An, Z. H., Jiang, G. Q., Tong, J. N., et al., 2015. Stratigraphic Position of the Ediacaran Miaohe Biota and Its Constrains on the Age of the Upper Doushantuo δ13C Anomaly in the Yangtze Gorges Area, South China. Precambrian Research, 271: 243-253. https://doi.org/10.1016/j.precamres.2015.10.007 |
Charvet, J., 2013. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198-209. https://doi.org/10.1016/j.jseaes.2013.02.015 |
Chen, C., Feng, Q., Gan, Z., 2020. Zircon U-Pb Ages and its Geological Significance of Tuffs between the Doushantuo and Liuchapo Formaion at Yangtou Section, Guizhou Province. Earth Science, 45(3): 880-891. https://doi.org/10.3799/dqkx.2019.103 (in Chinese with English Abstract) |
Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258(3/4): 168-181. https://doi.org/10.1016/j.chemgeo.2008.10.016 |
Chen, D. Z., Zhou, X. Q., Fu, Y., et al., 2015. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62-68. https://doi.org/10.1111/ter.12134 |
Cohen, A. S., 2004. The rhenium-Osmium Isotope System: Applications to Geochronological and Palaeoenvironmental Problems. Journal of the Geological Society, 161(4): 729-734. http://dx.doi.org/10.1144/0016-764903-084 |
Cohen, A. S., Coe, A. L., Bartlett, J. M., et al., 1999. Precise Re-Os Ages of Organic-Rich Mudrocks and the Os Isotope Composition of Jurassic Seawater. Earth and Planetary Science Letters, 167(3/4): 159-173. https://doi.org/10.1016/s0012-821x(99)00026-6 |
Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95-98. https://doi.org/10.1126/science.1107765 |
Dickson, A. J., Cohen, A. S., Coe, A. L., et al., 2015. Evidence for Weathering and Volcanism during the PETM from Arctic Ocean and Peri-Tethys Osmium Isotope Records. Palaeogeography, Palaeoclimatology, Palaeoecology, 438: 300-307. https://doi.org/10.1016/j.palaeo.2015.08.019 |
Ding, Y., Chen, D. Z., Zhou, X. Q., et al., 2019. Tectono-Depositional Pattern and Evolution of the Middle Yangtze Platform (South China) during the Late Ediacaran. Precambrian Research, 333: 105426. https://doi.org/10.1016/j.precamres.2019.105426 |
Du Vivier, A. D. C., Selby, D., Sageman, B. B., et al., 2014. Marine 187Os/188Os Isotope Stratigraphy Reveals the Interaction of Volcanism and Ocean Circulation during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 389: 23-33. https://doi.org/10.1016/j.epsl.2013.12.024 |
Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091-1097. https://doi.org/10.1126/science.1206375 |
Feng, L. J., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246: 123-133. https://doi.org/10.1016/j.precamres.2014.03.002 |
Finlay, A. J., Selby, D., Gröcke, D. R., 2010. Tracking the Hirnantian Glaciation Using Os Isotopes. Earth and Planetary Science Letters, 293(3/4): 339-348. https://doi.org/10.1016/j.epsl.2010.02.049 |
Fu, Y., Dong, L., Li, C., et al., 2016. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): 271-281. https://doi.org/10.1007/s12583-016-0606-7 |
Halverson, G. P., Dudás, F. Ö., Maloof, A. C., et al., 2007. Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3/4): 103-129. https://doi.org/10.1016/j.palaeo.2007.02.028 |
Halverson, G. P., Shields-Zhou, G., 2011. Chapter 4 Chemostratigraphy and the Neoproterozoic Glaciations. In: Arnaud, E., Halverson, G.P., Shields-Zhou, G., eds., The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoirs, 36(1): 51-66. https://doi.org/10.1144/m36.4 |
Han, T., Fan, H. F., Zhu, X. Q., et al., 2017. Submarine Hydrothermal Contribution for the Extreme Element Accumulation during the Early Cambrian, South China. Ore Geology Reviews, 86: 297-308. https://doi.org/10.1016/j.oregeorev.2017.02.030 |
