri@gmail.com
  • Received Date: 19 Nov 2020
  • Accepted Date: 27 Apr 2021
  • Publish Date: 30 Dec 2021
  • This study presents a comprehensive account of the petrogenetic and geodynamic evolution of the Bellara Trap volcanic rocks from the Ingaldhal Formation, Chitradurga Group, western Dharwar Craton (WDC). Geochemical attributes of these rocks are consistent with two groups with distinct evolutionary trends: one comprising tholeiitic, MORB (mid-ocean ridge basalt) type basalts (BTB) and the other corresponding to calc-alkaline andesites (BTA). Basalts are essentially composed of clinopyroxene and plagioclase whereas the andesites are porphyritic with phenocrysts of plagioclase, clinopyroxene and polycrystalline quartz embedded in a groundmass of K-feldspar, quartz and opaques. Primary igneous mineralogy is overprinted by greenschist facies metamorphism resulting in chlorite-actinolite-plagioclase assemblage. The BTB samples reflect nearly flat REE patterns with weak LREE enrichment in contrast to pronounced LREE enhancement over HREE discernible for BTA. Tectonically, the BTB samples correspond to an active mid-oceanic ridge-rift setting with a MORB composition, whereas a back-arc basin (BAB) regime is corroborated for the BTA samples fractionating from back-arc basin basalts. Geochemical imprints of subduction input are more pronounced in BTA compared to BTB as mirrored by their elevated abundances of incompatible fluid mobile elements like Ba, Th, U and LREE. The BTB is endowed with an N-to E-MORB signature attributable to minor contributions from subduction-related components at the inception of a back-arc basin in the vicinity of an active subduction system. The BTA derived through differentiation of a basaltic magma with BABB (back-arc basin basalt) affinity compositionally akin to a heterogeneous source mantle carrying depleted MORB-type and enriched arc-type components inducted with progressive subduction. The BABB-type andesites and MORB-type basalts from Bellara Traps record a compositional heterogeneity of mantle in an intraoceanic arc-back arc system. Mantle processes invoke a BABB-MORB spectrum with a MORB-like endmember and an arc-like endmember associated with a juvenile back-arc basin. This study infers a Neoarchean analogue of Mariana-type back-arc rift setting proximal to the arc with a gradual transition from anhydrous to hydrous melting processes synchronized with MORB-mantle and arc-mantle interaction during initiation of a nascent back arc adjacent to the arc. The MORB-BABB compositional spectrum for the Bellara Traps conforms to a Neoarchean back-arc basin that evolved under an extensional tectonic regime associated with incipient stages of back-arc rifting and incorporation of subduction-derived components in the mantle output. This study complies with Neoarchean intraoceanic accretionary cycle plate tectonics in WDC.

     

  • Electronic Supplementary Material: Supplementary material Table S1 is available in the online version of this article at https://doi.org/10.1007/s12583-021-1472-5.
  • loading
  • Ancellin, M. A., Samaniego, P., Vlastélic, I., et al., 2017. Across-Arc versus Along-Arc Sr-Nd-Pb Isotope Variations in the Ecuadorian Volcanic Arc. Geochemistry, Geophysics, Geosystems, 18(3): 1163-1188. https://doi.org/10.1002/2016gc006679
    Appel, P. W. U., Polat, A., Frei, R., 2009. Dacitic Ocelli in Mafic Lavas, 3.8-3.7 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Partial Melting of Oceanic Crust and Magma Mixing. Chemical Geology, 258(3/4): 105-124. https://doi.org/10.1016/j.chemgeo.2008.09.011
    Arndt, N. T., Coltice, N., Helmstaedt, H., et al., 2009. Origin of Archean Subcontinental Lithospheric Mantle: Some Petrological Constraints. Lithos, 109(1/2): 61-71. https://doi.org/10.1016/j.lithos.2008.10.019
    Beccaluva, L., Coltorti, M., Saccani, E., et al., 2005. Magma Generation and Crustal Accretion as Evidenced by Supra-Subduction Ophiolites of the Albanide-Hellenide Subpelagonian Zone. The Island Arc, 14(4): 551-563. https://doi.org/10.1111/j.1440-1738.2005.00483.x
    Belova, A. A., Ryazantsev, A. V., Razumovsky, A. A., et al., 2010. Early Devonian Suprasubduction Ophiolites of the Southern Urals. Geotectonics, 44(4): 321-343. https://doi.org/10.1134/s0016852110040035
