Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Zheng Ji, Wenchun Ge, Hao Yang, Yanlong Zhang, Yu Dong, Junhui Bi, Xiwen Liu. Geochronology and Geochemistry of Late Devonian I- and A-Type Granites from the Xing'an Block, NE China: Implications for Slab Break-off during Subduction of the Hegenshan-Heihe Ocean. Journal of Earth Science, 2022, 33(1): 150-160. doi: 10.1007/s12583-021-1497-9
Citation: Zheng Ji, Wenchun Ge, Hao Yang, Yanlong Zhang, Yu Dong, Junhui Bi, Xiwen Liu. Geochronology and Geochemistry of Late Devonian I- and A-Type Granites from the Xing'an Block, NE China: Implications for Slab Break-off during Subduction of the Hegenshan-Heihe Ocean. Journal of Earth Science, 2022, 33(1): 150-160. doi: 10.1007/s12583-021-1497-9

Geochronology and Geochemistry of Late Devonian I- and A-Type Granites from the Xing'an Block, NE China: Implications for Slab Break-off during Subduction of the Hegenshan-Heihe Ocean

doi: 10.1007/s12583-021-1497-9
More Information
  • Corresponding author: Wenchun Ge, gewenchun@jlu.edu.cn
  • Received Date: 22 Apr 2021
  • Accepted Date: 13 Jun 2021
  • Publish Date: 28 Feb 2022
  • We present detailed geochronological, geochemical, and zircon Hf isotopic data for Late Paleozoic granitic rocks from Handagai and Zhonghe plutons in the Xing'an Block, NE China, aiming to provide constraints on their origin and tectonic implications. New zircon U-Pb ages indicate they were formed in the Late Devonian (ca. 379 Ma) immediately after a striking 50 Ma magmatic lull (ca. 430-380 Ma) in the Xing'an Block. Petrological and geochemical features suggest that the Handagai monzogranites and Zhonghe alkali-feldspar granites are I- and A-type granites, respectively, although both of them have high-K calc-alkaline features and positive zircon εHf(t) values (+3.47 to +10.77). We infer that the Handagai monzogranites were produced by partial melting of juvenile basaltic crustal materials under a pressure of < 8-10 kbar, whereas the Zhonghe alkali-feldspar granites were generated by partial melting of juvenile felsic crustal materials at shallower depths (P ≤ 4 kbar). Our results, together with published regional data, indicate their generation involves a subduction-related extensional setting. Slab break-off of the Hegenshan-Heihe oceanic plate may account for the subduction-related extensional setting, as well as the transformation of arc magmatism from the Early-Middle Devonian lull to the Late Devonian-Early Carboniferous flare-up in the Xing'an Block.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1-S3, Appendix A) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1497-9.
  • loading
  • Badr, A., Davoudian, A. R., Shabanian, N., et al., 2018. A- and I-Type Metagranites from the North Shahrekord Metamorphic Complex, Iran: Evidence for Early Paleozoic Post-Collisional Magmatism. Lithos, 300/301: 86-104. https://doi.org/10.1016/j.lithos.2017.12.008
    Bi, J. H., Ge, W. C., Yang, H., et al., 2016. Geochronology and Geochemistry of Late Carboniferous-Middle Permian I- and A-Type Granites and Gabbro-Diorites in the Eastern Jiamusi Massif, NE China: Implications for Petrogenesis and Tectonic Setting. Lithos, 266/267: 213-232. https://doi.org/10.1016/j.lithos.2016.10.001
    Bogaerts, M., Scaillet, B., Auwera, J. V., 2006. Phase Equilibria of the Lyngdal Granodiorite (Norway): Implications for the Origin of Metaluminous Ferroan Granitoids. Journal of Petrology, 47(12): 2405-2431. https://doi.org/10.1093/petrology/egl049
    Clemens, J. D., 2003. S-Type Granitic Magmas-Petrogenetic Issues, Models and Evidence. Earth-Science Reviews, 61(1/2): 1-18. https://doi.org/10.1016/S0012-8252(02)00107-1
    Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895
    Creaser, R. A., Price, R. C., Wormald, R. J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19(2): 163. https://doi.org/10.1130/0091-7613(1991)0190163:atgrao>2.3.co;2 doi: 10.1130/0091-7613(1991)0190163:atgrao>2.3.co;2
    Eby, G. N., 1990. The A-Type Granitoids: a Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115-134. https://doi.org/10.1016/0024-4937(90)90043-z
