Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Ge Dong, Hai-Zhen Wei, Yuanfeng Zhu, Xi Liu, Qi Guo, Wei Pu, Yibo Lin, Junlin Wang. A Preliminary Study on Silver Isotopic Composition in Polymetallic Ore Deposits in Eastern China. Journal of Earth Science, 2022, 33(1): 100-108. doi: 10.1007/s12583-021-1490-3
Citation: Ge Dong, Hai-Zhen Wei, Yuanfeng Zhu, Xi Liu, Qi Guo, Wei Pu, Yibo Lin, Junlin Wang. A Preliminary Study on Silver Isotopic Composition in Polymetallic Ore Deposits in Eastern China. Journal of Earth Science, 2022, 33(1): 100-108. doi: 10.1007/s12583-021-1490-3

A Preliminary Study on Silver Isotopic Composition in Polymetallic Ore Deposits in Eastern China

doi: 10.1007/s12583-021-1490-3
More Information
  • Corresponding author: Hai-Zhen Wei, haizhenwei@nju.edu.cn
  • Received Date: 26 Mar 2021
  • Accepted Date: 04 Jun 2021
  • Publish Date: 28 Feb 2022
  • A preliminary survey of silver isotopic composition in four polymetallic ores in eastern China shows a larger variation in δ109Ag from -0.014‰ to +0.983‰, which is within the total ranges for the entire respective ore deposit types worldwide. The diversity of silver isotopic compositions in ore-deposits reported here and previous studies seemed to preclude simple isotopic links to particular sources, but reflected the silver isotope fractionation in transport- and deposit-related processes instead. The δ109Ag values in supergene samples from the Qixiashan Pb-Zn-Ag polymetallic deposit are more positive, in consistent with the statistical δ109Ag distribution from -0.4‰ to +2.2‰ in 36 pieces of supergene ore samples around the World, which reflects the diverse controls on silver isotope fractionation from the first-order thermodynamic effect, reduction-mediated reaction, remobilization of silver with surficial low-temperature weathering processes. The hypogene samples in Dazhuangzi orogenic Au-Ag ore deposit, have δ109Ag values close to 0, which implies that equilibrium partitioning associated with metal sources at the high-temperature does not result in a resolvable difference in silver isotopic compositions. By contrast, the hypogene samples which are dominated by pyrite without visible silver minerals (i.e., skarn iron ore deposit in Edongnan) have shown the largest variation range of δ109Ag, followed by that from the porphyry copper ore in Zijinshan. It could be concluded that the surface adsorption and/or lattice substitution are important factors to control Ag isotope fractionation in ore-forming processes, especially for skarn deposits with only pyrite. The perspective of silver isotope shows great potentials to understand the processes that lead to the concentrations of metals to economic levels and to constrain the physicochemical conditions during ore-mineralization in metallic ore-deposits.