    Beeraiah, M. B., Madhusudhan, R., Balachandrudu, V., 2010. Course Material on Archaean Granite-Greenstone Terrain Chitradurga Module. Geological Survey of India
    Bougault, H., Joron, J. L., Treuil, M., 1980. The Primordial Chondritic Nature and Large-Scale Heterogeneities in the Mantle: Evidence from High and Low Partition Coefficient Elements in Oceanic Basalts. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 297(1431): 203-213. https://doi.org/10.1098/rsta.1980.0210
    Brandl, P. A., Hamada, M., Arculus, R. J., et al., 2017. The Arc Arises: The Links between Volcanic Output, Arc Evolution and Melt Composition. Earth and Planetary Science Letters, 461: 73-84. https://doi.org/10.1016/j.epsl.2016.12.027
    Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1
    Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
    Chadwick, B., Vasudev, V. N., Hegde, G. V., 2000. The Dharwar Craton, Southern India, Interpreted as the Result of Late Archaean Oblique Convergence. Precambrian Research, 99(1/2): 91-111. https://doi.org/10.1016/s0301-9268(99)00055-8
    Chadwick, B., Ramakrishnan, M., Viswanatha, M. N., 1981. The Stratigraphy and Structure of the Chitradurga Region: an Illustration of Cover-Basement Interaction in the Late Archaean Evolution of the Karnataka Craton, Southern India. Precambrian Research, 16(1/2): 31-54. https://doi.org/10.1016/0301-9268(81)90004-8
    Chardon, D., Choukroune, P., Jayananda, M., 1996. Strain Patterns, Décollement and Incipient Sagducted Greenstone Terrains in the Archaean Dharwar Craton (South India). Journal of Structural Geology, 18(8): 991-1004. https://doi.org/10.1016/0191-8141(96)00031-4
    Chardon, D., Choukroune, P., Jayananda, M., 1998. Sinking of the Dharwar Basin (South India): Implications for Archaean Tectonics. Precambrian Research, 91(1/2): 15-39. https://doi.org/10.1016/s0301-9268(98)00037-0
    Chardon, D., Jayananda, M., Peucat, J. J., 2011. Lateral Constrictional Flow of Hot Orogenic Crust: Insights from the Neoarchean of South India, Geological and Geophysical Implications for Orogenic Plateaux. Geochemistry, Geophysics, Geosystems, 12(2): 1-24. https://doi.org/10.1029/2010gc003398
    Condie, K. C., 2003. Incompatible Element Ratios in Oceanic Basalts and Komatiites: Tracking Deep Mantle Sources and Continental Growth Rates with Time. Geochemistry, Geophysics, Geosystems, 4(1): 1-28. https://doi.org/10.1029/2002gc000333
    Condie, K. C., Aster, R. C., 2013. Refinement of the Supercontinent Cycle with Hf, Nd and Sr Isotopes. Geoscience Frontiers, 4(6): 667-680. https://doi.org/10.1016/j.gsf.2013.06.001
    Condie, K. C., Kröner, A., 2013. The Building Blocks of Continental Crust: Evidence for a Major Change in the Tectonic Setting of Continental Growth at the End of the Archean. Gondwana Research, 23(2): 394-402. https://doi.org/10.1016/j.gr.2011.09.011
    Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
    Deng, H., Kusky, T. M., Polat, A., et al., 2014. Geochronology, Mantle Source Composition and Geodynamic Constraints on the Origin of Neoarchean Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton. Lithos, 205: 359-378. https://doi.org/10.1016/j.lithos.2014.07.011
    Deng, H., Kusky, T. M., Polat, A., et al., 2020. A Neoarchean Arc-Backarc Pair in the Linshan Massif, Southern North China Craton. Precambrian Research, 341: 105649. https://doi.org/10.1016/j.precamres.2020.105649
    Dewey, J. F., 1980. Episodicity, Sequence and Style at Convergent Plate-Plate Boundaries. Geological Association of Canada Special Paper, 20: 553-573 http://www.researchgate.net/publication/284664304_Episodicity_sequence_and_style_at_convergent_plate-plate_boundaries
    Dilek, Y., Furnes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 100(1/2/3/4): 174-209. https://doi.org/10.1016/j.lithos.2007.06.026
    El Bahariya, G., 2018. Classification of the Neoproterozoic Ophiolites of the Central Eastern Desert, Egypt Based on Field Geological Characteristics and Mode of Occurrence. Arabian Journal of Geosciences, 11(12): 1-23. https://doi.org/10.1007/s12517-018-3677-1
    Elliott, T., Plank, T., Zindler, A., et al., 1997. Element Transport from Slab to Volcanic Front at the Mariana Arc. Journal of Geophysical Research: Solid Earth, 102(B7): 14991-15019. https://doi.org/10.1029/97jb00788
