Cawthorn, R. G., Ashwal, L. D., 2009. Origin of Anorthosite and Magnetitite Layers in the Bushveld Complex, Constrained by Major Element Compositions of Plagioclase. Journal of Petrology, 50(9): 1607-1637. https://doi.org/10.1093/petrology/egp042 |
Charlier, B., Grove, T. L., 2012. Experiments on Liquid Immiscibility along Tholeiitic Liquid Lines of Descent. Contributions to Mineralogy and Petrology, 164(1): 27-44. https://doi.org/10.1007/s00410-012-0723-y |
Charlier, B., Namur, O., Toplis, M. J., et al., 2011. Large-Scale Silicate Liquid Immiscibility during Differentiation of Tholeiitic Basalt to Granite and the Origin of the Daly Gap. Geology, 39(10): 907-910. https://doi.org/10.1130/g32091.1 |
Duchesne, J. C., 1999. Fe-Ti Deposits in Rogaland Anorthosites (South Norway): Geochemical Characteristics and Problems of Interpretation. Mineralium Deposita, 34(2): 182-198. https://doi.org/10.1007/s001260050195 |
Ganino, C., Arndt, N. T., Zhou, M. F., et al., 2008. Interaction of Magma with Sedimentary Wall Rock and Magnetite Ore Genesis in the Panzhihua Mafic Intrusion, SW China. Mineralium Deposita, 43(6): 677-694. https://doi.org/10.1007/s00126-008-0191-5 |
Holtz, F., Johannes, W., Tamic, N., et al., 2001. Maximum and Minimum Water Contents of Granitic Melts Generated in the Crust: A Reevaluation and Implications. Lithos, 56(1): 1-14. https://doi.org/10.1016/s0024-4937(00)00056-6 |
Hou, T., Veksler, I. V., 2015. Experimental Confirmation of High-Temperature Silicate Liquid Immiscibility in Multicomponent Ferrobasaltic Systems. American Mineralogist, 100(5/6): 1304-1307. https://doi.org/10.2138/am-2015-5285 |
Lindsley, D. H., 1981. Some Experiments Pertaining to the Magnetite-Ulvöspinel Miscibility Gap. American Mineralogist, 66(7/8): 759-762 |
Liu, P. P., Zhou, M. F., Wang, C. Y., et al., 2014. Open Magma Chamber Processes in the Formation of the Permian Baima Mafic-Ultramafic Layered Intrusion, SW China. Lithos, 184/185/186/187: 194-208. https://doi.org/10.1016/j.lithos.2013.10.028 |
Luan, Y., Song, X. Y., Chen, L. M., et al., 2014. Key Factors Controlling the Accumulation of the Fe-Ti Oxides in the Hongge Layered Intrusion in the Emeishan Large Igneous Province, SW China. Ore Geology Reviews, 57: 518-538. https://doi.org/10.1016/j.oregeorev.2013.08.010 |
Mitchell, A. A., Eales, H. V., Johan Kruger, F., 1998. Magma Replenishment, and the Significance of Poikilitic Texlures, in the Lower Main Zone of the Western Bushveld Complex, South Africa. Mineralogical Magazine, 62(4): 435-450. https://doi.org/10.1180/002646198547783 |
Morse, S. A., 2008. Compositional Convection Trumps Silicate Liquid Immisciblity in Layered Intrusions: A Discussion of Liquid Immiscibility and the Evolution of Basaltic Magma by Veksler et al., Journal of Petrology, 49(12): 2157-2168. https://doi.org/10.1093/petrology/egn063 |
Namur, O., Charlier, B., Toplis, M. J., et al., 2010. Crystallization Sequence and Magma Chamber Processes in the Ferrobasaltic Sept Iles Layered Intrusion, Canada. Journal of Petrology, 51(6): 1203-1236. https://doi.org/10.1093/petrology/egq016 |
Pang, K. N., Zhou, M. F., Lindsley, D., et al., 2008. Origin of Fe-Ti Oxide Ores in Mafic Intrusions: Evidence from the Panzhihua Intrusion, SW China. Journal of Petrology, 49(2): 295-313. https://doi.org/10.1093/petrology/egm082 |
Price, G. D., 1981. Subsolidus Phase Relations in the Titanomagnetite Solid Solution Series. American Mineralogist, 66: 751-758. https://doi.org/10.1007/bf01087170 |
Sauerzapf, U., Lattard, D., Burchard, M., et al., 2008. The Titanomagnetite-Ilmenite Equilibrium: New Experimental Data and Thermo-Oxybarometric Application to the Crystallization of Basic to Intermediate Rocks. Journal of Petrology, 49(6): 1161-1185. https://doi.org/10.1093/petrology/egn021 |