     

  • loading
  • An, Y. J., Huang, F., 2014. A Review of Mg Isotope Analytical Methods by MC-ICP-MS. Journal of Earth Science, 25(5): 822-840. https://doi.org/10.1007/s12583-014-0477-8
    Argapadmi, W., Toth, E. R., Fehr, M. A., et al., 2018. Silver Isotopes as a Source and Transport Tracer for Gold: A Reconnaissance Study at the Sheba and New Consort Gold Mines in the Barberton Greenstone Belt, Kaapvaal Craton, South Africa. Economic Geology, 113(7): 1553-1570. https://doi.org/10.5382/econgeo.2018.4602
    Arribas, A., Mathur, R., Megaw, P., et al., 2020. The Isotopic Composition of Silver in Ore Minerals. Geochemistry, Geophysics, Geosystems, 21(8): e2020gc009097. https://doi.org/10.1029/2020gc009097
    Ayuso, R. A., 2010. Porphyry Copper Deposit Model: Chapter B in Mineral Deposit Models for Resource Assessment. In: John, D. A., ed., US Geological Survey, Reston. https://doi.org/10.3133/sir20105070b
    Bigeleisen, J., Mayer, M. G., 1947. Calculation of Equilibrium Constants for Isotopic Exchange Reactions. The Journal of Chemical Physics, 15(5): 261-267. https://doi.org/10.1063/1.1746492
    Carlson, R. W., Hauri, E. H., 2001. Extending the 107Pd-107Ag Chronometer to Low Pd/Ag Meteorites with Multicollector Plasma-Ionization Mass Spectrometry. Geochimica et Cosmochimica Acta, 65(11): 1839-1848. https://doi.org/10.1016/s0016-7037(01)00559-2
    Chouinard, A., Paquette, J., Williams-Jones, A. E., 2005. Crystallographic Controls on Trace-Element Incorporation in Auriferous Pyrite from the Pascua Epithermal High-Sulfidation Deposit, Chile Argentina. The Canadian Mineralogist, 43(3): 951-963. https://doi.org/10.2113/gscanmin.43.3.951
    Chugaev, A. V., Chernyshev, I. V., 2012. High-Noble Measurement of 107Ag/109Ag in Native Silver and Gold by Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Geochemistry International, 50(11): 899-910. https://doi.org/10.1134/s0016702912110055
    Fujii, T., Albarede, F., 2018. 109Ag-107Ag Fractionation in Fluids with Applications to Ore Deposits, Archeometry, and Cosmochemistry. Geochimica et Cosmochimica Acta, 234: 37-49. https://doi.org/10.1016/j.gca.2018.05.013
    Gaillardet, J., 2018. Boron in the Weathering Environment. In: Lemarchand, D., Marschall, H., Foster, G., eds., Boron Isotopes, Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-64666-4_7
    Graybeal, F. T., Vikre, P. G., 2010. A Review of Silver-Rich Mineral Deposits and Their Metallogeny. In: The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries. GSW, New York. https://doi.org/10.5382/sp.15.1.07
    Gui, C. J., Jing, S., 2011. Ore-Forming Properties and Prospect of Pb-Zn Polymetallic Ore Deposit in Qixia Mountain of Nanjing. Journal of Geology, 35(4): 395-400. https://doi.org/10.3969/j.issn.1674-3636 (in Chinese with English Abstract)
    Guo, Q., Wei, H. Z., Jiang, S. Y., et al., 2017. Matrix Effects Originating from Coexisting Minerals and Accurate Determination of Stable Silver Isotopes in Silver Deposits. Analytical Chemistry, 89(24): 13634-13641. https://doi.org/10.1021/acs.analchem.7b04212
    Heinrich, C. A., Günther, D., Audétat, A., et al., 1999. Metal Fractionation between Magmatic Brine and Vapor, Determined by Microanalysis of Fluid Inclusions. Geology, 27(8): 755-758. https://doi.org/10.1130/0091-7613(1999)027<0755:mfbmba>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0755:mfbmba>2.3.co;2