    Floyd, P. A., Shail, R., Leveridge, B. E., et al., 1991. Geochemistry and Provenance of Rhenohercynian Synorogenic Sandstones: Implications for Tectonic Environment Discrimination. Geological Society, London, Special Publications, 57(1): 173-188. https://doi.org/10.1144/gsl.sp.1991.057.01.14
    Foley, S. F., 2008. Rejuvenation and Erosion of the Cratonic Lithosphere. Nature Geoscience, 1(8): 503-510. https://doi.org/10.1038/ngeo261
    Foley, S. F., Buhre, S., Jacob, D. E., 2003. Evolution of the Archaean Crust by Delamination and Shallow Subduction. Nature, 421(6920): 249-252. https://doi.org/10.1038/nature01319
    Fryer, P., Taylor, B., Langmuir, C. H., et al., 1990. Petrology and Geochemistry of Lavas from the Sumisu and Torishima Backarc Rifts. Earth and Planetary Science Letters, 100(1/2/3): 161-178. https://doi.org/10.1016/0012-821x(90)90183-x
    , H., de Wit, M., Dilek, Y., 2014. Four Billion Years of Ophiolites Reveal Secular Trends in Oceanic Crust Formation. Geoscience Frontiers, 5(4): 571-603. https://doi.org/10.1016/j.gsf.2014.02.002
    Gamble, J. A., Wright, I. C., Woodhead, J. D., et al., 1994. Arc and Back-Arc Geochemistry in the Southern Kermadec Arc-Ngatoro Basin and Offshore Taupo Volcanic Zone, SW Pacific. Geological Society, London, Special Publications, 81(1): 193-212. https://doi.org/10.1144/gsl.sp.1994.081.01.11
    Gribble, R. F., Stern, R. J., Bloomer, S. H., et al., 1996. MORB Mantle and Subduction Components Interact to Generate Basalts in the Southern Mariana Trough Back-Arc Basin. Geochimica et Cosmochimica Acta, 60(12): 2153-2166. https://doi.org/10.1016/0016-7037(96)00078-6
    Gribble, R. F., Stern, R. J., Newman, S., et al., 1998. Chemical and Isotopic Composition of Lavas from the Northern Mariana Trough: Implications for Magmagenesis in Back-Arc Basins. Journal of Petrology, 39(1): 125-154. https://doi.org/10.1093/petroj/39.1.125
    Godard, M., Bosch, D., Einaudi, F., 2006. A MORB Source for Low-Ti Magmatism in the Semail Ophiolite. Chemical Geology, 234(1/2): 58-78. https://doi.org/10.1016/j.chemgeo.2006.04.005
    Hawkesworth, C. J., Herget, J. M., Ellam, R. M., 1991. Element Fluxes Associated with Subduction Related Magmatism. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 335(1638): 393-405. https://doi.org/10.1098/rsta.1991.0054
    Hawkesworth, C. J., Gallagher, K., Hergt, J. M., et al., 1993. Mantle and Slab Contributions in Arc Magmas. Annual Review of Earth and Planetary Sciences, 21(1): 175-204. https://doi.org/10.1146/annurev.ea.21.050193.001135
    He, X., Wang, W., Santosh, M., et al., 2021. Late Neoarchean Crustal Growth under Paired Continental Arc-back Arc System in the North China Craton. Geoscience Frontiers, 12(3): 101120. https://doi.org/10.1016/j.gsf.2020.12.003
    Hergt, J. M., Woodhead, J. D., 2007. A Critical Evaluation of Recent Models for Lau-Tonga Arc-Backarc Basin Magmatic Evolution. Chemical Geology, 245(1/2): 9-44. https://doi.org/10.1016/j.chemgeo.2007.07.022
    Hochstaedter, A., Gill, J., Peters, R., et al., 2001. Across-Arc Geochemical Trends in the Izu-Bonin Arc: Contributions from the Subducting Slab. Geochemistry, Geophysics, Geosystems, 2(7). https://doi.org/10.1029/2000gc000105
    Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0
    Hokada, T., Horie, K., Adachi, T., et al., 2013. Unraveling the Metamorphic History at the Crossing of Neoproterozoic Orogens, Sør Rondane Mountains, East Antarctica: Constraints from U-Th-Pb Geochronology, Petrography, and REE Geochemistry. Precambrian Research, 234: 183-209. https://doi.org/10.1016/j.precamres.2012.12.002
    Hollings, P., Kerrich, R., 2000. An Archean Arc Basalt-Nb-Enriched Basalt-Adakite Association: The 2.7 Ga Confederation Assemblage of the Birch-Uchi Greenstone Belt, Superior Province. Contributions to Mineralogy and Petrology, 139(2): 208-226. https://doi.org/10.1007/pl00007672
    Hollings, P., Stott, G., Wyman, D., 2000. Trace Element Geochemistry of the Meen-Dempster Greenstone Belt, Uchi Subprovince, Superior Province, Canada: Back-Arc Development on the Margins of an Archean Protocontinent. Canadian Journal of Earth Sciences, 37(7): 1021-1038. https://doi.org/10.1139/e00-007
    Inglis, E. C., Debret, B., Burton, K. W., et al., 2017. The Behavior of Iron and Zinc Stable Isotopes Accompanying the Subduction of Mafic Oceanic Crust: A Case Study from Western Alpine Ophiolites. Geochemistry, Geophysics, Geosystems, 18(7): 2562-2579. https://doi.org/10.1002/2016gc006735
