Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Dandan Li, Sheng-Ao Liu. Copper Isotope Fractionation during Basalt Leaching at 25℃ and pH=0.3, 2. Journal of Earth Science, 2022, 33(1): 82-91. doi: 10.1007/s12583-021-1499-7
Citation: Dandan Li, Sheng-Ao Liu. Copper Isotope Fractionation during Basalt Leaching at 25℃ and pH=0.3, 2. Journal of Earth Science, 2022, 33(1): 82-91. doi: 10.1007/s12583-021-1499-7

Copper Isotope Fractionation during Basalt Leaching at 25℃ and pH=0.3, 2

doi: 10.1007/s12583-021-1499-7
More Information
  • Corresponding author: Dandan Li,
  • Received Date: 26 Apr 2021
  • Accepted Date: 13 Jun 2021
  • Publish Date: 28 Feb 2022
  • The geochemical cycling of copper in the hydrosphere and soil environments primarily involves the transport of Cu from rocks to rivers via weathering. Understanding the factors controlling Cu isotope fractionation during weathering is crucial for the purpose of using Cu isotopes as a tracer of geochemical cycling. Here, we performed acid-leaching experiments on natural basalts (BHVO-2 and GBW07105) and chalcopyrite in Erlenmeyer flasks at T=25 ℃ and different pH values (0.3 and 2). Our results reveal substantial Cu isotope fractionations (Δ65Cusolution-initial) between leachates (Cusolution) and starting materials (Cuinitial). The leachates released from GBW07105 and chalcopyrite are consistently enriched in heavier Cu isotopes relative to the starting materials at pH=2. However, the δ65Cusolution values decrease to about -0.6‰ first, then increase to >0 for BHVO-2 at pH=2 and GBW07105 at pH=0.3. Our results indicate that leaching of natural rocks by acidic liquids can produce both positive and negative Cu isotope fractionation, depending on pH values and the types of minerals in starting materials. X-ray power diffraction analysis (XRD) patterns reveal similar mineral assemblages between starting basalts and residues after each reaction round. The most likely mechanisms responsible for such Cu isotope fractionation are the relative rates of Cu oxidation at the surface and Cu release into solution, and the sequence of mineral dissolution. Our study represents an important step for future studies to use Cu isotopes to explain Cu isotopic variations in natural rocks and waters.


  • Electronic Supplementary Materials: Supplementary materials (Tables S1-S4) are available in the online version of this article at
  • loading
  • An, H. K., Park, B. Y., Kim, D. S., 2001. Crab Shell for the Removal of Heavy Metals from Aqueous Solution. Water Research, 35(15): 3551-3556.
    Balistrieri, L. S., Borrok, D. M., Wanty, R. B., et al., 2008. Fractionation of Cu and Zn Isotopes during Adsorption onto Amorphous Fe(III) Oxyhydroxide: Experimental Mixing of Acid Rock Drainage and Ambient River Water. Geochimica et Cosmochimica Acta, 72(2): 311-328.
    Balistrieri, L. S., Mebane, C. A., 2014. Predicting the Toxicity of Metal Mixtures. Science of the Total Environment, 466/467: 788-799.
    Bermin, J., Vance, D., Archer, C., et al., 2006. The Determination of the Isotopic Composition of Cu and Zn in Seawater. Chemical Geology, 226(3/4): 280-297.
    Bigalke, M., Weyer, S., Wilcke, W., 2011. Stable Cu Isotope Fractionation in Soils during Oxic Weathering and Podzolization. Geochimica et Cosmochimica Acta, 75(11): 3119-3134.
    Borrok, D. M., Nimick, D. A., Wanty, R. B., et al., 2008. Isotopic Variations of Dissolved Copper and Zinc in Stream Waters Affected by Historical Mining. Geochimica et Cosmochimica Acta, 72(2): 329-344.
    Brugger, J., McPhail, D. C., Black, J., et al., 2001. Complexation of Metal Ions in Brines: Application of Electronic Spectroscopy in the Study of the Cu(II)-LiCl-H2O System between 25 and 90 ℃. Geochimica et Cosmochimica Acta, 65(16): 2691-2708.
    Buckley, A. N., Woods, R., 1984. An X-Ray Photoelectron Spectroscopic Study of the Oxidation of Chalcopyrite. Australian Journal of Chemistry, 37(12): 2403-2413.
    Chapman, J. B., Weiss, D. J., Shan, Y., et al., 2009. Iron Isotope Fractionation during Leaching of Granite and Basalt by Hydrochloric and Oxalic Acids. Geochimica et Cosmochimica Acta, 73(5): 1312-1324.
    Chi Fru, E., Rodríguez, N. P., Partin, C. A., et al., 2016. Cu Isotopes in Marine Black Shales Record the Great Oxidation Event. Proceedings of the National Academy of Sciences, 113(18): 4941-4946.
    Colman, S. M., 1982. Chemical Weathering of Basalts and Andesites: Evidence from Weathering Rinds. USGPO.
