Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 3
Jun 2024
Turn off MathJax
Article Contents
Siqi Liu, Bo Zhang, Jinjiang Zhang, Jian Zhang, Lei Guo, Tao Wang, Baoyou Hang, Xiaorong Li. Microstructures, Fabrics, and Seismic Properties of Mylonitic Amphibolites: Implications for Strain Localization in a Thickening Anisotropic Middle Crust of the North China Craton. Journal of Earth Science, 2024, 35(3): 769-785. doi: 10.1007/s12583-021-1480-5
Citation: Siqi Liu, Bo Zhang, Jinjiang Zhang, Jian Zhang, Lei Guo, Tao Wang, Baoyou Hang, Xiaorong Li. Microstructures, Fabrics, and Seismic Properties of Mylonitic Amphibolites: Implications for Strain Localization in a Thickening Anisotropic Middle Crust of the North China Craton. Journal of Earth Science, 2024, 35(3): 769-785. doi: 10.1007/s12583-021-1480-5

Microstructures, Fabrics, and Seismic Properties of Mylonitic Amphibolites: Implications for Strain Localization in a Thickening Anisotropic Middle Crust of the North China Craton

doi: 10.1007/s12583-021-1480-5
More Information
  • Corresponding author: Bo Zhang, geozhangbo@pku.edu.cn
  • Received Date: 08 Apr 2021
  • Accepted Date: 08 Jun 2021
  • Issue Publish Date: 30 Jun 2024
  • Strain localization processes in the continental crust generate faults and ductile shear zones over a broad range of scales affecting the long-term lithosphere deformation and the mechanical response of faults during the seismic cycle. Seismic anisotropy originated within the continental crust can be applied to deduce the kinematics and structures within orogens and is widely attributed to regionally aligned minerals, e.g., hornblende. However, naturally deformed rocks commonly show various structural layers (e.g., strain localization layers). It is necessary to reveal how both varying amphibole contents and fabrics in the structural layers of strain localization impact seismic property and its interpretations in terms of deformation. We present microstructures, petrofabrics, and calculate seismic properties of deformed amphibolite with the microstructures ranging from mylonite to ultramylonite. The transition from mylonite to ultramylonite is accompanied by a slight decrease of amphibole grain size, a disintegration of amphibole and plagioclase aggregates, and amphibole aspect ratio increase (from 1.68 to 2.23), concomitant with the precipitation of feldspar and/or quartz between amphibole grains. The intensities of amphibole crystallographic preferred orientations (CPOs) show a progressively increasing trend from mylonitic layers to homogeneous ultramylonitic layers, as indicated by the JAm index increasing from 1.9–4.0 for the mylonitic layers and 4.0–4.8 for the transition layer, to 5.1–6.9 for the ultramylonitic layers. The CPO patterns are nearly random for plagioclase and quartz. Polycrystalline amphibole aggregates in the amphibolitic mylonite deform by diffusion, mechanical rotation, and weak dislocation creep, and develop CPOs collectively. The polymineralic matrix (such as quartz and plagioclase) of the mylonite and the ultramylonite deform dominantly by dissolution-precipitation, combined with weak dislocation creep. The mean P and S wave velocities are estimated to be 6.3 and 3.5 km/s, respectively, for three layers of the mylonitic amphibolite. The respective maximum P and S anisotropies are 1.5%–6.4% and 1.8%–4.5% for the mylonite layers of the mylonitic amphibolite, and 6.0%–6.9% and 4.5%–5.0% for the transition layers; but for the ultramylonite layers, these values increase significantly to 8.0%–9.1% and 5.1%–6.0%, respectively. Furthermore, increasing strain (strain localization) generates significant variations in the geometry of the seismic anisotropy. This effect, coupled with the geographical orientations of structures in the Hengshan-Wutai-Fuping complex terrains, can generate substantial variations in the orientation and magnitude of seismic anisotropy for the continental crust as measured by the existing North China Geoscience Transect. Thickened amphibolitic layers by extensively folding or thrusting in the middle crust can explain the strong shear wave splitting and the tectonic boundary parallel fast shear wave polarization beneath the Hengshan-Wutai-Fuping complex terrains. Therefore, signals of seismic anisotropy varying with depth in the deforming continent crust need not deduce depth-varying kinematics or/and tectonic decoupling.