    Janardhan, A. S., Jayananda, M., Shankara, M. A., 1994. Formation and Tectonic Evolution of Granulites from the Biligiri Rangan and Niligiri Hills, S. India: Geochemical and Isotopic Constraints. Journal of the Geological Society of India, 44(1): 27-40 http://www.researchgate.net/publication/281212691_Formation_and_tectonic_evolution_of_granulites_from_the_Biligiri_Rangan_and_Niligiri_Hills_S_India_geochemical_and_isotopic_constraints
    Jayananda, M., Moyen, J. F., Martin, H., et al., 2000. Late Archaean (2 550-2 520 Ma) Juvenile Magmatism in the Eastern Dharwar Craton, Southern India: Constraints from Geochronology, Nd-Sr Isotopes and Whole Rock Geochemistry. Precambrian Research, 99(3/4): 225-254. https://doi.org/10.1016/s0301-9268(99)00063-7
    Jayananda, M., Chardon, D., Peucat, J. J., et al., 2006. 2.61 Ga Potassic Granites and Crustal Reworking in the Western Dharwar Craton, Southern India: Tectonic, Geochronologic and Geochemical Constraints. Precambrian Research, 150(1/2): 1-26. https://doi.org/10.1016/j.precamres.2006.05.004
    Jayananda, M., Kano, T., Peucat, J. J., et al., 2008. 3.35 Ga Komatiite Volcanism in the Western Dharwar Craton, Southern India: Constraints from Nd Isotopes and Whole-Rock Geochemistry. Precambrian Research, 162(1/2): 160-179. https://doi.org/10.1016/j.precamres.2007.07.010
    Jayananda, M., Tsutsumi, Y., Miyazaki, T., et al., 2013a. Geochronological Constraints on Meso-and Neoarchean Regional Metamorphism and Magmatism in the Dharwar Craton, Southern India. Journal of Asian Earth Sciences, 78: 18-38. https://doi.org/10.1016/j.jseaes.2013.04.033
    Jayananda, M., Santosh, M., Jahn, B. M., 2013b. Precambrian Accretionary Orogens. Precambrian Research, 227: 1-3. https://doi.org/10.1016/j.precamres.2012.09.001
    Jayananda, M., Duraiswami, R. A., Aadhiseshan, K. R., et al., 2016. Physical Volcanology and Geochemistry of Palaeoarchaean Komatiite Lava Flows from the Western Dharwar Craton, Southern India: Implications for Archaean Mantle Evolution and Crustal Growth. International Geology Review, 58(13): 1569-1595. https://doi.org/10.1080/00206814.2016.1172350
    Jayananda, M., Aadhiseshan, K. R., Kusiak, M. A., et al., 2020. Multi-Stage Crustal Growth and Neoarchean Geodynamics in the Eastern Dharwar Craton, Southern India. Gondwana Research, 78: 228-260. https://doi.org/10.1016/j.gr.2019.09.005
    Jenner, F. E., Bennett, V. C., Nutman, A. P., et al., 2009. Evidence for Subduction at 3.8 Ga: Geochemistry of Arc-Like Metabasalts from the Southern Edge of the Isua Supracrustal Belt. Chemical Geology, 261(1/2): 83-98. https://doi.org/10.1016/j.chemgeo.2008.09.016
    Keller, N. S., Arculus, R. J., Hermann, J., et al., 2008. Submarine Back-Arc Lava with Arc Signature: Fonualei Spreading Center, Northeast Lau Basin, Tonga. Journal of Geophysical Research: Solid Earth, 113: B8. https://doi.org/10.1029/2007jb005451
    Kelly, N. M., Clarke, G. L., Harley, S. L., 2006. Monazite Behaviour and Age Significance in Poly-Metamorphic High-Grade Terrains: A Case Study from the Western Musgrave Block, Central Australia. Lithos, 88(1/2/3/4): 100-134. https://doi.org/10.1016/j.lithos.2005.08.007
    Kerrich, R., Manikyamba, C., 2012. Contemporaneous Eruption of Nb-Enriched Basalts-K-Adakites-Na-Adakites from the 2.7 Ga Penakacherla Terrane: Implications for Subduction Zone Processes and Crustal Growth in the Eastern Dharwar Craton, India. Canadian Journal of Earth Sciences, 49(4): 615-636. https://doi.org/10.1139/e2012-005
    Kerrich, R., Wyman, D., Fan, J., et al., 1998. Boninite Series: Low Ti-Tholeiite Associations from the 2.7 Ga Abitibi Greenstone Belt. Earth and Planetary Science Letters, 164(1/2): 303-316. https://doi.org/10.1016/s0012-821x(98)00223-4
    Krapez, B., Eisenlohr, B., 1998. Tectonic Settings of Archaean (3 325-2 775 Ma) Crustal-Supracrustal Belts in the West Pilbara Block. Precambrian Research, 88(1/2/3/4): 173-205. https://doi.org/10.1016/s0301-9268(97)00068-5
    Kusky, T. M., Polat, A., 1999. Growth of Granite-Greenstone Terranes at Convergent Margins, and Stabilization of Archean Cratons. Tectonophysics, 305(1/2/3): 43-73. https://doi.org/10.1016/s0040-1951(99)00014-1
    Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162: 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