    Huang, R. S., 2008. Igneous Series and Epithermal Porphyry Cu-Au-Ag Mineralization System in the Zijinshan Ore Field, Fujian Province. Journal of Geomechanics, 14: 74-86 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/Periodical_dzlxxb200801007.aspx
    Huston, D. L., Sie, S. H., Suter, G. F., et al., 1995. Sulfide Deposits: Part I. Proton Microprobe Analyses of Pyrite, and Part II. Selenium Levels in Pyrite: Comparison with δ34S Values and Implications for the Source of Sulfur in Volcanogenic Hydrothermal Systems. Economic Geology, 90: 1167-1196. https://doi.org/10.2113/gsecongeo.90.5.1167
    Jiang, B., Zhang, T., Wang, D. H., et al., 2020. Factors Controlling Ore Formation, Regularity and Some Prospecting Strategies for Silver Deposits in China. Acta Geologica Sinica, 94: 113-126 (in Chinese with English Abstract)
    Jiang, S. H., Bagas, L., Liang, Q. L., 2015. New Insights into the Petrogenesis of Volcanic Rocks in the Shanghang Basin in the Fujian Province, China. Journal of Asian Earth Sciences, 105: 48-67. https://doi.org/10.1016/j.jseaes.2015.03.027
    Jiang, S. H., Bagas, L., Liang, Q. L., 2017. Pyrite Re-Os Isotope Systematics at the Zijinshan Deposit of SW Fujian, China: Constraints on the Timing and Source of Cu-Au Mineralization. Ore Geology Reviews, 80: 612-622. https://doi.org/10.1016/j.oregeorev.2016.07.024
    Jiang, S. H., Liang, Q. L., Bagas, L., et al., 2013. Geodynamic Setting of the Zijinshan Porphyry-Epithermal Cu-Au-Mo-Ag Ore System, SW Fujian Province, China: Constrains from the Geochronology and Geochemistry of the Igneous Rocks. Ore Geology Reviews, 53: 287-305. https://doi.org/10.1016/j.oregeorev.2013.02.001
    Kesler, S. E., Simon, A. C., 2015. Mineral Resources, Economics and the Environment. In: Simon, A. C., ed., Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139871426
    King, J., Williams-Jones, A. E., van Hinsberg, V., et al., 2014. High-Sulfidation Epithermal Pyrite-Hosted Au (Ag-Cu) Ore Formation by Condensed Magmatic Vapors on Sangihe Island, Indonesia. Economic Geology, 109(6): 1705-1733. https://doi.org/10.2113/econgeo. 109.6.1705 doi: 10.2113/econgeo.109.6.1705
    Liu, X., Fan, H. R., Hu, F. F., et al., 2011. Ore-Forming Fluid and Stable Isotope Studies of Dazhuangzi Gold Deposit in Jiaodong Peninsula. Mineral Deposits, 30(4): 675-689. https://doi.org/10.16111/j.0258-7106.2011.04.007 (in Chinese with English Abstract)
    Lu, D. W., Liu, Q., Zhang, T. Y., et al., 2016. Stable Silver Isotope Fractionation in the Natural Transformation Process of Silver Nanoparticles. Nature Nanotechnology, 11(8): 682-686. https://doi.org/10.1038/nnano.2016.93
    Luo, Y., Dabek-Zlotorzynska, E., Celo, V., et al., 2010. Accurate and Precise Determination of Silver Isotope Fractionation in Environmental Samples by Multicollector-ICPMS. Analytical Chemistry, 82(9): 3922-3928. https://doi.org/10.1021/ac100532r
    Mathur, R., Arribas, A., Megaw, P., et al., 2018. Fractionation of Silver Isotopes in Native Silver Explained by Redox Reactions. Geochimica et Cosmochimica Acta, 224: 313-326. https://doi.org/10.1016/j.gca.2018.01.011
    Migdisov, A. A., Williams-Jones, A. E., 2013. A Predictive Model for Metal Transport of Silver Chloride by Aqueous Vapor in Ore-Forming Magmatic-Hydrothermal Systems. Geochimica et Cosmochimica Acta, 104: 123-135. https://doi.org/10.1016/j.gca.2012.11.020
    Pal'Yanova, G., Mikhlin, Y., Kokh, K., et al., 2015. Experimental Constraints on Gold and Silver Solubility in Iron Sulfides. Journal of Alloys and Compounds, 649: 67-75. https://doi.org/10.1016/j.jallcom.2015.07.131