     

  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S5) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1480-5.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Aleksandrov, K. S., Alchikov, U. V., Belikov, B. P., et al., 1974. Velocities of Elastic Waves in Minerals at Atmospheric Pressure and Increasing Precision of Elastic Constants by Means of EVM. Izvestiya of the Academy of the Sciences of the USSR, Geologic Series, 10: 15–24 (in Russian)
    Almqvist, B. S. G., Mainprice, D., 2017. Seismic Properties and Anisotropy of the Continental Crust: Predictions Based on Mineral Texture and Rock Microstructure. Reviews of Geophysics, 55(2): 367–433. https://doi.org/10.1002/2016rg000552
    Bell, T. H., 1985. Deformation Partitioning and Porphyroblast Rotation in Metamorphic Rocks: A Radical Reinterpretation. Journal of Metamorphic Geology, 3(2): 109–118. https://doi.org/10.1111/j.1525-1314.1985.tb00309.x
    Bons, P. D., Druguet, E., Hamann, I., et al., 2004. Apparent Boudinage in Dykes. Journal of Structural Geology, 26(4): 625–636. https://doi.org/10.1016/j.jsg.2003.11.009
    Brown, J. M., Abramson, E. H., 2016. Elasticity of Calcium and Calcium-Sodium Amphiboles. Physics of the Earth and Planetary Interiors, 261: 161–171. https://doi.org/10.1016/j.pepi.2016.10.010
    Brown, J. M., Abramson, E. H., Angel, R. J., 2006. Triclinic Elastic Constants for Low Albite. Physics and Chemistry of Minerals, 33(4): 256–265. https://doi.org/10.1007/s00269-006-0074-1
    Brown, M., Rushmer, T., 1997. The Role of Deformation in the Movement of Granite Melt: Views from the Laboratory and the Field. In: Holness, M. B., eds., Deformation-Enhanced Fluid Transport in the Earth’s Crust and Mantle. The Mineralogical Society Series 8. Chapman and Hall, London. 111–144
    Bunge, H. J., Morris, P. R., 1982. Texture Analysis in Materials Science: Mathematical Methods. Butterworths, London. 593. https://doi.org/10.1016/B978-0-408-10642-9.50021-0
    Burlini, L., Bruhn, D., 2005. High-Strain Zones: Laboratory Perspectives on Strain Softening during Ductile Deformation. Geological Society, London, Special Publications, 245(1): 1–24. https://doi.org/10.1144/gsl.sp.2005.245.01.01
    Cao, S. Y., Liu, J. L., Leiss, B., 2010. Orientation-Related Deformation Mechanisms of Naturally Deformed Amphibole in Amphibolite Mylonites from the Diancang Shan, SW Yunnan, China. Journal of Structural Geology, 32(5): 606–622. https://doi.org/10.1016/j.jsg.2010.03.012
    Cao, S. Y., Liu, J. L., Hu, L., 2007. Micro-and Submicrostructural Evidence for High-Temperature Brittle-Ductile Transition Deformation of Hornblende: Case Study of High-Grade Mylonites from Diancangshan, Western Yunnan. Science in China Series D: Earth Sciences, 50(10): 1459–1470. https://doi.org/10.1007/s11430-007-0063-3
    Cao, Y., Du, J. X., Park, M., et al., 2020. Metastability and Nondislocation-Based Deformation Mechanisms of the Flem Eclogite in the Western Gneiss Region, Norway. Journal of Geophysical Research (Solid Earth), 125(5): e2020JB019375. https://doi.org/10.1029/2020jb019375
    Champion, M. E. S., White, N. J., Jones, S. M., et al., 2006. Crustal Velocity Structure of the British Isles: A Comparison of Receiver Functions and Wide-Angle Seismic Data. Geophysical Journal International, 166(2): 795–813. https://doi.org/10.1111/j.1365-246x.2006.03050.x
    Cobbold, P. R., 1977. Description and Origin of Banded Deformation Structures. Ⅰ. Regional Strain, Local Perturbations, and Deformation Bands. Canadian Journal of Earth Sciences, 14(8): 1721–1731. https://doi.org/10.1139/e77-147