    Lancaster, P. J., Dey, S., Storey, C. D., et al., 2015. Contrasting Crustal Evolution Processes in the Dharwar Craton: Insights from Detrital Zircon U-Pb and Hf Isotopes. Gondwana Research, 28(4): 1361-1372. https://doi.org/10.1016/j.gr.2014.10.010
    Langmuir, D., Mahoney, J., Rowson, J., 2006. Solubility Products of Amorphous Ferric Arsenate and Crystalline Scorodite (FeAsO4·2H2O) and Their Application to Arsenic Behavior in Buried Mine Tailings. Geochimica et Cosmochimica Acta, 70(12): 2942-2956. https://doi.org/10.1016/j.gca.2006.03.006
    Lee, C., Wada, I., 2017. Clustering of Arc Volcanoes Caused by Temperature Perturbations in the Back-Arc Mantle. Nature Communications, 8: 15753. https://doi.org/10.1038/ncomms15753
    Li, B., Bagas, L., Gallardo, L. A., et al., 2013. Back-Arc and Post-Collisional Volcanism in the Palaeoproterozoic Granites-Tanami Orogen, Australia. Precambrian Research, 224: 570-587. https://doi.org/10.1016/j.precamres.2012.11.002
    Li, S. S., Santosh, M., Palin, R. M., 2018. Metamorphism during the Archean-Paleoproterozoic Transition Associated with Microblock Amalgamation in the Dharwar Craton, India. Journal of Petrology, 59(12): 2435-2462. https://doi.org/10.1093/petrology/egy102
    Magni, V., 2019. The Effects of Back-Arc Spreading on Arc Magmatism. Earth and Planetary Science Letters, 519: 141-151. https://doi.org/10.1016/j.epsl.2019.05.009
    Maillet, P., Ruellan, E., Gérard, M., et al., 1995. Tectonics, Magmatism, and Evolution of the New Hebrides Backarc Troughs (Southwest Pacific). In: Taylor, B., ed., Back-arc Basins. Springer, Boston. 177-235. https://doi.org/10.1007/978-1-4615-1843-3_5
    Manikyamba, C., Kerrich, R., 2012. Eastern Dharwar Craton, India: Continental Lithosphere Growth by Accretion of Diverse Plume and Arc Terranes. Geoscience Frontiers, 3(3): 225-240. https://doi.org/10.1016/j.gsf.2011.11.009
    Manikyamba, C., Ganguly, S., 2020. Annals of Precambrian Lithospheric Evolution and Metallogeny in the Dharwar Craton, India: Recent Paradigms and Perspectives. Proceedings of the Indian National Science Academy, 86: 35-54. https://doi.org/10.16943/ptinsa/2020/49785
    Manikyamba, C., Kerrich, R., Khanna, T. C., et al., 2009. Enriched and Depleted Arc Basalts, with Mg-Andesites and Adakites: A Potential Paired Arc-Back-Arc of the 2.6 Ga Hutti Greenstone Terrane, India. Geochimica et Cosmochimica Acta, 73(6): 1711-1736. https://doi.org/10.1016/j.gca.2008.12.020
    Manikyamba, C., Saha, A., Santosh, M., et al., 2014a. Neoarchaean Felsic Volcanic Rocks from the Shimoga Greenstone Belt, Dharwar Craton, India: Geochemical Fingerprints of Crustal Growth at an Active Continental Margin. Precambrian Research, 252: 1-21. https://doi.org/10.1016/j.precamres.2014.06.014
    Manikyamba, C., Ganguly, S., Saha, A., et al., 2014b. Continental Lithospheric Evolution: Constraints from the Geochemistry of Felsic Volcanic Rocks in the Dharwar Craton, India. Journal of Asian Earth Sciences, 95: 65-80. https://doi.org/10.1016/j.jseaes.2014.05.015
    Manikyamba, C., Ganguly, S., Santosh, M., et al., 2015. Arc-Nascent Back-Arc Signature in Metabasalts from the Neoarchaean Jonnagiri Greenstone Terrane, Eastern Dharwar Craton, India. Geological Journal, 50(5): 651-669. https://doi.org/10.1002/gj.2581
    Manikyamba, C., Ganguly, S., Santosh, M., et al., 2017. Volcano-Sedimentary and Metallogenic Records of the Dharwar Greenstone Terranes, India: Window to Archean Plate Tectonics, Continent Growth, and Mineral Endowment. Gondwana Research, 50: 38-66. https://doi.org/10.1016/j.gr.2017.06.005
    Manikyamba, C., Pahari, A., Dhanakumar, T., et al., 2020. Evolution of Geodynamic Processes in Neoarchean Kadiri Greenstone Belt, Eastern Dharwar Craton, India: Implications on the Migrating Arc Magmatism. Journal of Geodynamics, 136: 101717. https://doi.org/10.1016/j.jog.2020.101717
    Martinez, F., Taylor, B., 2003. Controls on Back-Arc Crustal Accretion: Insights from the Lau, Manus and Mariana Basins. Geological Society, London, Special Publications, 219(1): 19-54. https://doi.org/10.1144/gsl.sp.2003.219.01.02
    Masuda, H., Fryer, P., 2015. Geochemical Characteristics of Active Backarc Basin Volcanism at the Southern End of the Mariana Trough. In: Ishibashi, J., Okino, K., Sunamura, M., eds., Subseafloor Biosphere Linked to Hydrothermal Systems. Springer, Tokyo. 261-273. https://doi.org/10.1007/978-4-431-54865-2_21
    McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4): 358-374. https://doi.org/10.1016/0012-821x(91)90029-h
    Moyen, J. F., Laurent, O., 2018. Archaean Tectonic Systems: A View from Igneous Rocks. Lithos, 302/303: 99-125. https://doi.org/10.1016/j.lithos.2017.11.038
    Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321
    Naqvi, S. M., 1983. Early Precambrian Clastic Metasediments of Dharwar Greenstone Belts: Implications to SIMA-SIAL Transformation Process. In: Naqvi, S. M., Rogers, J. J. W., eds., Precambrians of South India. Geological Society of India Memoir, 4: 220-236
    Niu, Y. L., OʼHara, M. J., 2009. MORB Mantle Hosts the Missing Eu (Sr, Nb, Ta and Ti) in the Continental Crust: New Perspectives on Crustal Growth, Crust-Mantle Differentiation and Chemical Structure of Oceanic Upper Mantle. Lithos, 112(1/2): 1-17. https://doi.org/10.1016/j.lithos.2008.12.009
    Nutman, A. P., Chadwick, B., Ramakrishnan, M., et al., 1992. SHRIMP U-Pb Ages of Detrital Zircon in Sargur Supracrustal Rocks in Western Karnataka, Southern India. Journal of the Geological Society of India, 39(5): 367-374 http://www.researchgate.net/publication/279543748_SHRIMP_U-Pb_ages_of_detrital_zircon_in_Sargur_supracrustal_rocks_in_western_Karnataka_southern_India
    Ohta, T., Arai, H., 2007. Statistical Empirical Index of Chemical Weathering in Igneous Rocks: A New Tool for Evaluating the Degree of Weathering. Chemical Geology, 240(3/4): 280-297. https://doi.org/10.1016/j.chemgeo.2007.02.017
    Ohta, H., Maruyama, S., Takahashi, E., et al., 1997. Field Occurrence, Geochemistry and Petrogenesis of the Archean Mid-Oceanic Ridge Basalts (AMORBs) of the Cleaverville Area, Pilbara Craton, Western Australia. Lithos, 37(2/3): 199-221. https://doi.org/10.1016/0024-4937(95)00037-2
    O'Neil, J., Francis, D., Carlson, R. W., 2011. Implications of the Nuvvuagittuq Greenstone Belt for the Formation of Earth's Early Crust. Journal of Petrology, 52(5): 985-1009. https://doi.org/10.1093/petrology/egr014
    Pahari, A., Tang, L., Manikyamba, C., et al., 2019. Meso-Neoarchean Magmatism and Episodic Crustal Growth in the Kudremukh-Agumbe Granite-Greenstone Belt, Western Dharwar Craton, India. Precambrian Research, 323: 16-54. https://doi.org/10.1016/j.precamres.2019.01.005
    Pahari, A., Prasanth, P., Tiwari, D. M., et al., 2020. Subduction-Collision Processes and Crustal Growth in Eastern Dharwar Craton: Evidence from Petrochemical Studies of Hyderabad Granites. Journal of Earth System Science, 129(1): 1-21. https://doi.org/10.1007/s12040-019-1296-1
    Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Andesites, 8: 525-548 http://www.researchgate.net/profile/Julian_Pearce2/publication/248140594_Trace_element_characteristics_of_lavas_from_destructive_plate_boundaries/links/00b7d536a0f74ab495000000?ev=pub_ext_doc_dl_meta
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
    Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
    Pearce, J. A., Stern, R. J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D.C. 63-86. https://doi.org/10.1029/166gm06
    Pearce, J. A., Lippard, S. J., Roberts, S., 1984. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geological Society, London, Special Publications, 16(1): 77-94. https://doi.org/10.1144/gsl.sp.1984.016.01.06
    Pearce, J. A., Baker, P. E., Harvey, P. K., et al., 1995. Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc. Journal of Petrology, 36(4): 1073-1109. https://doi.org/10.1093/petrology/36.4.1073
    Pearce, J. A., Stern, R. J., Bloomer, S. H., et al., 2005. Geochemical Mapping of the Mariana Arc-Basin System: Implications for the Nature and Distribution of Subduction Components. Geochemistry, Geophysics, Geosystems, 6(7). https://doi.org/10.1029/2004gc000895
    Peate, D. W., Pearce, J. A., Hawkesworth, C. J., et al., 1997. Geochemical Variations in Vanuatu Arc Lavas: The Role of Subducted Material and a Variable Mantle Wedge Composition. Journal of Petrology, 38(10): 1331-1358. https://doi.org/10.1093/petroj/38.10.1331
    Peucat, J. J., Bouhallier, H., Fanning, C. M., et al., 1995. Age of the Holenarsipur Greenstone Belt, Relationships with the Surrounding Gneisses (Karnataka, South India). The Journal of Geology, 103(6): 701-710. https://doi.org/10.1086/629789
    Polat, A., 2013. Geochemical Variations in Archean Volcanic Rocks, Southwestern Greenland: Traces of Diverse Tectonic Settings in the Early Earth. Geology, 41(3): 379-380. https://doi.org/10.1130/focus0320131.1