    Czamanske, G. K., Moore, J. G., 1977. Composition and Phase Chemistry of Sulfide Globules in Basalt from the Mid-Atlantic Ridge Rift Valley near 37°N Lat. Geological Society of America Bulletin, 88(4): 587-599.>;2 doi: 10.1130/0016-7606(1977)88587:capcos>;2
    Eggleton, R. A., Foudoulis, C., Varkevisser, D., 1987. Weathering of Basalt: Changes in Rock Chemistry and Mineralogy. Clays and Clay Minerals, 35(3): 161-169.
    Ehrlich, S., Butler, I., Halicz, L., et al., 2004. Experimental Study of the Copper Isotope Fractionation between Aqueous Cu(II) and Covellite, CuS. Chemical Geology, 209(3/4): 259-269.
    Fernandez, A., Borrok, D. M, 2009. Fractionation of Cu, Fe, and Zn Isotopes during the Oxidative Weathering of Sulfide-Rich Rocks. Chemical Geology, 264(1/2/3/4): 1-12.
    Frost, B. R., Frost, C. D., 2019. Essentials of Igneous and Metamorphic Petrology. Cambridge University Press, Cambridge.
    Fujii, T., Moynier, F., Abe, M., et al., 2013. Copper Isotope Fractionation between Aqueous Compounds Relevant to Low Temperature Geochemistry and Biology. Geochimica et Cosmochimica Acta, 110: 29-44.
    Ghuniem, M. M., Khorshed, M. A., Souaya, E. R., 2019. Method Validation for Direct Determination of Some Trace and Toxic Elements in Soft Drinks by Inductively Coupled Plasma Mass Spectrometry. International Journal of Environmental Analytical Chemistry, 99(6): 515-540.
    Gislason, S. R., Oelkers, E. H., 2003. Mechanism, Rates, and Consequences of Basaltic Glass Dissolution: II. an Experimental Study of the Dissolution Rates of Basaltic Glass as a Function of pH and Temperature. Geochimica et Cosmochimica Acta, 67(20): 3817-3832.
    Helios-Rybicka, E., Wójcik, R., 2012. Competitive Sorption/Desorption of Zn, Cd, Pb, Ni, Cu, and Cr by Clay-Bearing Mining Wastes. Applied Clay Science, 65/66: 6-13.
    Ikhsan, J., Johnson, B. B., Wells, J. D., 1999. A Comparative Study of the Adsorption of Transition Metals on Kaolinite. Journal of Colloid and Interface Science, 217(2): 403-410.
    Jang, J. H., Dempsey, B. A., Catchen, G. L., et al., 2003. Effects of Zn(II), Cu(II), Mn(II), Fe(II), NO3-, or SO42- at pH 6.5 and 8.5 on Transformations of Hydrous Ferric Oxide (HFO) as Evidenced by Mössbauer Spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 221(1/2/3): 55-68.
    Jaouen, K., Pons, M. L., Balter, V., 2013. Iron, Copper and Zinc Isotopic Fractionation up Mammal Trophic Chains. Earth and Planetary Science Letters, 374: 164-172. 2013.05.037 doi: 10.1016/j.epsl.2013.05.037
    Jiang, M. Q., Jin, X. Y., Lu, X. Q., et al., 2010. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto Natural Kaolinite Clay. Desalination, 252(1/2/3): 33-39.
    Kimball, B. E., Mathur, R., Dohnalkova, A. C., et al., 2009. Copper Isotope Fractionation in Acid Mine Drainage. Geochimica et Cosmochimica Acta, 73(5): 1247-1263.
    Komárek, M., Antelo, J., Králová, M., et al., 2018. Revisiting Models of Cd, Cu, Pb and Zn Adsorption onto Fe(III) Oxides. Chemical Geology, 493: 189-198.
    Larson, P. B., Maher, K., Ramos, F. C., et al., 2003. Copper Isotope Ratios in Magmatic and Hydrothermal Ore-Forming Environments. Chemical Geology, 201(3/4): 337-350. 2003.08.006 doi: 10.1016/j.chemgeo.2003.08.006
    Lee, M. E., Park, J. H., Chung, J. W., 2019. Comparison of the Lead and Copper Adsorption Capacities of Plant Source Materials and Their Biochars. Journal of Environmental Management, 236: 118-124.
    Li, D. D., Liu, S. A., Li, S. G, 2015. Copper Isotope Fractionation during Adsorption onto Kaolinite: Experimental Approach and Applications. Chemical Geology, 396: 74-82.
    Liaghati, T., Preda, M., Cox, M., 2004. Heavy Metal Distribution and Controlling Factors within Coastal Plain Sediments, Bells Creek Catchment, Southeast Queensland, Australia. Environment International, 29(7): 935-948.
    Linge, H. G., 1976. A Study of Chalcopyrite Dissolution in Acidic Ferric Nitrate by Potentiometric Titration. Hydrometallurgy, 2(1): 51-64.