    Coyan, M. M., Arrowsmith, J. R., Umhoefer, P., et al., 2013. Geometry and Quaternary Slip Behavior of the San Juan de Los Planes and Saltito Fault Zones, Baja California Sur, Mexico: Characterization of Rift-Margin Normal Faults. Geosphere, 9(3): 426–443. https://doi.org/10.1130/ges00806.1
    Cyprych, D., Piazolo, S., Almqvist, B. S. G., 2017. Seismic Anisotropy from Compositional Banding in Granulites from the Deep Magmatic Arc of Fiordland, New Zealand. Earth and Planetary Science Letters, 477: 156–167. https://doi.org/10.1016/j.epsl.2017.08.017
    Davis, G. H., Reynolds, S. J., Kluth, C. F., 2011. Structural Geology of Rocks and Regions. 3rd Ed. Wiley. 839
    Díaz Azpiroz, M., Fernández, C., 2003. Characterization of Tectono-Metamorphic Events Using Crystal Size Distribution (CSD) Diagrams: A Case Study from the Acebuches Metabasites (SW Spain). Journal of Structural Geology, 25(6): 935–947. https://doi.org/10.1016/s0191-8141(02)00081-0
    Fossen, H., Cavalcante, G. C. G., 2017. Shear Zones—A Review. Earth-Science Reviews, 171: 434–455.https://doi.org/10.1016/j.earscirev. 2017.05.002 doi: 10.1016/j.earscirev.2017.05.002
    Fusseis, F., Regenauer-Lieb, K., Liu, J., et al., 2009. Creep Cavitation can Establish a Dynamic Granular Fluid Pump in Ductile Shear Zones. Nature, 459(7249): 974–977. https://doi.org/10.1038/nature08051
    Gao, L., Liu, S. W., Zhang, B., et al., 2019. A ca. 2.8-Ga Plume-Induced Intraoceanic Arc System in the Eastern North China Craton. Tectonics, 38(5): 1694–1717. https://doi.org/10.1029/2018tc005432
    Getsinger, A. J., Hirth, G., 2014. Amphibole Fabric Formation during Diffusion Creep and the Rheology of Shear Zones. Geology, 42(6): 535–538. https://doi.org/10.1130/g35327.1
    Giuntoli, F., Menegon, L., Warren, C. J., 2018. Replacement Reactions and Deformation by Dissolution and Precipitation Processes in Amphibolites. Journal of Metamorphic Geology, 36(9): 1263–1286. https://doi.org/10.1111/jmg.12445
    Goodwin, L. B., Tikoff, B., 2002. Competency Contrast, Kinematics, and the Development of Foliations and Lineations in the Crust. Journal of Structural Geology, 24(6/7): 1065–1085. https://doi.org/10.1016/s0191-8141(01)00092-x
    He, L. C., Zhang, J., Zhao, G. C., et al., 2020. Macro- and Microstructural Analysis of the Zhujiafang Ductile Shear Zone, Hengshan Complex: Tectonic Nature and Geodynamic Implications of the Evolution of Trans-North China Orogen. Geological Society of America Bulletin. https://doi.org/10.1130/b35672.1
    Hess, H. H., 1964. Seismic Anisotropy of the Uppermost Mantle under Oceans. Nature, 203: 629–631. https://doi.org/10.1038/203629a0
    Hielscher, R., Schaeben, H., 2008. A Novel Pole Figure Inversion Method: Specification of the MTEX Algorithm. Journal of Applied Crystallography, 41(6): 1024–1037. https://doi.org/10.1107/s0021889808030112
    Hill, R., 1952. The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society Section A, 65(5): 349–354. https://doi.org/10.1088/0370-1298/65/5/307
    Hrstka, T., Gottlieb, P., Skála, R., et al., 2018. Automated Mineralogy and Petrology—Applications of TESCAN Integrated Mineral Analyzer (TIMA). Journal of Geosciences, 63: 47–63. https://doi.org/10.3190/jgeosci.250
    Ji, M., Hu, L., Liu, J. L., et al., 2012. The Process and Mechanisms of Metamorphism and Deformation of Hornblende—An Example from the Hengshan Mountains, Shanxi Province. Science China Earth Sciences, 55(12): 1987–1995. https://doi.org/10.1007/s11430-012-4469-1
