Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 2
Apr 2024
Turn off MathJax
Article Contents
Lin Liang, Guibin Zhang, Shengxuan Huang, Jingjing Niu, Dongzhou Zhang, Jingui Xu, Wen Liang, Shan Qin. High-Pressure Behavior of Ferromagnesite (Mg0.81Fe0.19)CO3 by Synchrotron X-Ray Diffraction and Raman Spectroscopy up to 53 GPa. Journal of Earth Science, 2024, 35(2): 525-535. doi: 10.1007/s12583-021-1495-y
Citation: Lin Liang, Guibin Zhang, Shengxuan Huang, Jingjing Niu, Dongzhou Zhang, Jingui Xu, Wen Liang, Shan Qin. High-Pressure Behavior of Ferromagnesite (Mg0.81Fe0.19)CO3 by Synchrotron X-Ray Diffraction and Raman Spectroscopy up to 53 GPa. Journal of Earth Science, 2024, 35(2): 525-535. doi: 10.1007/s12583-021-1495-y

High-Pressure Behavior of Ferromagnesite (Mg0.81Fe0.19)CO3 by Synchrotron X-Ray Diffraction and Raman Spectroscopy up to 53 GPa

doi: 10.1007/s12583-021-1495-y
More Information
  • Corresponding author: Shan Qin, sqin@pku.edu.cn
  • Received Date: 23 Apr 2021
  • Accepted Date: 09 Jun 2021
  • Available Online: 11 Apr 2024
  • Issue Publish Date: 30 Apr 2024
  • Ferromagnesite (Mg, Fe)CO3 with 20 mol% iron is a potential host mineral for carbon transport and storage in the Earth mantle. The high-pressure behavior of synthetic ferromagnesite (Mg0.81Fe0.19)CO3 up to 53 GPa was investigated by synchrotron X-ray diffraction (XRD) and Raman spectroscopy. The iron bearing carbonate underwent spin transition at around 44–46 GPa accompanied by a volume collapse of 1.8%, which also demonstrated a variation in the dνi/dP slope of the Raman modes. The pressure-volume data was fitted by a third-order Birch-Murnaghan equation of state (BM-EoS) for the high spin phase. The best-fit K0 = 108(1) GPa and $ {\mathit{K}}_{0}^{\mathbf{'}} $ = 4.2(1). Combining the dνi/dP and the K0, the mode Grüneisen parameters of each vibrational mode (T, L, ν4 and ν1) were calculated. The effects of iron concentration on the Mg1-xFexCO3 system related to high-pressure compressibility and vibrational properties are discussed. These results expand the knowledge of the physical properties of carbonates and provide insights to the potential deep carbon host.

     

  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S6; Supplementary Material A) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1495-y.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Angel, R. J., 2000. Equations of State. Reviews in Mineralogy and Geochemistry, 41(1): 35–59. https://doi.org/10.2138/rmg.2000.41.2
    Birch, F., 1978. Finite Strain Isotherm and Velocities for Single-Crystal and Polycrystalline NaCl at High Pressures and 300°K. Journal of Geophysical Research: Solid Earth, 83(B3): 1257–1268. https://doi.org/10.1029/jb083ib03p01257
    Boulard, E., Gloter, A., Corgne, A., et al., 2011. New Host for Carbon in the Deep Earth. Proceedings of the National Academy of Sciences of the United States of America, 108(13): 5184–5187. https://doi.org/10.1073/pnas.1016934108
    Boulard, E., Menguy, N., Auzende, A. L., et al., 2012. Experimental Investigation of the Stability of Fe-Rich Carbonates in the Lower Mantle. Journal of Geophysical Research: Solid Earth, 117(B2): B02208. https://doi.org/10.1029/2011jb008733
    Cerantola, V., Bykova, E., Kupenko, I., et al., 2017. Stability of Iron-Bearing Carbonates in the Deep Earth's Interior. Nature Communications, 8: 15960. https://doi.org/10.1038/ncomms15960
    Cerantola, V., McCammon, C., Kupenko, I., et al., 2015. High-Pressure Spectroscopic Study of Siderite (FeCO3) with a Focus on Spin Crossover. American Mineralogist, 100(11/12): 2670–2681. https://doi.org/10.2138/am-2015-5319
    Chao, K. H., Hsieh, W. P., 2019. Thermal Conductivity Anomaly in (Fe0.78Mg0.22)CO3 Siderite across Spin Transition of Iron. Journal of Geophysical Research: Solid Earth, 124(2): 1388–1396. https://doi.org/10.1029/2018jb017003