    Pals, D. W., Spry, P. G., Chryssoulis, S. L., 2003. Invisible Gold and Tellurium in Arsenic-Rich Pyrite from the Emperor Gold Deposit, Fiji: Implications for Gold Distribution and Deposition. Economic Geology, 98(3): 479-493. https://doi.org/10.2113/gsecongeo.98.3.479
    Plotinskaya, O. Y., Groznova, E. O., Kovalenker, V. A., et al., 2009. Mineralogy and Formation Conditions of Ores in the Bereznyakovskoe Ore Field, the Southern Urals, Russia. Geology of Ore Deposits, 51(5): 371-397. https://doi.org/10.1134/s1075701509050031
    Powell, L. J., Murphy, T. J., Gramlich, J. W., 1982. The Absolute Isotopic Abundance and Atomic Weight of a Reference Sample of Silver. Journal of Research of the National Bureau of Standards, 87(1): 9. https://doi.org/10.6028/jres.087.002
    Rosman, K. J. R., Taylor, P. D. P., 1998. Isotopic Compositions of the Elements 1997 (Technical Report). Pure and Applied Chemistry, 70(1): 217-235. https://doi.org/10.1351/pac199870010217
    Savva, N. E., Pal'Yanova, G. A., Byankin, M. A., 2012. The Problem of Genesis of Gold and Silver Sulfides and Selenides in the Kupol Deposit (Chukotka, Russia). Russian Geology and Geophysics, 53(5): 457-466. https://doi.org/10.1016/j.rgg.2012.03.006
    Scher, S., Williams-Jones, A. E., Williams-Jones, G., 2013. Fumarolic Activity, Acid-Sulfate Alteration, and High Sulfidation Epithermal Precious Metal Mineralization in the Crater of Kawah Ijen Volcano, Java, Indonesia. Economic Geology, 108(5): 1099-1118. https://doi.org/10.2113/econgeo.108.5.1099
    Schönbächler, M., Carlson, R. W., Horan, M. F., et al., 2007. High Precision Ag Isotope Measurements in Geologic Materials by Multiple-Collector ICPMS: An Evaluation of Dry versus Wet Plasma. International Journal of Mass Spectrometry, 261(2/3): 183-191. https://doi.org/10.1016/j.ijms.2006.09.016
    Schönbächler, M., Carlson, R. W., Horan, M. F., et al., 2008. Silver Isotope Variations in Chondrites: Volatile Depletion and the Initial 107Pd Abundance of the Solar System. Geochimica et Cosmochimica Acta, 72(21): 5330-5341. https://doi.org/10.1016/j.gca.2008.07.032
    Schönbächler, M., Carlson, R. W., Horan, M. F., et al., 2010. Heterogeneous Accretion and the Moderately Volatile Element Budget of Earth. Science, 328(5980): 884-887. https://doi.org/10.1126/science.1186239
    Sun, X. J., Ni, P., Yang, Y. L., et al., 2018. Formation of the Qixiashan Pb-Zn Deposit in Middle-Lower Yangtze River Valley, Eastern China: Insights from Fluid Inclusions and in Situ LA-ICP-MS Sulfur Isotope Data. Journal of Geochemical Exploration, 192: 45-59. https://doi.org/10.1016/j.gexplo.2018.03.011
    Taylor, S. R., McLennan, S. M, 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London. 57-72
    Theis, K. J., Schönbächler, M., Benedix, G. K., et al., 2013. Palladium-Silver Chronology of IAB Iron Meteorites. Earth and Planetary Science Letters, 361: 402-411. https://doi.org/10.1016/j.epsl. 2012.11.004 doi: 10.1016/j.epsl.2012.11.004
    Tolaymat, T. M., El Badawy, A. M., Genaidy, A., et al., 2010. An Evidence-Based Environmental Perspective of Manufactured Silver Nanoparticle in Syntheses and Applications: A Systematic Review and Critical Appraisal of Peer-Reviewed Scientific Papers. Science of the Total Environment, 408(5): 999-1006. https://doi.org/10.1016/j.scitotenv. 2009.11.003 doi: 10.1016/j.scitotenv.2009.11.003