    Ji, S. C., Salisbury, M. H., 1993. Shear-Wave Velocities, Anisotropy and Splitting in High-Grade Mylonites. Tectonophysics, 221(3/4): 453–473. https://doi.org/10.1016/0040-1951(93)90173-h
    Ji, S. C., Shao, T. B., Michibayashi, K., et al., 2015. Magnitude and Symmetry of Seismic Anisotropy in Mica- and Amphibole-Bearing Metamorphic Rocks and Implications for Tectonic Interpretation of Seismic Data from the Southeast Tibetan Plateau. Journal of Geophysical Research (Solid Earth), 120(9): 6404–6430. https://doi.org/10.1002/2015jb012209
    Jin, Z. M., Zhang, J. F., Green, H. W., et al., 2002. Rheological Properties of Deep Subducted Oceanic Lithosphere and Their Geodynamic Implications. Science in China Series D: Earth Sciences, 45(11): 969–977. https://doi.org/10.1007/bf02911235
    Jung, H., 2017. Crystal Preferred Orientations of Olivine, Orthopyroxene, Serpentine, Chlorite, and Amphibole, and Implications for Seismic Anisotropy in Subduction Zones: A Review. Geosciences Journal, 21(6): 985–1011. https://doi.org/10.1007/s12303-017-0045-1
    Karato, S. I., Jung, H., Katayama, I., et al., 2008. Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annual Review of Earth and Planetary Sciences, 36: 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120
    Kern, H., Gao, S., Liu, Q. S., 1996. Seismic Properties and Densities of Middle and Lower Crustal Rocks Exposed along the North China Geoscience Transect. Earth and Planetary Science Letters, 139(3/4): 439–455. https://doi.org/10.1016/0012-821x(95)00240-d
    Kern, H., Wenk, H. R., 1990. Fabric-Related Velocity Anisotropy and Shear Wave Splitting in Rocks from the Santa Rosa Mylonite Zone, California. Journal of Geophysical Research: Solid Earth, 95(B7): 11213–11223. https://doi.org/10.1029/jb095ib07p11213
    Kilian, R., Heilbronner, R., Stünitz, H., 2011. Quartz Grain Size Reduction in a Granitoid Rock and the Transition from Dislocation to Diffusion Creep. Journal of Structural Geology, 33(8): 1265–1284. https://doi.org/10.1016/j.jsg.2011.05.004
    Ko, B., Jung, H., 2015. Crystal Preferred Orientation of an Amphibole Experimentally Deformed by Simple Shear. Nature Communications, 6: 6586. https://doi.org/10.1038/ncomms7586
    Li, W. J., Zhang, J. F., Wang, X., et al., 2020. Petrofabrics and Seismic Properties of Himalayan Amphibolites: Implications for a Thick Anisotropic Deep Crust beneath Southern Tibet. Journal of Geophysical Research (Solid Earth), 125(8): e2019JB018700. https://doi.org/10.1029/2019jb018700
    Lister, G. S., Snoke, A. W., 1984. S-C Mylonites. Journal of Structural Geology, 6(6): 617–638. https://doi.org/10.1016/0191-8141(84)90001-4
    Liu, S. W., Zhao, G. C., Wilde, S. A., et al., 2006. Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 148(3/4): 205–224. https://doi.org/10.1016/j.precamres.2006.04.003
    Liu, W. L., Zhang, J. F., Barou, F., 2018. B-Type Olivine Fabric Induced by Low Temperature Dissolution Creep during Serpentinization and Deformation in Mantle Wedge. Tectonophysics, 722: 1–10. https://doi.org/10.1016/j.tecto.2017.10.025
    Liu, W. L., Zhang, J. F., Cao, Y., et al., 2020. Geneses of Two Contrasting Antigorite Crystal Preferred Orientations and Their Implications for Seismic Anisotropy in the Forearc Mantle. Journal of Geophysical Research (Solid Earth), 125(9): e2020JB019354. https://doi.org/10.1029/2020jb019354
