Citation: | Lin Liang, Guibin Zhang, Shengxuan Huang, Jingjing Niu, Dongzhou Zhang, Jingui Xu, Wen Liang, Shan Qin. High-Pressure Behavior of Ferromagnesite (Mg0.81Fe0.19)CO3 by Synchrotron X-Ray Diffraction and Raman Spectroscopy up to 53 GPa. Journal of Earth Science, 2024, 35(2): 525-535. doi: 10.1007/s12583-021-1495-y |
Ferromagnesite (Mg, Fe)CO3 with 20 mol% iron is a potential host mineral for carbon transport and storage in the Earth mantle. The high-pressure behavior of synthetic ferromagnesite (Mg0.81Fe0.19)CO3 up to 53 GPa was investigated by synchrotron X-ray diffraction (XRD) and Raman spectroscopy. The iron bearing carbonate underwent spin transition at around 44–46 GPa accompanied by a volume collapse of 1.8%, which also demonstrated a variation in the d
Angel, R. J., 2000. Equations of State. Reviews in Mineralogy and Geochemistry, 41(1): 35–59. https://doi.org/10.2138/rmg.2000.41.2 |
Birch, F., 1978. Finite Strain Isotherm and Velocities for Single-Crystal and Polycrystalline NaCl at High Pressures and 300°K. Journal of Geophysical Research: Solid Earth, 83(B3): 1257–1268. https://doi.org/10.1029/jb083ib03p01257 |
Boulard, E., Gloter, A., Corgne, A., et al., 2011. New Host for Carbon in the Deep Earth. Proceedings of the National Academy of Sciences of the United States of America, 108(13): 5184–5187. https://doi.org/10.1073/pnas.1016934108 |
Boulard, E., Menguy, N., Auzende, A. L., et al., 2012. Experimental Investigation of the Stability of Fe-Rich Carbonates in the Lower Mantle. Journal of Geophysical Research: Solid Earth, 117(B2): B02208. https://doi.org/10.1029/2011jb008733 |
Cerantola, V., Bykova, E., Kupenko, I., et al., 2017. Stability of Iron-Bearing Carbonates in the Deep Earth's Interior. Nature Communications, 8: 15960. https://doi.org/10.1038/ncomms15960 |
Cerantola, V., McCammon, C., Kupenko, I., et al., 2015. High-Pressure Spectroscopic Study of Siderite (FeCO3) with a Focus on Spin Crossover. American Mineralogist, 100(11/12): 2670–2681. https://doi.org/10.2138/am-2015-5319 |
Chao, K. H., Hsieh, W. P., 2019. Thermal Conductivity Anomaly in (Fe0.78Mg0.22)CO3 Siderite across Spin Transition of Iron. Journal of Geophysical Research: Solid Earth, 124(2): 1388–1396. https://doi.org/10.1029/2018jb017003 |
Chariton, S., McCammon, C., Vasiukov, D. M., et al., 2020. Seismic Detectability of Carbonates in the Deep Earth: A Nuclear Inelastic Scattering Study. American Mineralogist, 105(3): 325–332. https://doi.org/10.2138/am-2020-6901 |
Dasgupta, R., Hirschmann, M. M., 2006. Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide. Nature, 440(7084): 659–662. https://doi.org/10.1038/nature04612 |
Dasgupta, R., Hirschmann, M. M., Withers, A. C., 2004. Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions. Earth and Planetary Science Letters, 227(1/2): 73–85. https://doi.org/10.1016/j.epsl.2004.08.004 |
Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 |
Farfan, G., Wang, S., Ma, H., et al., 2012. Bonding and Structural Changes in Siderite at High Pressure. American Mineralogist, 97(8/9): 1421–1426. https://doi.org/10.2138/am.2012.4001 |
Farsang, S., Facq, S., Redfern, S. A. T., 2018. Raman Modes of Carbonate Minerals as Pressure and Temperature Gauges up to 6 GPa and 500 ℃. The American Mineralogist, 103(11/12): 1988–1998 |