    Chariton, S., McCammon, C., Vasiukov, D. M., et al., 2020. Seismic Detectability of Carbonates in the Deep Earth: A Nuclear Inelastic Scattering Study. American Mineralogist, 105(3): 325–332. https://doi.org/10.2138/am-2020-6901
    Dasgupta, R., Hirschmann, M. M., 2006. Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide. Nature, 440(7084): 659–662. https://doi.org/10.1038/nature04612
    Dasgupta, R., Hirschmann, M. M., Withers, A. C., 2004. Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions. Earth and Planetary Science Letters, 227(1/2): 73–85. https://doi.org/10.1016/j.epsl.2004.08.004
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
    Farfan, G., Wang, S., Ma, H., et al., 2012. Bonding and Structural Changes in Siderite at High Pressure. American Mineralogist, 97(8/9): 1421–1426. https://doi.org/10.2138/am.2012.4001
    Farsang, S., Facq, S., Redfern, S. A. T., 2018. Raman Modes of Carbonate Minerals as Pressure and Temperature Gauges up to 6 GPa and 500 ℃. The American Mineralogist, 103(11/12): 1988–1998
    Fei, Y. W., Zhang, L., Corgne, A., et al., 2007. Spin Transition and Equations of State of (Mg, Fe)O Solid Solutions. Geophysical Research Letters, 34(17): L17307. https://doi.org/10.1029/2007gl030712
    Fiquet, G., Guyot, F., Kunz, M., et al., 2002. Structural Refinements of Magnesite at very High Pressure. American Mineralogist, 87(8/9): 1261–1265. https://doi.org/10.2138/am-2002-8-927
    Hazen, R. M., Prewitt, C. T., 1988. Effects of Temperature and Pressure on Interatomic Distances in Oxygen-Based Minerals. Elastic Properties and Equations of State. American Geophysical Union, Washington, D. C. https://doi.org/10.1029/sp026p0407
    Hsu, H., Huang, S. C., 2016. Spin Crossover and Hyperfine Interactions of Iron in (Mg, Fe)CO3 Ferromagnesite. Physical Review B, 94(6): 060404. https://doi.org/10.1103/physrevb.94.060404
    Isshiki, M., Irifune, T., Hirose, K., et al., 2004. Stability of Magnesite and Its High-Pressure Form in the Lowermost Mantle. Nature, 427(6969): 60–63. https://doi.org/10.1038/nature02181
    Langille, D. B., O'Shea, D. C., 1977. Raman Spectroscopy Studies of Antiferromagnetic FeCO3 and Related Carbonates. Journal of Physics and Chemistry of Solids, 38(10): 1161–1171. https://doi.org/10.1016/0022-3697(77)90044-0
    Lavina, B., Dera, P., Downs, R. T., et al., 2009. Siderite at Lower Mantle Conditions and the Effects of the Pressure-Induced Spin-Pairing Transition. Geophysical Research Letters, 36(23): L23306. https://doi.org/10.1029/2009gl039652
    Lavina, B., Dera, P., Downs, R. T., et al., 2010a. Effect of Dilution on the Spin Pairing Transition in Rhombohedral Carbonates. High Pressure Research, 30(2): 224–229. https://doi.org/10.1080/08957959.2010.485391
    Lavina, B., Dera, P., Downs, R. T., et al., 2010b. Structure of Siderite FeCO3 to 56 GPa and Hysteresis of Its Spin-Pairing Transition. Physical Review B, 82(6): 064110. https://doi.org/10.1103/physrevb.82.064110
    Lee, K. K. M., O'Neill, B., Panero, W. R., et al., 2004. Equations of State of the High-Pressure Phases of a Natural Peridotite and Implications for the Earth's Lower Mantle. Earth and Planetary Science Letters, 223(3/4): 381–393. https://doi.org/10.1016/j.epsl.2004.04.033
    Liang, W., Li, Z. M., Yin, Y., et al., 2018a. Single Crystal Growth, Characterization and High-Pressure Raman Spectroscopy of Impurity-Free Magnesite (MgCO3). Physics and Chemistry of Minerals, 45(5): 423–434. https://doi.org/10.1007/s00269-017-0930-1
    Liang, W., Yin, Y., Li, Z. M., et al., 2018b. Single Crystal Growth, Crystalline Structure Investigation and High-Pressure Behavior of Impurity-Free Siderite (FeCO3). Physics and Chemistry of Minerals, 45(9): 831–842. https://doi.org/10.1007/s00269-018-0965-y