Hannah, J. L., Bekker, A., Stein, H. J., et al., 2004. Primitive Os and 2 316 Ma Age for Marine Shale: Implications for Paleoproterozoic Glacial Events and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 225(1/2): 43-52. https://doi.org/10.1016/j.epsl.2004.06.013 |
Huang, T. Y., Chen, D. Z., Ding, Y., et al., 2020. SIMS U-Pb Zircon Geochronological and Carbon Isotope Chemostratigraphic Constraints on the Ediacaran-Cambrian Boundary Succession in the Three Gorges Area, South China. Journal of Earth Science, 31(1): 69-78. https://doi.org/10.1007/s12583-019-1233-x |
Huang, T. Y., Chen, D. Z., Fu, Y., et al., 2019. Development and Evolution of a Euxinic Wedge on the Ferruginous Outer Shelf of the Early Cambrian Yangtze Sea. Chemical Geology, 524: 259-271. https://doi.org/10.1016/j.chemgeo.2019.06.024 |
Jenkins, R. J. F., Cooper, J. A., Compston, W., 2002. Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China. Journal of the Geological Society, 159(6): 645-658. https://doi.org/10.1144/0016-764901-127 |
Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831-849. https://doi.org/10.1016/j.gr.2011.01.006 |
Jiang, G. Q., Sohl, L. E., Christie-Blick, N., 2003. Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic Implications. Geology, 31(10): 917-920. https://doi.org/10.1130/g19790.1 |
Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459(7248): E5-E6; Discussion E6. https://doi.org/10.1038/nature08048 |
Kendall, B., Creaser, R. A., Selby, D., 2006. Re-Os Geochronology of Postglacial Black Shales in Australia: Constraints on the Timing of "Sturtian" Glaciation. Geology, 34(9): 729-732. https://doi.org/10.1130/g22775.1 |
Kendall, B., Creaser, R. A., Selby, D., 2009. 187Re-187Os Geochronology of Precambrian Organic-Rich Sedimentary Rocks. Geological Society, London, Special Publications, 326(1): 85-107. https://doi.org/10.1144/sp326.5 |
Levasseur, S., Birck, J. L., Allègre, C. J., 1998. Direct Measurement of Femtomoles of Osmium and the 187Os/186Os Ratio in Seawater. Science, 282(5387): 272-274. https://doi.org/10.1126/science.282.5387.272 |
Levasseur, S., Birck, J. L., Allègre, C. J., 1999. The Osmium Riverine Flux and the Oceanic Mass Balance of Osmium. Earth and Planetary Science Letters, 174(1/2): 7-23. https://doi.org/10.1016/s0012-821x(99)00259-9 |
Li, C., Love, G. D., Lyons, T. W., et al., 2010a. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. https://doi.org/10.1126/science.1182369 |
Li, C., Qu, W. J., Zhou, L. M., et al., 2010b. Rapid Separation of Osmium by Direct Distillation with Carius Tube. Rock and Mineral Analysis, 29(1): 14-16. https://doi.org/10.15898/j.cnki.11-2131/td.2010.01.001 (in Chinese with English Abstract) |
Li, C., Shi, W., Cheng, M., et al., 2020. The Redox Structure of Ediacaran and Early Cambrian Oceans and Its Controls. Science Bulletin, 65(24): 2141-2149. https://doi.org/10.1016/j.scib.2020.09.023 |
Li, S. R., Xiao, Q. Y., Shen, J. F., et al., 2003. Rhenium-Osmium Isotope Constraints on the Age and Source of the Platinum Mineralization in the Lower Cambrian Black Rock Series of Hunan-Guizhou Provinces, China. Science in China Series D: Earth Sciences, 46(9): 919-927. https://doi.org/10.1360/01yd0277 |
Liu, Z. Q., Jiang, X. J., Li, C., et al., 2021. Metallogenic Age and Setting of Boka Gold Deposit Dongchuan: Evidence from Re-Os Isotope of Sulfide and Trace Element of Carbonaceous Slate. Earth Science, 46(12): 4260-4273. https://doi.org/10.3799/dqkx.2021.178 (in Chinese with English Abstract) |
Liu, Z. Y., Selby, D., Zhang, H., et al., 2020. Evidence for Volcanism and Weathering during the Permian-Triassic Mass Extinction from Meishan (South China) Osmium Isotope Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109790. https://doi.org/10.1016/j.palaeo.2020.109790 |