Fei, Y. W., Zhang, L., Corgne, A., et al., 2007. Spin Transition and Equations of State of (Mg, Fe)O Solid Solutions. Geophysical Research Letters, 34(17): L17307. https://doi.org/10.1029/2007gl030712 |
Fiquet, G., Guyot, F., Kunz, M., et al., 2002. Structural Refinements of Magnesite at very High Pressure. American Mineralogist, 87(8/9): 1261–1265. https://doi.org/10.2138/am-2002-8-927 |
Hazen, R. M., Prewitt, C. T., 1988. Effects of Temperature and Pressure on Interatomic Distances in Oxygen-Based Minerals. Elastic Properties and Equations of State. American Geophysical Union, Washington, D. C. |
Hsu, H., Huang, S. C., 2016. Spin Crossover and Hyperfine Interactions of Iron in (Mg, Fe)CO3 Ferromagnesite. Physical Review B, 94(6): 060404. https://doi.org/10.1103/physrevb.94.060404 |
Isshiki, M., Irifune, T., Hirose, K., et al., 2004. Stability of Magnesite and Its High-Pressure Form in the Lowermost Mantle. Nature, 427(6969): 60–63. https://doi.org/10.1038/nature02181 |
Langille, D. B., O'Shea, D. C., 1977. Raman Spectroscopy Studies of Antiferromagnetic FeCO3 and Related Carbonates. Journal of Physics and Chemistry of Solids, 38(10): 1161–1171. https://doi.org/10.1016/0022-3697(77)90044-0 |
Lavina, B., Dera, P., Downs, R. T., et al., 2009. Siderite at Lower Mantle Conditions and the Effects of the Pressure-Induced Spin-Pairing Transition. Geophysical Research Letters, 36(23): L23306. https://doi.org/10.1029/2009gl039652 |
Lavina, B., Dera, P., Downs, R. T., et al., 2010a. Effect of Dilution on the Spin Pairing Transition in Rhombohedral Carbonates. High Pressure Research, 30(2): 224–229. https://doi.org/10.1080/08957959.2010.485391 |
Lavina, B., Dera, P., Downs, R. T., et al., 2010b. Structure of Siderite FeCO3 to 56 GPa and Hysteresis of Its Spin-Pairing Transition. Physical Review B, 82(6): 064110. https://doi.org/10.1103/physrevb.82.064110 |
Lee, K. K. M., O'Neill, B., Panero, W. R., et al., 2004. Equations of State of the High-Pressure Phases of a Natural Peridotite and Implications for the Earth's Lower Mantle. Earth and Planetary Science Letters, 223(3/4): 381–393. https://doi.org/10.1016/j.epsl.2004.04.033 |
Liang, W., Li, Z. M., Yin, Y., et al., 2018a. Single Crystal Growth, Characterization and High-Pressure Raman Spectroscopy of Impurity-Free Magnesite (MgCO3). Physics and Chemistry of Minerals, 45(5): 423–434. https://doi.org/10.1007/s00269-017-0930-1 |
Liang, W., Yin, Y., Li, Z. M., et al., 2018b. Single Crystal Growth, Crystalline Structure Investigation and High-Pressure Behavior of Impurity-Free Siderite (FeCO3). Physics and Chemistry of Minerals, 45(9): 831–842. https://doi.org/10.1007/s00269-018-0965-y |
Lin, J. F., Liu, J., Jacobs, C., et al., 2012. Vibrational and Elastic Properties of Ferromagnesite across the Electronic Spin-Pairing Transition of Iron. American Mineralogist, 97(4): 583–591. https://doi.org/10.2138/am.2012.3961 |
Litasov, K. D., Fei, Y. W., Ohtani, E., et al., 2008. Thermal Equation of State of Magnesite to 32 GPa and 2 073 K. Physics of the Earth and Planetary Interiors, 168(3/4): 191–203. https://doi.org/10.1016/j.pepi.2008.06.018 |
Liu, J. C., Fu, S. Y., Lin, J. F., 2020. Spin Transition of Iron in Deep-Mantle Ferromagnesite. In: Manning, C. E., Lin J. F., Mao, W. L., eds., Carbon in Earth's Interior. American Geophysical Union, Washington D. C. |