    Feng, Z. Q., Liu, Y. J., Wu, P., et al., 2018. Silurian Magmatism on the Eastern Margin of the Erguna Block, NE China: Evolution of the Northern Great Xing'an Range. Gondwana Research, 61: 46-62. https://doi.org/10.1016/j.gr.2018.04.011
    Frost, C. D., Frost, B. R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39-53. https://doi.org/10.1093/petrology/egq070
    Ge, W. C., Wu, F. Y., Zhou, C. Y., et al., 2005. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Ergun Block in the Northern Part of the Da Hinggan Range. Chinese Science Bulletin, 18: 2097-2105 (in Chinese)
    Gerya, T. V., Yuen, D. A., Maresch, W. V., 2004. Thermomechanical Modelling of Slab Detachment. Earth and Planetary Science Letters, 226(1/2): 101-116. https://doi.org/10.1016/j.epsl.2004.07.022
    Gou, J., Sun, D. Y., Yang, D. G., et al., 2019. Late Palaeozoic Igneous Rocks of the Great Xing'an Range, NE China: The Tayuan Example. International Geology Review, 61(3): 314-340. https://doi.org/10.1080/00206814.2018.1425923
    Guo, F., Fan, W. M., Li, C. W., et al., 2012. Multi-Stage Crust-Mantle Interaction in SE China: Temporal, Thermal and Compositional Constraints from the Mesozoic Felsic Volcanic Rocks in Eastern Guangdong-Fujian Provinces. Lithos, 150: 62-84. https://doi.org/10.1016/j.lithos.2011.12.009
    Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction?. Geology, 28(6): 535-538. https://doi.org/10.1130/0091-7613(2000)28535:csmbcb>2.0.co;2 doi: 10.1130/0091-7613(2000)28535:csmbcb>2.0.co;2
    Huang, H. Q., Li, X. H., Li, W. X., et al., 2011. Formation of High 18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China. Geology, 39(10): 903-906. https://doi.org/10.1130/g32080.1
    Huw Davies, J., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s
    IMBGMR (Inner Mongolian Bureau of Geology Mineral Resources), 1991. Regional Geology of Inner Mongolia. Geological Publishing House, Beijing. 1-725 (in Chinese with English Abstract)
    Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
    Ji, Z., Ge, W. C., Yang, H., et al., 2018. Late Carboniferous-Early Permian High- and Low-Sr/Y Granitoids of the Xing'an Block, Northeastern China: Implications for the Late Paleozoic Tectonic Evolution of the Eastern Central Asian Orogenic Belt. Lithos, 322: 179-196. https://doi.org/10.1016/j.lithos.2018.10.014
    Ji, Z., Meng, Q. A., Wan, C. B., et al., 2019. Geodynamic Evolution of Flat-Slab Subduction of Paleo-Pacific Plate: Constraints from Jurassic Adakitic Lavas in the Hailar Basin, NE China. Tectonics, 38(12): 4301-4319. https://doi.org/10.1029/2019tc005687
    Kemp, A. I. S., Wormald, R. J., Whitehouse, M. J., et al., 2005. Hf Isotopes in Zircon Reveal Contrasting Sources and Crystallization Histories for Alkaline to Peralkaline Granites of Temora, Southeastern Australia. Geology, 33(10): 797-800. https://doi.org/10.1130/g21706.1
    Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1/2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018
    Li, Y., Xu, W. L., Tang, J., et al., 2020. Late Paleozoic Igneous Rocks in the Xing'an Massif and Its Amalgamation with the Songnen Massif, NE China. Journal of Asian Earth Sciences, 197: 104407. https://doi.org/10.1016/j.jseaes.2020.104407
    Li, Y., Xu, W. L., Wang, F., et al., 2017. Triassic Volcanism along the Eastern Margin of the Xing'an Massif, NE China: Constraints on the Spatial-Temporal Extent of the Mongol-Okhotsk Tectonic Regime. Gondwana Research, 48: 205-223. https://doi.org/10.1016/j.gr.2017.05.002
    Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
    Liu, B., Chen, J. F., Han, B. F., et al., 2021. Geochronological and Geochemical Evidence for a Late Ordovician to Silurian Arc-Back-Arc System in the Northern Great Xing'an Range, NE China. Geoscience Frontiers, 12(1): 131-145. https://doi.org/10.1016/j.gsf.2020.07.002
    Liu, L., Xu, X. S., Xia, Y., 2014. Cretaceous Pacific Plate Movement beneath SE China: Evidence from Episodic Volcanism and Related Intrusions. Tectonophysics, 614: 170-184. https://doi.org/10.1016/j.tecto.2013.12.007
    Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013
    Luan, J. P., Yu, J. J., Yu, J. L., et al., 2019. Early Neoproterozoic Magmatism and the Associated Metamorphism in the Songnen Massif, NE China: Petrogenesis and Tectonic Implications. Precambrian Research, 328: 250-268. https://doi.org/10.1016/j.precamres.2019.04.004