    Polat, A., Kerrich, R., 2006. Reading the Geochemical Fingerprints of Archean Hot Subduction Volcanic Rocks: Evidence for Accretion and Crustal Recycling in a Mobile Tectonic Regime. Archean Geodynamics and Environments. American Geophysical Union, Washington, D.C. 189-213. https://doi.org/10.1029/164gm13
    Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3/4): 197-218. https://doi.org/10.1016/s0301-9268(03)00095-0
    Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3/4): 231-254. https://doi.org/10.1016/s0009-2541(01)00363-1
    Polat, A., Kokfelt, T., Burke, K. C., et al., 2016. Lithological, Structural, and Geochemical Characteristics of the Mesoarchean Târtoq Greenstone Belt, Southern West Greenland, and the Chugach-Prince William Accretionary Complex, Southern Alaska: Evidence for Uniformitarian Plate-Tectonic Processes. Canadian Journal of Earth Sciences, 53(11): 1336-1371. https://doi.org/10.1139/cjes-2016-0023
    Radhakrishna, B. P., Curtis, L. C., 1999. Gold in India. Geological Society of India Economic Geology Series 7. Geological Society of India, Bangalore. 307
    Ross, P. S., Bédard, J. H., 2009. Magmatic Affinity of Modern and Ancient Subalkaline Volcanic Rocks Determined from Trace-Element Discriminant Diagrams. Canadian Journal of Earth Sciences, 46(11): 823-839. https://doi.org/10.1139/e09-054
    Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557): 571-578. https://doi.org/10.1038/378571a0
    Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267-309. https://doi.org/10.1029/95rg01302
    Rudnick, R., Gao, S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochimica et Cosmochimica Acta, 67: 403 http://adsabs.harvard.edu/abs/2003GeCAS..67Q.403R
    Saccani, E., Principi, G., Garfagnoli, F., et al., 2008. Corsica Ophiolites: Geochemistry and Petrogenesis of Basaltic and Metabasaltic Rocks. Ofioliti, 33: 187-207 http://www.researchgate.net/profile/Emilio_Saccani/publication/282643330_Corsica_ophiolites_Geochemistry_and_petrogenesis_of_basaltic_and_metabasaltic_rocks/links/5615194208aed47facefab85.pdf
    Saccani, E., Delavari, M., Beccaluva, L., et al., 2010. Petrological and Geochemical Constraints on the Origin of the Nehbandan Ophiolitic Complex (Eastern Iran): Implication for the Evolution of the Sistan Ocean. Lithos, 117(1/2/3/4): 209-228. https://doi.org/10.1016/j.lithos.2010.02.016
    Santosh, M., 2013. Evolution of Continents, Cratons and Supercontinents: Building the Habitable Earth. Current Science, 104(7): 871-879 http://smartsearch.nstl.gov.cn/paper_detail.html?id=2360edd8bc130557adcddcce4c1294af
    Santosh, M., Li, S. S., 2018. Anorthosites from an Archean Continental Arc in the Dharwar Craton, Southern India: Implications for Terrane Assembly and Cratonization. Precambrian Research, 308: 126-147. https://doi.org/10.1016/j.precamres.2018.02.011
    Saunders, A. D., Norry, M. J., Tarney, J., 1988. Origin of MORB and Chemically-Depleted Mantle Reservoirs: Trace Element Constraints. Journal of Petrology, Special_Volume(1): 415-445. https://doi.org/10.1093/petrology/special_volume.1.415
    Sdrolias, M., Müller, R. D., 2006. Controls on Back-Arc Basin Formation. Geochemistry, Geophysics, Geosystems, 7(4). https://doi.org/10.1029/2005gc001090
    Sharma, R. S., 2009. Cratons and Fold Belts of India. Springer Verlag, Heidelberg. 324
    Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101-118. https://doi.org/10.1016/0012-821x(82)90120-0
    Sheshadri, T. S., Chaudhuri, A., Harinadha Babu, P., et al., 1981. Chitradurga Belt. Precambrian Supracrustals of Southern Karnataka. Memoir Geological Survey of India, 112: 163-198
    Sharkov, E. V., Smolkin, V. F., 1997. The Early Proterozoic Pechenga-Varzuga Belt: A Case of Precambrian Back-Arc Spreading. Precambrian Research, 82(1/2): 133-151. https://doi.org/10.1016/s0301-9268(96)00041-1
    Shuto, K., Ishimoto, H., Hirahara, Y., et al., 2006. Geochemical Secular Variation of Magma Source during Early to Middle Miocene Time in the Niigata Area, NE Japan: Asthenospheric Mantle Upwelling during Back-Arc Basin Opening. Lithos, 86(1/2): 1-33. https://doi.org/10.1016/j.lithos.2005.06.001
    Smith, G. P., Wiens, D. A., Fischer, K. M., et al., 2001. A Complex Pattern of Mantle Flow in the Lau Backarc. Science, 292(5517): 713-716. https://doi.org/10.1126/science.1058763