Liu, J., Lin, J. F., Mao, Z., et al., 2014. Thermal Equation of State and Spin Transition of Magnesiosiderite at High Pressure and Temperature. American Mineralogist, 99(1): 84–93. https://doi.org/10.2138/am.2014.4553 |
Lobanov, S. S., Goncharov, A. F., 2020. Pressure-Induced Sp2-Sp3 Transitions in Carbon-Bearing Phases. In: Manning, C. E., Lin J. F., Mao, W. L., eds., Carbon in Earth's Interior, John Wiley & Sons, Hoboken. |
Lobanov, S. S., Goncharov, A. F., Litasov, K. D., 2015. Optical Properties of Siderite (FeCO3) across the Spin Transition: Crossover to Iron-Rich Carbonates in the Lower Mantle. American Mineralogist, 100(5/6): 1059–1064. https://doi.org/10.2138/am-2015-5053 |
Lobanov, S. S., Holtgrewe, N., Goncharov, A. F., 2016. Reduced Radiative Conductivity of Low Spin FeO6-Octahedra in FeCO3 at High Pressure and Temperature. Earth and Planetary Science Letters, 449: 20–25. https://doi.org/10.1016/j.epsl.2016.05.028 |
Mattila, A., Pylkkänen, T., Rueff, J. P., et al., 2007. Pressure Induced Magnetic Transition in Siderite FeCO3 Studied by X-Ray Emission Spectroscopy. Journal of Physics: Condensed Matter, 19(38): 386206. https://doi.org/10.1088/0953-8984/19/38/386206 |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 |
Merlini, M., Hanfland, M., Salamat, A., et al., 2015. The Crystal Structures of Mg2Fe2C4O13, with Tetrahedrally Coordinated Carbon, and Fe13O19, Synthesized at Deep Mantle Conditions. American Mineralogist, 100(8/9): 2001–2004. https://doi.org/10.2138/am-2015-5369 |
Merlini, M., Sapelli, F., Fumagalli, P., et al., 2016. High-Temperature and High-Pressure Behavior of Carbonates in the Ternary Diagram CaCO3-MgCO3-FeCO3. American Mineralogist, 101(6): 1423–1430. https://doi.org/10.2138/am-2016-5458 |
Müller, J., Speziale, S., Efthimiopoulos, I., et al., 2016. Raman Spectroscopy of Siderite at High Pressure: Evidence for a Sharp Spin Transition. American Mineralogist, 101(12): 2638–2644. https://doi.org/10.2138/am-2016-5708 |
Nagai, T., Ishido, T., Seto, Y., et al., 2010. Pressure-Induced Spin Transition in FeCO3-Siderite Studied by X-Ray Diffraction Measurements. Journal of Physics: Conference Series, 215: 012002. https://doi.org/10.1088/1742-6596/215/1/012002 |
Palyanov, Y. N., Bataleva, Y. V., Sokol, A. G., et al., 2013. Mantle-Slab Interaction and Redox Mechanism of Diamond Formation. Proceedings of the National Academy of Sciences of the United States of America, 110(51): 20408–20413. https://doi.org/10.1073/pnas.1313340110 |
Ricolleau, A., Perrillat, J. P., Fiquet, G., et al., 2010. Phase Relations and Equation of State of a Natural MORB: Implications for the Density Profile of Subducted Oceanic Crust in the Earth's Lower Mantle. Journal of Geophysical Research: Solid Earth, 115(B8): 08202. https://doi.org/10.1029/2009jb006709 |
Rividi, N., van Zuilen, M., Philippot, P., et al., 2010. Calibration of Carbonate Composition Using Micro-Raman Analysis: Application to Planetary Surface Exploration. Astrobiology, 10(3): 293–309. https://doi.org/10.1089/ast.2009.0388 |
Robie, R. A., Haselton, H. T., Hemingway, B. S., 1984. Heat Capacities and Entropies of Rhodochrosite (MnCO3) and Siderite (FeCO3) between 5 and 600 K. American Mineralogist, 69: 349–357 |