    Lin, J. F., Liu, J., Jacobs, C., et al., 2012. Vibrational and Elastic Properties of Ferromagnesite across the Electronic Spin-Pairing Transition of Iron. American Mineralogist, 97(4): 583–591. https://doi.org/10.2138/am.2012.3961
    Litasov, K. D., Fei, Y. W., Ohtani, E., et al., 2008. Thermal Equation of State of Magnesite to 32 GPa and 2 073 K. Physics of the Earth and Planetary Interiors, 168(3/4): 191–203. https://doi.org/10.1016/j.pepi.2008.06.018
    Liu, J. C., Fu, S. Y., Lin, J. F., 2020. Spin Transition of Iron in Deep-Mantle Ferromagnesite. In: Manning, C. E., Lin J. F., Mao, W. L., eds., Carbon in Earth's Interior. American Geophysical Union, Washington D. C. https://doi.org/10.1002/9781119508229.ch12
    Liu, J., Lin, J. F., Mao, Z., et al., 2014. Thermal Equation of State and Spin Transition of Magnesiosiderite at High Pressure and Temperature. American Mineralogist, 99(1): 84–93. https://doi.org/10.2138/am.2014.4553
    Lobanov, S. S., Goncharov, A. F., 2020. Pressure-Induced Sp2-Sp3 Transitions in Carbon-Bearing Phases. In: Manning, C. E., Lin J. F., Mao, W. L., eds., Carbon in Earth's Interior, John Wiley & Sons, Hoboken. https://doi.org/10.1002/9781119508229.ch1
    Lobanov, S. S., Goncharov, A. F., Litasov, K. D., 2015. Optical Properties of Siderite (FeCO3) across the Spin Transition: Crossover to Iron-Rich Carbonates in the Lower Mantle. American Mineralogist, 100(5/6): 1059–1064. https://doi.org/10.2138/am-2015-5053
    Lobanov, S. S., Holtgrewe, N., Goncharov, A. F., 2016. Reduced Radiative Conductivity of Low Spin FeO6-Octahedra in FeCO3 at High Pressure and Temperature. Earth and Planetary Science Letters, 449: 20–25. https://doi.org/10.1016/j.epsl.2016.05.028
    Mattila, A., Pylkkänen, T., Rueff, J. P., et al., 2007. Pressure Induced Magnetic Transition in Siderite FeCO3 Studied by X-Ray Emission Spectroscopy. Journal of Physics: Condensed Matter, 19(38): 386206. https://doi.org/10.1088/0953-8984/19/38/386206
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    Merlini, M., Hanfland, M., Salamat, A., et al., 2015. The Crystal Structures of Mg2Fe2C4O13, with Tetrahedrally Coordinated Carbon, and Fe13O19, Synthesized at Deep Mantle Conditions. American Mineralogist, 100(8/9): 2001–2004. https://doi.org/10.2138/am-2015-5369
    Merlini, M., Sapelli, F., Fumagalli, P., et al., 2016. High-Temperature and High-Pressure Behavior of Carbonates in the Ternary Diagram CaCO3-MgCO3-FeCO3. American Mineralogist, 101(6): 1423–1430. https://doi.org/10.2138/am-2016-5458
    Müller, J., Speziale, S., Efthimiopoulos, I., et al., 2016. Raman Spectroscopy of Siderite at High Pressure: Evidence for a Sharp Spin Transition. American Mineralogist, 101(12): 2638–2644. https://doi.org/10.2138/am-2016-5708
    Nagai, T., Ishido, T., Seto, Y., et al., 2010. Pressure-Induced Spin Transition in FeCO3-Siderite Studied by X-Ray Diffraction Measurements. Journal of Physics: Conference Series, 215: 012002. https://doi.org/10.1088/1742-6596/215/1/012002
    Palyanov, Y. N., Bataleva, Y. V., Sokol, A. G., et al., 2013. Mantle-Slab Interaction and Redox Mechanism of Diamond Formation. Proceedings of the National Academy of Sciences of the United States of America, 110(51): 20408–20413. https://doi.org/10.1073/pnas.1313340110
    Ricolleau, A., Perrillat, J. P., Fiquet, G., et al., 2010. Phase Relations and Equation of State of a Natural MORB: Implications for the Density Profile of Subducted Oceanic Crust in the Earth's Lower Mantle. Journal of Geophysical Research: Solid Earth, 115(B8): 08202. https://doi.org/10.1029/2009jb006709