Snyder, D., Carmichael, I. S. E., Wiebe, R. A., 1993. Experimental Study of Liquid Evolution in an Fe-Rich, Layered Mafic Intrusion: Constraints of Fe-Ti Oxide Precipitation on the T-fO2 and T-ϱ Paths of Tholeiitic Magmas. Contributions to Mineralogy and Petrology, 113(1): 73-86. https://doi.org/10.1007/bf00320832 |
Song, X. Y., Qi, H. W., Hu, R. Z., et al., 2013. Formation of Thick Stratiform Fe-Ti Oxide Layers in Layered Intrusion and Frequent Replenishment of Fractionated Mafic Magma: Evidence from the Panzhihua Intrusion, SW China. Geochemistry, Geophysics, Geosystems, 14(3): 712-732. https://doi.org/10.1002/ggge.20068 |
Song, X. Y., Zhou, M. F., Cao, Z. M., et al., 2004. Late Permian Rifting of the South China Craton Caused by the Emeishan Mantle Plume? Journal of the Geological Society, 161(5): 773-781. https://doi.org/10.1144/0016-764903-135 |
Tan, W., Liu, P., He, H. P., et al., 2016. Mineralogy and Origin of Exsolution in Ti-Rich Magnetite from Different Magmatic Fe-Ti Oxide-Bearing Intrusions. The Canadian Mineralogist, 54(3): 539-553. https://doi.org/10.3749/canmin.1400069 |
Toplis, M. J., Carroll, M. R., 1995. An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral-Melt Equilibria in Ferro-Basaltic Systems. Journal of Petrology, 36(5): 1137-1170. https://doi.org/10.1093/petrology/36.5.1137 |
Van Tongeren, J. A., Mathez, E. A., 2012. Large-Scale Liquid Immiscibility at the Top of the Bushveld Complex, South Africa. Geology, 40(6): 491-494. https://doi.org/10.1130/g32980.1 |
Veksler, I. V., Dorfman, A. M., Borisov, A. A., et al., 2007. Liquid Immiscibility and the Evolution of Basaltic Magma. Journal of Petrology, 48(11): 2187-2210. https://doi.org/10.1093/petrology/egm056 |
Vincent, E. A., Wright, J. B., Chevallier, R., et al., 1957. Heating Experiments on Some Natural Titaniferous Magnetites. Mineralogical Magazine, 31(239): 624-655. https://10.1180/minmag.1957.31.239.03 |
Wang, C., Jin, Z. M., Gao, S., et al., 2010. Eclogite-Melt/Peridotite Reaction: Experimental Constrains on the Destruction Mechanism of the North China Craton. Science China Earth Sciences, 53(6): 797-809. https://doi.org/10.1007/s11430-010-3084-2 |
Wang, C. Y., Zhou, M. F., 2013. New Textural and Mineralogical Constraints on the Origin of the Hongge Fe-Ti-V Oxide Deposit, SW China. Mineralium Deposita, 48(6): 787-798. https://doi.org/10.1007/s00126-013-0457-4 |
Wang, C. Y., Zhou, M. F., Zhao, D. G., 2008. Fe-Ti-Cr Oxides from the Permian Xinjie Mafic-Ultramafic Layered Intrusion in the Emeishan Large Igneous Province, SW China: Crystallization from Fe- and Ti-Rich Basaltic Magmas. Lithos, 102(1/2): 198-217. https://doi.org/10.1016/j.lithos.2007.08.007 |
Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145-168. https://doi.org/10.1016/s0024-4937(01)00055-x |
Zhang, Z. C., Mao, J. W., Saunders, A. D., et al., 2009. Petrogenetic Modeling of Three Mafic-Ultramafic Layered Intrusions in the Emeishan Large Igneous Province, SW China, Based on Isotopic and Bulk Chemical Constraints. Lithos, 113(3/4): 369-392. https://doi.org/10.1016/j.lithos.2009.04.023 |
Zhou, M. F., Arndt, N. T., Malpas, J., et al., 2008. Two Magma Series and Associated Ore Deposit Types in the Permian Emeishan Large Igneous Province, SW China. Lithos, 103(3/4): 352-368. https://doi.org/10.1016/j.lithos.2007.10.006 |
Zhou, M. F., Chen, W. T., Wang, C. Y., et al., 2013. Two Stages of Immiscible Liquid Separation in the Formation of Panzhihua-Type Fe-Ti-V Oxide Deposits, SW China. Geoscience Frontiers, 4(5): 481-502. https://doi.org/10.1016/j.gsf.2013.04.006 |
Zhou, M. F., Malpas, J., Song, X. Y., et al., 2002. A Temporal Link between the Emeishan Large Igneous Province (SW China) and the End-Guadalupian Mass Extinction. Earth and Planetary Science Letters, 196(3/4): 113-122. https://doi.org/10.1016/s0012-821x(01)00608-2 |
Zhou, M. F., Robinson, P. T., Lesher, C. M., et al., 2005. Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe-Ti-V Oxide Deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280. https://doi.org/10.1093/petrology/egi054 |