Rutt, H. N., Nicola, J. H., 1974. Raman Spectra of Carbonates of Calcite Structure. Journal of Physics C: Solid State Physics, 7(24): 4522–4528. https://doi.org/10.1088/0022-3719/7/24/015 |
Sanchez-Valle, C., Ghosh, S., Rosa, A. D., 2011. Sound Velocities of Ferromagnesian Carbonates and the Seismic Detection of Carbonates in Eclogites and the Mantle. Geophysical Research Letters, 38(24): L24315. https://doi.org/10.1029/2011gl049981 |
Santillan, J., 2005. An Infrared Study of Carbon-Oxygen Bonding in Magnesite to 60 GPa. American Mineralogist, 90(10): 1669–1673. https://doi.org/10.2138/am.2005.1703 |
Sawchuk, K., Kamat, R., McGuire, C., et al., 2021. An X-Ray Diffraction and Raman Spectroscopic Study of the High-Pressure Behavior of Gaspéite (Ni0.73Mg0.27CO3). Physics and Chemistry of Minerals, 48(1): 1–10. https://doi.org/10.1007/s00269-020-01133-3 |
Shen, G. Y., Wang, Y. B., Dewaele, A., et al., 2020. Toward an International Practical Pressure Scale: A Proposal for an IPPS Ruby Gauge (IPPS-Ruby2020). High Pressure Research, 40(3): 299–314. https://doi.org/10.1080/08957959.2020.1791107 |
Spivak, A., Solopova, N., Cerantola, V., et al., 2014. Raman Study of MgCO3-FeCO3 Carbonate Solid Solution at High Pressures up to 55 GPa. Physics and Chemistry of Minerals, 41(8): 633–638. https://doi.org/10.1007/s00269-014-0676-y |
Syracuse, E. M., van Keken, P. E., Abers, G. A., 2010. The Global Range of Subduction Zone Thermal Models. Physics of the Earth and Planetary Interiors, 183(1/2): 73–90. https://doi.org/10.1016/j.pepi.2010.02.004 |
Taran, M. N., Müller, J., Friedrich, A., et al., 2017. High-Pressure Optical Spectroscopy Study of Natural Siderite. Physics and Chemistry of Minerals, 44(8): 537–546. https://doi.org/10.1007/s00269-017-0880-7 |
Weis, C., Sternemann, C., Cerantola, V., et al., 2017. Pressure Driven Spin Transition in Siderite and Magnesiosiderite Single Crystals. Scientific Reports, 7: 16526. https://doi.org/10.1038/s41598-017-16733-3 |
Williams, Q., Collerson, B., Knittle, E., 1992. Vibrational Spectra of Magnesite (MgCO3) and Calcite-Ⅲ at High Pressures. American Mineralogist, 77: 1158–1165. https://doi.org/10.1180/minmag.1992.056.385.19 |
Yao, X., Xie, C. W., Dong, X. A., et al., 2018. Novel High-Pressure Calcium Carbonates. Physical Review B, 98: 014108. https://doi.org/10.1103/physrevb.98.014108 |
Ye, Y., Prakapenka, V., Meng, Y., et al., 2017. Intercomparison of the Gold, Platinum, and MgO Pressure Scales up to 140 GPa and 2 500 K. Journal of Geophysical Research: Solid Earth, 122(5): 3450–3464. https://doi.org/10.1002/2016jb013811 |
Ye, Y., Shim, S. H., Prakapenka, V., et al., 2018. Equation of State of Solid Ne Inter-Calibrated with the MgO, Au, Pt, NaCl-B2, and Ruby Pressure Scales up to 130 GPa. High Pressure Research, 38(4): 377–395. https://doi.org/10.1080/08957959.2018.1493477 |
Zhang, J. Z., Martinez, I., Guyot, F., et al., 1998. Effects of Mg-Fe (Super 2+) Substitution in Calcite-Structure Carbonates, Thermoelastic Properties. American Mineralogist, 83(3/4): 280–287. https://doi.org/10.2138/am-1998-3-411 |
Zhang, J., Martinez, I., Guyot, F., et al., 1997. X-Ray Diffraction Study of Magnesite at High Pressure and High Temperature. Physics and Chemistry of Minerals, 24(2): 122–130. https://doi.org/10.1007/s002690050025 |