    Lloyd, G. E., Butler, R. W. H., Casey, M., et al., 2009. Mica, Deformation Fabrics and the Seismic Properties of the Continental Crust. Earth and Planetary Science Letters, 288(1/2): 320–328. https://doi.org/10.1016/j.epsl.2009.09.035
    Ma, X. Y., Liu, C. Q., Liu, G. D., 1991. Global Geoscience Transect 2 Xiangshui to Mandal Transect North China. American Geophysical Union, Washington, D.C. 46. https://doi.org/10.1029/gt002
    Mainprice, D., Humbert, M., 1994. Methods of Calculating Petrophysical Properties from Lattice Preferred Orientation Data. Surveys in Geophysics, 15(5): 575–592. https://doi.org/10.1007/bf00690175
    Mainprice, D., Nicolas, A., 1989. Development of Shape and Lattice Preferred Orientations: Application to the Seismic Anisotropy of the Lower Crust. Journal of Structural Geology, 11(1/2): 175–189. https://doi.org/10.1016/0191-8141(89)90042-4
    Mainprice, D., Silver, P. G., 1993. Interpretation of SKS-Waves Using Samples from the Subcontinental Lithosphere. Physics of the Earth and Planetary Interiors, 78(3/4): 257–280. https://doi.org/10.1016/0031-9201(93)90160-b
    Mainprice, D., 1990. A FORTRAN Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Computers & Geosciences, 16(3): 385–393. https://doi.org/10.1016/0098-3004(90)90072-2
    Mainprice, D., 2007. Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective. In: Gerald, S., Price, G. D., eds., Treatise on Geophysics, Volume 2: Mineral Physics. Elsevier, Amsterdam. 437–491.https://doi.org/10.1016/b978-044452748-6/00045-6
    Mancktelow, N. S., 2006. How Ductile are Ductile Shear Zones? Geology, 34(5): 345. https://doi.org/10.1130/g22260.1
    McSkimin, H. J., Andreatch, P. Jr., Thurston, R. N., 1965. Elastic Moduli of Quartz versus Hydrostatic Pressure at 25° and -195.8 ℃. Journal of Applied Physics, 36(5): 1624–1632. https://doi.org/10.1063/1.1703099
    Menegon, L., Fusseis, F., Stünitz, H., et al., 2015. Creep Cavitation Bands Control Porosity and Fluid Flow in Lower Crustal Shear Zones. Geology, 43(3): 227–230. https://doi.org/10.1130/g36307.1
    Michibayashi, K., Mainprice, D., 2004. The Role of Pre-Existing Mechanical Anisotropy on Shear Zone Development within Oceanic Mantle Lithosphere: An Example from the Oman Ophiolite. Journal of Petrology, 45(2): 405–414. https://doi.org/10.1093/petrology/egg099
    Montagner, J. P., Guillot, L., 2002. Seismic Anisotropy and Global Geodynamics. Reviews in Mineralogy and Geochemistry, 51(1): 353–385. https://doi.org/10.2138/gsrmg.51.1.353
    Moschetti, M. P., Ritzwoller, M. H., Lin, F., et al., 2010. Seismic Evidence for Widespread Western-US Deep-Crustal Deformation Caused by Extension. Nature, 464: 885–889. https://doi.org/10.1038/nature08951
    Nicolas, A., Christensen, N. I., 1987. Formation of Anisotropy in Upper Mantle Peridotites: A Review. Fuchs, K., Froidevaux, C., eds. Compo-sition, Structure and Dynamics of the Lithosphere-Asthenosphere System. American Geophysical Union, Washington, D.C. 111–123. https://doi.org/10.1029/gd016p0111
    Peng, P., Guo, J. H., Zhai, M. G., et al., 2010. Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton: Evidence of Crust-Mantle Interaction. Precambrian Research, 183(3): 635–659. https://doi.org/10.1016/j.precamres.2010.08.015
    Peng, P., Zhai, M. G., Guo, J. H., et al., 2007. Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dykes in the Central North China Craton. Gondwana Research, 12(1/2): 29–46. https://doi.org/10.1016/j.gr.2006.10.022