Mao, J. W., Lehmann, B., Du, A. D., et al., 2002. Re-Os Dating of Polymetallic Ni-Mo-PGE-Au Mineralization in Lower Cambrian Black Shales of South China and Its Geologic Significance. Economic Geology, 97(5): 1051-1061. https://doi.org/10.2113/gsecongeo.97.5.1051 |
Matsumoto, H., Kuroda, J., Coccioni, R., et al., 2020. Marine Os Isotopic Evidence for Multiple Volcanic Episodes during Cretaceous Oceanic Anoxic Event 1b. Scientific Reports, 10(1): 12601. https://doi.org/10.1038/s41598-020-69505-x |
McDaniel, D. K., Walker, R. J., Hemming, S. R., et al., 2004. Sources of Osmium to the Modern Oceans: New Evidence from the 190Pt-186Os System. Geochimica et Cosmochimica Acta, 68(6): 1243-1252. https://doi.org/10.1016/j.gca.2003.08.020 |
Oxburgh, R., 1998. Variations in the Osmium Isotope Composition of Sea Water over the Past 200 000 Years. Earth and Planetary Science Letters, 159(3/4): 183-191. https://doi.org/10.1016/s0012-821x(98)00057-0 |
Peucker-Ehrenbrink, B., Ravizza, G., 2000. The Marine Osmium Isotope Record. Terra Nova, 12(5): 205-219. https://doi.org/10.1046/j.1365-3121.2000.00295.x |
Ravizza, G., Peucker-Ehrenbrink, B., 2003. Chemostratigraphic Evidence of Deccan Volcanism from the Marine Osmium Isotope Record. Science, 302(5649): 1392-1395. https://doi.org/10.1126/science.1089209 |
Rooney, A. D., Chew, D. M., Selby, D., 2011. Re-Os Geochronology of the Neoproterozoic-Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic Stratigraphy, Glaciations and Re-Os Systematics. Precambrian Research, 185(3/4): 202-214. https://doi.org/10.1016/j.precamres.2011.01.009 |
Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re-Os Geochronology and Coupled Os-Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 51-56. https://doi.org/10.1073/pnas.1317266110 |
Rooney, A. D., Selby, D., Houzay, J. P., et al., 2010. Re-Os Geochronology of a Mesoproterozoic Sedimentary Succession, Taoudeni Basin, Mauritania: Implications for Basin-Wide Correlations and Re-Os Organic-Rich Sediments Systematics. Earth and Planetary Science Letters, 289(3/4): 486-496. https://doi.org/10.1016/j.epsl.2009.11.039 |
Rotich, E. K., Handler, M. R., Naeher, S., et al., 2020. Re-Os Geochronology and Isotope Systematics, and Organic and Sulfur Geochemistry of the Middle-Late Paleocene Waipawa Formation, New Zealand: Insights into Early Paleogene Seawater Os Isotope Composition. Chemical Geology, 536: 119473. https://doi.org/10.1016/j.chemgeo.2020.119473 |
Sawaki, Y., Ohno, T., Tahata, M., et al., 2010. The Ediacaran Radiogenic Sr Isotope Excursion in the Doushantuo Formation in the Three Gorges Area, South China. Precambrian Research, 176(1/2/3/4): 46-64. https://doi.org/10.1016/j.precamres.2009.10.006 |
Sharma, M., Wasserburg, G. J., 1997. Osmium in the Rivers. Geochimica et Cosmochimica Acta, 61(24): 5411-5416. https://doi.org/10.1016/s0016-7037(97)00329-3 |
Shi, C. H., Cao, J., Han, S. C., et al., 2021. A Review of Polymetallic Mineralization in Lower Cambrian Black Shales in South China: Combined Effects of Seawater, Hydrothermal Fluids, and Biological Activity. Palaeogeography, Palaeoclimatology, Palaeoecology, 561: 110073. https://doi.org/10.1016/j.palaeo.2020.110073 |
Stein, R., 1990. Organic Carbon Content/Sedimentation Rate Relationship and Its Paleoenvironmental Significance for Marine Sediments. Geo-Marine Letters, 10(1): 37-44. https://doi.org/10.1007/bf02431020 |
Sun, P. C., Li, C., Zhou, L. M., et al., 2021. Dating Metallogenic Age of Jinding Pb-Zn Deposit in Yunnan: Evidence from Re-Os Isotope of Bitumen. Earth Science, 46(12): . 4247-4259. https://doi.org/10.3799/dqkx.2021.085 |