    Ma, Y. F., 2019. The Late Paleozoic Tectonic Evolution of the Central Great Xing'an Range, NE China: [Dissertation]. Jilin University, Changchun (in Chinese with English Abstract)
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
    Na, F.C., Fu, J.Y., Wang, Y., et al., 2014. LA-ICP-MS Zircon U-Pb Age of the Chlorite-Muscovite Tectonic Schist in Hadayang, Morin Dawa Banner, Inner Mongolia, and Its Tectonic Significance. Geological Bulletin of China, 33(9): 1326-1332 (in Chinese with English Abstract)
    Niu, Y. L., 2018. Geological Understanding of Plate Tectonics: Basic Concepts, Illustrations, Examples and New Perspectives. Global Tectonics and Metallogeny, 10(1): 23-46. https://doi.org/10.1127/gtm/2014/0009
    Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743. https://doi.org/10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81. https://doi.org/10.1007/bf00384745
    Pei, F. P., Xu, W. L., Yang, D. B., et al., 2007. Zircon U-Pb Geochronology of Basement Metamorphic Rocks in the Songliao Basin. Chinese Science Bulletin, 52: 942-948. https://doi.org/10.1007/s11434-007-0107-2
    Prelević, D., Akal, C., Romer, R. L., et al., 2015. Magmatic Response to Slab Tearing: Constraints from the Afyon Alkaline Volcanic Complex, Western Turkey. Journal of Petrology, 56(3): 527-562. https://doi.org/10.1093/petrology/egv008
    Qian, C., Chen, H. J., Lu, L., et al., 2018. The Discovery of Neoarchean Granite in Longjiang Area, Heilongjiang Province. Acta Geoscientica Sinica, 39: 27-36 (in Chinese with English Abstract)
    Qian, C., Wang, Y., Lu, L., et al., 2019. Geochronology, Geochemistry and Hf Isotopic Composition of Amphibolite from Zhalantun Region in Northern Great Xing'an Range and Its Tectonic Significance. Earth Science, 44(10): 3193-3208 (in Chinese with English Abstract)
    Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Singapore Publishers (Pte) Ltd., Singapore. 352
    Rosenbaum, G., Gasparon, M., Lucente, F. P., et al., 2008. Kinematics of Slab Tear Faults during Subduction Segmentation and Implications for Italian Magmatism. Tectonics, 27(2): TC2008. https://doi.org/10.1029/2007tc002143
    Şengör, A. M. C., Natal'In, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
    She, H. Q., Li, J. W., Xiang, A. P., et al., 2012. U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxinganling and Its Implications to Geotectonic Evolution. Acta Petrologica Sinica, 28: 571-594 (in Chinese with English Abstract)
    Shi, L., Zheng, C. Q., Yao, W. G., et al., 2015. Geochronological Framework and Tectonic Setting of the Granitic Magmatism in the Chaihe-Moguqi Region, Central Great Xing'an Range, China. Journal of Asian Earth Sciences, 113: 443-453. https://doi.org/10.1016/j.jseaes.2014.12.013
    Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. https://doi.org/10.1007/s00410-004-0632-9
    Skjerlie, K. P., Johnston, A. D., 1993. Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites. Journal of Petrology, 34(4): 785-815. https://doi.org/10.1093/petrology/34.4.785
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-x
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
    Wu, F. Y., Ji, W. Q., Sun, D. H., et al., 2012. Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Mesozoic Granites in Southern Anhui Province, China. Lithos, 150: 6-25. https://doi.org/10.1016/j.lithos.2012.03.020
    Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
    Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2001. The Nature of Basement beneath the Songliao Basin in NE China: Geochemical and Isotopic Constraints. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9/10): 793-803. https://doi.org/10.1016/S1464-1895(01)00128-4
    Xiao, W. J., Santosh, M., 2014. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 25(4): 1429-1444. https://doi.org/10.1016/j.gr.2014.01.008
    Xiao, W. J., Song, D. F., Windley, B. F., et al., 2019. Research Progresses of the Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt. Science China Earth Sciences, 49: 1512-1545. https://doi.org/10.1007/s11430-019-9524-6
    Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. https://doi.org/10.1016/j.gr.2012.05.015
    Xu, B., Zhao, P., Wang, Y. Y., et al., 2015. The Pre-Devonian Tectonic Framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183-196. https://doi.org/10.1016/j.jseaes.2014.07.020
    Yang, H., Ge, W. C., Ji, Z., et al., 2019. Late Carboniferous to Early Permian Subduction-Related Intrusive Rocks from the Huolongmen Region in the Xing'an Block, NE China: New Insight into Evolution of the Nenjiang-Heihe Suture. International Geology Review, 61(9): 1071-1104. https://doi.org/10.1080/00206814.2018.1493403
    Yang, J. H., Wu, F. Y., Shao, J., et al., 2006a. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3/4): 336-352. https://doi.org/10.1016/j.epsl.2006.04.029
    Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006b. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1/2): 89-106. https://doi.org/10.1016/j.lithos.2005.10.002
    Yin, J. Y., Chen, W., Xiao, W. J., et al., 2017. Late Silurian-Early Devonian Adakitic Granodiorite, A-Type and I-Type Granites in NW Junggar, NW China: Partial Melting of Mafic Lower Crust and Implications for Slab Roll-back. Gondwana Research, 43: 55-73. https://doi.org/10.1016/j.gr.2015.06.016
    Zhang, Q., Jin, W. J., Li, C. D., et al., 2010. Revisiting the New Classification of Granitic Rocks based on Whole-Rock Sr and Yb Contents: Index. Acta Petrologica Sinica, 26: 985-1015 (in Chinese with English Abstract)
    Zhang, Y. J., Zhang, C., Wu, X. W., et al., 2016. Geochronology and Geochemistry of Late Paleozoic Marine Volcanic from the Zhalantun Area in Northern Dahinggan Mountains and Its Geological Significance. Acta Geologica Sinica, 90(10): 2706-2720 (in Chinese with English Abstract)
    Zhang, Y. Y., Yuan, C., Long, X. P., et al., 2017. Carboniferous Bimodal Volcanic Rocks in the Eastern Tianshan, NW China: Evidence for Arc Rifting. Gondwana Research, 43: 92-106. https://doi.org/10.1016/j.gr.2016.02.004
    Zhang, Y., Pei, F. P., Wang, Z. W., et al., 2018. Late Paleozoic Tectonic Evolution of the Central Great Xing'an Range, Northeast China: Geochronological and Geochemical Evidence from Igneous Rocks. Geological Journal, 53(1): 282-303. https://doi.org/10.1002/gj.2891
    Zhao, J. L., Qiu, J. S., Liu, L., et al., 2016. The Late Cretaceous I- and A-Type Granite Association of Southeast China: Implications for the Origin and Evolution of Post-Collisional Extensional Magmatism. Lithos, 240/241/242/243: 16-33. https://doi.org/10.1016/j.lithos.2015.10.018
    Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2008. Association of Neoproterozoic A- and I-Type Granites in South China: Implications for Generation of A-Type Granites in a Subduction-Related Environment. Chemical Geology, 257(1/2): 1-15. https://doi.org/10.1016/j.chemgeo.2008.07.018
    Zhao, Z., Chi, X. G., Zhao, X. Y., et al., 2012. LA-ICP-MS U-Pb Geochronology of Detrital Zircon from the Hongshui-Quan Formation in the Northern Da Hinggan Area and Its Tectonic Significance. Journal of Jilin University (Earth Science Edition), 42(1): 126-135. https://doi.org/10.13278/j.cnki.jjuese.2012.01.031(in Chinese with English Abstract)
    Zhao, Z., Chi, X.G., Liu, J.F., et al., 2010. Late Paleozoic Arc-Related Magmatism in Yakeshi Region, Inner Mongolia: Chronological and Geochemical Evidence. Acta Petrologica Sinica, 26(11): 3245-3258 (in Chinese with English Abstract)
    Zhou, J. B., Han, J., Zhao, G. C., et al., 2015. The Emplacement Time of the Hegenshan Ophiolite: Constraints from the Unconformably Overlying Paleozoic Strata. Tectonophysics, 662:398-415. https://doi.org/10.1016/j.tecto.2015.03.008
    Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186:76-93. https://doi.org/10.1016/j.earscirev.2017.01.012
    Zhu, K. Y., Li, Z. X., Xu, X. S., et al., 2016. Early Mesozoic Ferroan (A-Type) and Magnesian Granitoids in Eastern South China: Tracing the Influence of Flat-Slab Subduction at the Western Pacific Margin. Lithos, 240/241/242/243:371-381. https://doi.org/10.1016/j.lithos.2015.11.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(294) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return