    Smithies, R. H., van Kranendonk, M. J., Champion, D. C., 2005. It Started with a Plume-Early Archaean Basaltic Proto-Continental Crust. Earth and Planetary Science Letters, 238(3/4): 284-297. https://doi.org/10.1016/j.epsl.2005.07.023
    Smithies, R. H., Ivanic, T. J., Lowrey, J. R., et al., 2018. Two Distinct Origins for Archean Greenstone Belts. Earth and Planetary Science Letters, 487: 106-116. https://doi.org/10.1016/j.epsl.2018.01.034
    Sotiriou, P., Polat, A., Frei, R., et al., 2020. Evidence for Neoarchean Hydrous Arc Magmatism, the Anorthosite-Bearing Mayville Intrusion, Western Superior Province, Canada. Lithos, 362/363: 105482. https://doi.org/10.1016/j.lithos.2020.105482
    Stephenson, R., Schellart, W. P., 2010. The Black Sea Back-Arc Basin: Insights to Its Origin from Geodynamic Models of Modern Analogues. Geological Society, London, Special Publications, 340(1): 11-21. https://doi.org/10.1144/sp340.2
    Stern, R. J., 2002. Crustal Evolution in the East African Orogen: A Neodymium Isotopic Perspective. Journal of African Earth Sciences, 34(3/4): 109-117. https://doi.org/10.1016/S0899-5362(02)00012-x
    Stern, R. J., Nielsen, K. C., Best, E., et al., 1990. Orientation of Late Precambrian Sutures in the Arabian-Nubian Shield. Geology, 18(11): 1103-1106. https://doi.org/10.1130/0091-7613(1990)0181103:oolpsi>2.3.co;2 doi: 10.1130/0091-7613(1990)0181103:oolpsi>2.3.co;2
    Stolper, E., Newman, S., 1994. The Role of Water in the Petrogenesis of Mariana Trough Magmas. Earth and Planetary Science Letters, 121(3/4): 293-325. https://doi.org/10.1016/0012-821x(94)90074-4
    Subrahmanyam, V., Krishna, K. S., Radhakrishna Murthy, I. V., et al., 2001. Gravity Anomalies and Crustal Structure of the Bay of Bengal. Earth and Planetary Science Letters, 192(3): 447-456. https://doi.org/10.1016/s0012-821x(01)00469-1
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/ 10.1144/gsl.sp.1989.042.01.19
    Swami Nath, J., Ramakrishnan, M., 1981. Early Precambrian Supracrustals of Southern Karnataka. Memoir Geological Survey of India, 112: 79-81
    Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Cambridge. 224
    Taylor, P. N., Chadwick, B., Moorbath, S., et al., 1984. Petrography, Chemistry and Isotopic Ages of Peninsular Gneiss, Dharwar Acid Volcanic Rocks and the Chitradurga Granite with Special Reference to the Late Archean Evolution of the Karnataka Craton, Southern India. Precambrian Research, 23(3/4): 349-375. https://doi.org/ 10.1016/0301-9268(84)90050-0
    Wang, S., Zhang, D., Wu, G. G., et al., 2017. Late Paleozoic to Mesozoic Extension in Southwestern Fujian Province, South China: Geochemical, Geochronological and Hf Isotopic Constraints from Basic-Intermediate Dykes. Geoscience Frontiers, 8(3): 529-540. https://doi.org/ 10.1016/j.gsf.2016.05.005
    Wang, J. P., Kusky, T. M., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608: 929-946. https://doi.org/ 10.1016/j.tecto.2013.07.025
    Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/ 10.1016/0009-2541(77)90057-2
    Wiens, D. A., Kelley, K. A., Plank, T., 2006. Mantle Temperature Variations beneath Back-Arc Spreading Centers Inferred from Seismology, Petrology, and Bathymetry. Earth and Planetary Science Letters, 248(1/2): 30-42. https://doi.org/ 10.1016/j.epsl.2006.04.011
    Windley, B. F., Kusky, T. M., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/ 10.1016/j.precamres.2020.105980
    Woodhead, J., Eggins, S., Gamble, J., 1993. High Field Strength and Transition Element Systematics in Island Arc and Back-Arc Basin Basalts: Evidence for Multi-Phase Melt Extraction and a Depleted Mantle Wedge. Earth and Planetary Science Letters, 114(4): 491-504. https://doi.org/ 10.1016/0012-821x(93)90078-n
    Wyman, D., 2018. Do Cratons Preserve Evidence of Stagnant Lid Tectonics? Geoscience Frontiers, 9(1): 3-17. https://doi.org/ 10.1016/j.gsf.2017.02.001
    Xiao, W. J., Santosh, M., 2014. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 25(4): 1429-1444. https://doi.org/ 10.1016/j.gr.2014.01.008
    Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/ 10.1016/j.gr.2011.02.005
    Zheng, Y. F., 2019. Subduction Zone Geochemistry. Geoscience Frontiers, 10(4): 1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(71) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return