    Pilling, J., Ridley, N., 1989. Superplasticity in Crystalline Solids. The Institute of Metals, London. 214
    Qian, J. H., Yin, C. Q., Wei, C. J., et al., 2019. Two Phases of Paleoproterozoic Metamorphism in the Zhujiafang Ductile Shear Zone of the Hengshan Complex: Insights into the Tectonic Evolution of the North China Craton. Lithos, 330/331: 35–54. https://doi.org/10.1016/j.lithos.2019.02.001
    Ramsay, J. G., Graham, R. H., 1970. Strain Variation in Shear Belts. Canadian Journal of Earth Sciences, 7(3): 786–813. https://doi.org/10.1139/e70-078
    Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267–309. https://doi.org/10.1029/95rg01302
    Rybacki, E., Wirth, R., Dresen, G., 2008. High-Strain Creep of Feldspar Rocks: Implications for Cavitation and Ductile Failure in the Lower Crust. Geophysical Research Letters, 35(4): L04304. https://doi.org/10.1029/2007gl032478
    Rybacki, E., Wirth, R., Dresen, G., 2010. Superplasticity and Ductile Fracture of Synthetic Feldspar Deformed to Large Strain. Journal of Geophysical Research (Solid Earth), 115(B8): B08209. https://doi.org/10.1029/2009jb007203
    Savage, M. K., 1999. Seismic Anisotropy and Mantle Deformation: What Have We Learned from Shear Wave Splitting? Reviews of Geophysics, 37(1): 65–106. https://doi.org/10.1029/98rg02075
    Schindelin, J., Arganda-Carreras, I., Frise, E., et al., 2012. Fiji: An Open-Source Platform for Biological-Image Analysis. Nature Methods, 9: 676–682. https://doi.org/10.1038/nmeth.2019
    Shao, Y. L., Piazolo, S., Liu, Y. J., et al., 2021. Deformation Behavior and Inferred Seismic Properties of Tonalitic Migmatites at the Time of Pre-Melting, Partial Melting, and Post Solidification. Geochemistry, Geophysics, Geosystems, 22(2): e2020GC009202. https://doi.org/10.1029/2020gc009202
    Sherrington, H. F., Zandt, G., Frederiksen, A., 2004. Crustal Fabric in the Tibetan Plateau Based on Waveform Inversions for Seismic Anisotropy Parameters. Journal of Geophysical Research: Solid Earth, 109(B2): B02312. https://doi.org/10.1029/2002jb002345
    Si, S. K., Zheng, Y. P., Liu, B. H., et al., 2016. Structure of the Mantle Transition Zone beneath the North China Craton. Journal of Asian Earth Sciences, 116: 69–80. https://doi.org/10.1016/j.jseaes.2015.11.006
    Stillwell, F. L., 1918. The Metamorphic Rocks of Adelie Land. Australasian Antarctic Expedition, 1911–1914 Scientific Reports Series A. Rogers R E E, Government Printer, North Terrace, Adelaide, South Australia. 230
    Tatham, D. J., Lloyd, G. E., Butler, R. W. H., et al., 2008. Amphibole and Lower Crustal Seismic Properties. Earth and Planetary Science Letters, 267(1/2): 118–128. https://doi.org/10.1016/j.epsl.2007.11.042
    Trap, P., Faure, M., Lin, W., et al., 2007. Late Paleoproterozoic (1 900– 1 800 Ma) Nappe Stacking and Polyphase Deformation in the Hengshan-Wutaishan Area: Implications for the Understanding of the Trans-North-China Belt, North China Craton. Precambrian Research, 156(1/2): 85–106. https://doi.org/10.1016/j.precamres.2007.03.001
    Vergne, J., Wittlinger, G., Farra, V., et al., 2003. Evidence for Upper Crustal Anisotropy in the Songpan-Ganze (Northeastern Tibet) Terrane. Geophysical Research Letters, 30(11): 1552. https://doi.org/10.1029/2002gl016847
    Vernon, R. H., Collins, W. J., Richards, S. W., 2003. Contrasting Magmas in Metapelitic and Metapsammitic Migmatites in the Cooma Complex, Australia. Visual Geosciences, 8(1): 1–22. https://doi.org/10.1007/s10069-003-0010-1