    Rividi, N., van Zuilen, M., Philippot, P., et al., 2010. Calibration of Carbonate Composition Using Micro-Raman Analysis: Application to Planetary Surface Exploration. Astrobiology, 10(3): 293–309. https://doi.org/10.1089/ast.2009.0388
    Robie, R. A., Haselton, H. T., Hemingway, B. S., 1984. Heat Capacities and Entropies of Rhodochrosite (MnCO3) and Siderite (FeCO3) between 5 and 600 K. American Mineralogist, 69: 349–357
    Rutt, H. N., Nicola, J. H., 1974. Raman Spectra of Carbonates of Calcite Structure. Journal of Physics C: Solid State Physics, 7(24): 4522–4528. https://doi.org/10.1088/0022-3719/7/24/015
    Sanchez-Valle, C., Ghosh, S., Rosa, A. D., 2011. Sound Velocities of Ferromagnesian Carbonates and the Seismic Detection of Carbonates in Eclogites and the Mantle. Geophysical Research Letters, 38(24): L24315. https://doi.org/10.1029/2011gl049981
    Santillan, J., 2005. An Infrared Study of Carbon-Oxygen Bonding in Magnesite to 60 GPa. American Mineralogist, 90(10): 1669–1673. https://doi.org/10.2138/am.2005.1703
    Sawchuk, K., Kamat, R., McGuire, C., et al., 2021. An X-Ray Diffraction and Raman Spectroscopic Study of the High-Pressure Behavior of Gaspéite (Ni0.73Mg0.27CO3). Physics and Chemistry of Minerals, 48(1): 1–10. https://doi.org/10.1007/s00269-020-01133-3
    Shen, G. Y., Wang, Y. B., Dewaele, A., et al., 2020. Toward an International Practical Pressure Scale: A Proposal for an IPPS Ruby Gauge (IPPS-Ruby2020). High Pressure Research, 40(3): 299–314. https://doi.org/10.1080/08957959.2020.1791107
    Spivak, A., Solopova, N., Cerantola, V., et al., 2014. Raman Study of MgCO3-FeCO3 Carbonate Solid Solution at High Pressures up to 55 GPa. Physics and Chemistry of Minerals, 41(8): 633–638. https://doi.org/10.1007/s00269-014-0676-y
    Syracuse, E. M., van Keken, P. E., Abers, G. A., 2010. The Global Range of Subduction Zone Thermal Models. Physics of the Earth and Planetary Interiors, 183(1/2): 73–90. https://doi.org/10.1016/j.pepi.2010.02.004
    Taran, M. N., Müller, J., Friedrich, A., et al., 2017. High-Pressure Optical Spectroscopy Study of Natural Siderite. Physics and Chemistry of Minerals, 44(8): 537–546. https://doi.org/10.1007/s00269-017-0880-7
    Weis, C., Sternemann, C., Cerantola, V., et al., 2017. Pressure Driven Spin Transition in Siderite and Magnesiosiderite Single Crystals. Scientific Reports, 7: 16526. https://doi.org/10.1038/s41598-017-16733-3
    Williams, Q., Collerson, B., Knittle, E., 1992. Vibrational Spectra of Magnesite (MgCO3) and Calcite-Ⅲ at High Pressures. American Mineralogist, 77: 1158–1165. https://doi.org/10.1180/minmag.1992.056.385.19
    Yao, X., Xie, C. W., Dong, X. A., et al., 2018. Novel High-Pressure Calcium Carbonates. Physical Review B, 98: 014108. https://doi.org/10.1103/physrevb.98.014108
    Ye, Y., Prakapenka, V., Meng, Y., et al., 2017. Intercomparison of the Gold, Platinum, and MgO Pressure Scales up to 140 GPa and 2 500 K. Journal of Geophysical Research: Solid Earth, 122(5): 3450–3464. https://doi.org/10.1002/2016jb013811
    Ye, Y., Shim, S. H., Prakapenka, V., et al., 2018. Equation of State of Solid Ne Inter-Calibrated with the MgO, Au, Pt, NaCl-B2, and Ruby Pressure Scales up to 130 GPa. High Pressure Research, 38(4): 377–395. https://doi.org/10.1080/08957959.2018.1493477
    Zhang, J. Z., Martinez, I., Guyot, F., et al., 1998. Effects of Mg-Fe (Super 2+) Substitution in Calcite-Structure Carbonates, Thermoelastic Properties. American Mineralogist, 83(3/4): 280–287. https://doi.org/10.2138/am-1998-3-411
    Zhang, J., Martinez, I., Guyot, F., et al., 1997. X-Ray Diffraction Study of Magnesite at High Pressure and High Temperature. Physics and Chemistry of Minerals, 24(2): 122–130. https://doi.org/10.1007/s002690050025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(61) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return