Tripathy, G. R., Singh, S. K., 2015. Re-Os Depositional Age for Black Shales from the Kaimur Group, Upper Vindhyan, India. Chemical Geology, 413: 63-72. https://doi.org/10.1016/j.chemgeo.2015.08.011 |
Turgeon, S. C., Creaser, R. A., Algeo, T. J., 2007. Re-Os Depositional Ages and Seawater Os Estimates for the Frasnian-Famennian Boundary: Implications for Weathering Rates, Land Plant Evolution, and Extinction Mechanisms. Earth and Planetary Science Letters, 261(3/4): 649-661. https://doi.org/10.1016/j.epsl.2007.07.031 |
Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1/2/3/4): 141-158. https://doi.org/10.1016/s0301-9268(02)00209-7 |
Wang, W., Zhou, M. Z., Chu, Z. Y., et al., 2020. Constraints on the Ediacaran-Cambrian Boundary in Deep-Water Realm in South China: Evidence from Zircon CA-ID-TIMS U-Pb Ages from the Topmost Liuchapo Formation. Science China Earth Sciences, 63(8): 1176-1187. https://doi.org/10.1007/s11430-019-9590-0 |
Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48: 1-8. https://doi.org/10.1016/j.jseaes.2011.12.023 |
Wang, Y., Huang, Z. Q., Chen, H. D., et al., 2012. Stratigraphical Correlation of the Liuchapo Formation with the Dengying Formation in South China. Journal of Jilin University (Earth Science Edition), 42(S1): 328-335. https://doi.org/10.13278/j.cnki.jjuese.2012.s1.049 (in Chinese with English Abstract) |
Wei, S. C., Fu, Y., Liang, H. P., et al., 2018. Re-Os Geochronology of the Cambrian Stage-2 and -3 Boundary in Zhijin County, Guizhou Province, China. Acta Geochimica, 37(2): 323-333. https://doi.org/10.1007/s11631-017-0228-5 |
Xu, L. G., Lehmann, B., Mao, J. W., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China-A Reassessment. Economic Geology, 106(3): 511-522. https://doi.org/10.2113/econgeo.106.3.511 |
Yamashita, Y., Takahashi, Y., Haba, H., et al., 2007. Comparison of Reductive Accumulation of Re and Os in Seawater-Sediment Systems. Geochimica et Cosmochimica Acta, 71(14): 3458-3475. https://doi.org/10.1016/j.gca.2007.05.003 |
Yang, C., Zhu, M. Y., Condon, D. J., et al., 2017. Geochronological Constraints on Stratigraphic Correlation and Oceanic Oxygenation in Ediacaran-Cambrian Transition in South China. Journal of Asian Earth Sciences, 140: 75-81. https://doi.org/10.1016/j.jseaes.2017.03.017 |
Yang, G., Hannah, J. L., Zimmerman, A., et al., 2009. Re-Os Depositional Age for Archean Carbonaceous Slates from the Southwestern Superior Province: Challenges and Insights. Earth and Planetary Science Letters, 280(1/2/3/4): 83-92. https://doi.org/10.1016/j.epsl.2009.01.019 |
Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003 |
Zhou, C. M., Yuan, X. L., Xiao, S. H., et al., 2019. Ediacaran Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 7-24. https://doi.org/10.1007/s11430-017-9216-2 |
Zhou, M. Z., Luo, T. Y., Huff, W. D., et al., 2018. Timing the Termination of the Doushantuo Negative Carbon Isotope Excursion: Evidence from U-Pb Ages from the Dengying and Liuchapo Formations, South China. Science Bulletin, 63(21): 1431-1438. https://doi.org/10.1016/j.scib.2018.10.002 |
Zhu, B., Becker, H., Jiang, S. Y., et al., 2013. Re-Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China. Precambrian Research, 225: 67-76. https://doi.org/10.1016/j.precamres.2012.02.002 |
Zhu, M. Y., Yang, A. H., Yuan, J. L., et al., 2019. Cambrian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 25-60. https://doi.org/10.1007/s11430-017-9291-0 |
Zhu, M., Zhuravlev, A. Y., Wood, R. A., et al., 2017. A Deep Root for the Cambrian Explosion: Implications of New Bio- and Chemostratigraphy from the Siberian Platform. Geology, 45(5): 459-462. doi: 10.1130/g38865.1 |