    Wang, Q., Ji, S. C., Salisbury, M. H., et al., 2005. Pressure Dependence and Anisotropy of P-Wave Velocities in Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt (China): Implications for Seismic Properties of Subducted Slabs and Origin of Mantle Reflections. Tectonophysics, 398(1/2): 67–99. https://doi.org/10.1016/j.tecto.2004.12.001
    Wang, Y. F., Zhang, J. F., Shi, F., 2013. The Origin and Geophysical Implications of a Weak C-Type Olivine Fabric in the Xugou Ultrahigh Pressure Garnet Peridotite. Earth and Planetary Science Letters, 376: 63–73. https://doi.org/10.1016/j.epsl.2013.06.017
    Zhai, M. G., Guo, J. H., Li, Y. G., et al., 2003. Two Linear Granite Belts in the Central-Western North China Craton and Their Implication for Late Neoarchaean-Palaeoproterozoic Continental Evolution. Precambrian Research, 127(1/2/3): 267–283. https://doi.org/10.1016/s0301-9268(03)00191-8
    Zhang, B., Yin, C. Y., Zhang, J. J., et al., 2017. Midcrustal Shearing and Doming in a Cenozoic Compressive Setting along the Ailao Shan-Red River Shear Zone. Geochemistry, Geophysics, Geosystems, 18(1): 400–433. https://doi.org/10.1002/2016gc006520
    Zhang, J., Zhao, G. C., Li, S. Z., et al., 2012. Structural Pattern of the Wutai Complex and Its Constraints on the Tectonic Framework of the Trans-North China Orogen. Precambrian Research, 222/223: 212–229. https://doi.org/10.1016/j.precamres.2011.08.009
    Zhang, J., Zhao, G. C., Li, S. Z., et al., 2007. Deformation History of the Hengshan Complex: Implications for the Tectonic Evolution of the Trans-North China Orogen. Journal of Structural Geology, 29(6): 933–949. https://doi.org/10.1016/j.jsg.2007.02.013
    Zhang, J., Zhao, G. C., Li, S. Z., et al., 2009. Polyphase Deformation of the Fuping Complex, Trans-North China Orogen: Structures, SHRIMP U-Pb Zircon Ages and Tectonic Implications. Journal of Structural Geology, 31(2): 177–193. https://doi.org/10.1016/j.jsg.2008.11.008
    Zhang, J., Zhao, G. C., Shen, W. L., et al., 2015. Aeromagnetic Study of the Hengshan-Wutai-Fuping Region: Unraveling a Crustal Profile of the Paleoproterozoic Trans-North China Orogen. Tectonophysics, 662: 208–218. https://doi.org/10.1016/j.tecto.2015.08.025
    Zhang, X. L., Hu, L., Ji, M., et al., 2013. Microstructures and Deformation Mechanisms of Hornblende in Guandi Complex, the Western Hills, Beijing. Science China Earth Sciences, 56(9): 1510–1518. https://doi.org/10.1007/s11430-013-4636-z
    Zhao, G. C., 2014. Precambrian Evolution of the North China Craton. Elsevier, Amsterdam. 194. https://doi.org/10.1016/c2012-0-02689-0
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2001. High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton: Petrology and Tectonic Implications. Journal of Petrology, 42(6): 1141–1170. https://doi.org/10.1093/petrology/42.6.1141
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2): 55–88. https://doi.org/10.1016/s0301-9268(00)00076-0
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1999. Tectonothermal History of the Basement Rocks in the Western Zone of the North China Craton and Its Tectonic Implications. Tectonophysics, 310(1/2/3/4): 37–53. https://doi.org/10.1016/s0040-1951(99)00152-3
    Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China Earth Sciences, 55(10): 1565–1587. https://doi.org/10.1007/s11430-012-4516-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(255) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return