    Voisey, C. R., Maas, R., Tomkins, A. G., et al., 2019. Extreme Silver Isotope Variation in Orogenic Gold Systems Implies Multistaged Metal Remobilization during Ore Genesis. Economic Geology, 114(2): 233-242. https://doi.org/10.5382/econgeo.2019.4629
    Widler, A. M., Seward, T. M., 2002. The Adsorption of Gold(I) Hydrosulphide Complexes by Iron Sulphide Surfaces. Geochimica et Cosmochimica Acta, 66(3): 383-402. https://doi.org/10.1016/s0016-7037(01)00791-8
    Woodland, S. J., Rehkämper, M., Halliday, A. N., et al., 2005. Accurate Measurement of Silver Isotopic Compositions in Geological Materials Including Low Pd/Ag Meteorites. Geochimica et Cosmochimica Acta, 69(8): 2153-2163. https://doi.org/10.1016/j.gca.2004.10.012
    Xie, G. Q., Mao, J. W., Li, R. L., et al., 2006. Geological Characteristics and Mineral Model of Skarn Fe Deposits from Southeastern Hubei Province, China. Mineral Deposits, 25(S1): 147-150. https://doi.org/10.16111/j.0258-7106.2006.s1.039 (in Chinese with English Abstract)
    Xu, Z. F., Zeng, Z. H., 2006. Discussions on Relationship between Mineralization and Magmatism in Qixiashan Pb-Zn-Ag Ore Deposit of Nanjing. Jiangsu Geology, 30(3): 177-182 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSDZ200603002.htm
    Yang, L., Dabek-Zlotorzynska, E., Celo, V., 2009. High Precision Determination of Silver Isotope Ratios in Commercial Products by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 24(11): 1564-1569. https://doi.org/10.1039/b911554d
    Yang, L., Sturgeon, R. E., Mester, Z., et al., 2010. Metrological Triangle for Measurements of Isotope Amount Ratios of Silver, Indium, and Antimony Using Multicollector-Inductively Coupled Plasma Mass Spectrometry: The 21st Century Harvard Method. Analytical Chemistry, 82(21): 8978-8982. https://doi.org/10.1021/ac1019396
    Zhang, G. S., 1998. Characteristics of the Structures and Their Rock and Ore Control Low. Hubei Geology & Mineral Resources, 12(2): 16-23. https://doi.org/10.16536/j.cnki.issn.1671-1211.1998.02.004 (in Chinesewith English Abstract)
    Zhang, J. Z., 2013. Geology, Exploration Model and Practice of Zijinshan Ore Concentrated Area. Mineral Deposits, 32(4): 758-767. https://doi.org/10.16111/j.0258-7106.2013.04.009 (in Chinese with English Abstract)
    Zhang, T., Lu, D., Zeng, L., et al., 2017. Role of Secondary Particle Formation in the Persistence of Silver Nanoparticles in Humic Acid Containing Water under Light Irradiation. Environmental Science & Technology, 51(24): 14164-14172. https://doi.org/10.1021/acs.est. 7b04115 doi: 10.1021/acs.est.7b04115
    Zhong, J., Chen, Y. J., Qi, J. P., et al., 2017. Geology, Fluid Inclusion and Stable Isotope Study of the Yueyang Ag-Au-Cu Deposit, Zijinshan Orefield, Fujian Province, China. Ore Geology Reviews, 86: 254-270. https://doi.org/10.1016/j.oregeorev.2017.02.023
    Zhu, D. G., Lu, G. X., Deng, J., et al., 1999. Discussion on the Geology and Genesis of Dazhuangzi Gold Deposit in Eastern Shandong Province. Journal of Precious Metallic Geology, 8(2): 18-23. https://doi.org/10.13686/j.cnki.dzyzy.1999.02.004 (in Chinese with English Abstract)
    Zhu, Y. F., Dong, G., Liu, X., et al., 2021. Progress of Silver Isotopes Studies in Planetary and Earth Sciences. Earth Science, 46(12): 4390-4404. https://doi.org/10.3799/dqkx.2021.080 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(229) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return