    Little, S. H., Munson, S., Prytulak, J., et al., 2019. Cu and Zn Isotope Fractionation during Extreme Chemical Weathering. Geochimica et Cosmochimica Acta, 263: 85-107.
    Little, S. H., Vance, D., Walker-Brown, C., et al., 2014. The Oceanic Mass Balance of Copper and Zinc Isotopes, Investigated by Analysis of Their Inputs, and Outputs to Ferromanganese Oxide Sediments. Geochimica et Cosmochimica Acta, 125: 673-693.
    Liu, S. -A., Teng, F. Z., Li, S. G., et al., 2014a. Copper and Iron Isotope Fractionation during Weathering and Pedogenesis: Insights from Saprolite Profiles. Geochimica et Cosmochimica Acta, 146: 59-75.
    Liu, S. -A., Li, D. D., Li, S. G., et al., 2014b. High-Precision Copper and Iron Isotope Analysis of Igneous Rock Standards by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(1): 122-133.
    Liu, S. -A., Huang, J., Liu, J. G., et al., 2015. Copper Isotopic Composition of the Silicate Earth. Earth and Planetary Science Letters, 427: 95-103.
    Liu, S. -A., Liu, P. P., Lü, Y. W., et al., 2019. Cu and Zn Isotope Fractionation during Oceanic Alteration: Implications for Oceanic Cu and Zn Cycles. Geochimica et Cosmochimica Acta, 257: 191-205.
    Lü, Y. W, Liu, S. -A., Zhu, J. M., et al., 2016. Copper and Zinc Isotope Fractionation during Deposition and Weathering of Highly Metalliferous Black Shales in Central China. Chemical Geology, 445: 24-35.
    Lü, Y. W., Liu, S. -A., Teng, F. Z., et al., 2020. Contrasting Zinc Isotopic Fractionation in Two Mafic-Rock Weathering Profiles Induced by Adsorption onto Fe (Hydr)Oxides. Chemical Geology, 539: 119504.
    Markl, G., Lahaye, Y., Schwinn, G., 2006. Copper Isotopes as Monitors of Redox Processes in Hydrothermal Mineralization. Geochimica et Cosmochimica Acta, 70(16): 4215-4228.
    Mathez, E. A., 1976. Sulfur Solubility and Magmatic Sulfides in Submarine Basalt Glass. Journal of Geophysical Research Atmospheres, 81(23): 4269-4276.
    Mathur, R., Fantle, M. S., 2015. Copper Isotopic Perspectives on Supergene Processes: Implications for the Global Cu Cycle. Elements, 11(5): 323-329.
    Mathur, R., Jin, L., Prush, V., et al., 2012. Cu Isotopes and Concentrations during Weathering of Black Shale of the Marcellus Formation, Huntingdon County, Pennsylvania (USA). Chemical Geology, 304/305: 175-184.
    Mathur, R., Munk, L., Nguyen, M., et al., 2013. Modern and Paleofluid Pathways Revealed by Cu Isotope Compositions in Surface Waters and Ores of the Pebble Porphyry Cu-Au-Mo Deposit, Alaska. Economic Geology, 108(3): 529-541.
    Mathur, R., Ruiz, J., Titley, S., et al., 2005. Cu Isotopic Fractionation in the Supergene Environment with and without Bacteria. Geochimica et Cosmochimica Acta, 69(22): 5233-5246.
    Mathur, R., Titley, S., Barra, F., et al., 2009. Exploration Potential of Cu Isotope Fractionation in Porphyry Copper Deposits. Journal of Geochemical Exploration, 102(1): 1-6.
    Meybeck, M., 1986. Composition Chimique des Ruisseaux non Pollués en France. Chemical Composition of Headwater Streams in France. Sciences Géologiques, Bulletins et Mémoires, 39(1): 3-77
    Pasquarello, A., Petri, I., Salmon, P. S., et al., 2001. First Solvation Shell of the Cu(II) Aqua Ion: Evidence for Fivefold Coordination. Science, 291(5505): 856-859.
    Peacock, C. L., Sherman, D. M., 2005. Surface Complexation Model for Multisite Adsorption of Copper(II) onto Kaolinite. Geochimica et Cosmochimica Acta, 69(15): 3733-3745.
    Pei, Z. G., Shan, X. Q., Kong, J. J., et al., 2010. Coadsorption of Ciprofloxacin and Cu(II) on Montmorillonite and Kaolinite as Affected by Solution pH. Environmental Science & Technology, 44(3): 915-920.
    Pękala, M., Asael, D., Butler, I. B., et al., 2011. Experimental Study of Cu Isotope Fractionation during the Reaction of Aqueous Cu(II) with Fe(II) Sulphides at Temperatures between 40 and 200 ℃. Chemical Geology, 289(1/2): 31-38. 2011.07.004 doi: 10.1016/j.chemgeo.2011.07.004
    Pokrovsky, O. S., Viers, J., Emnova, E. E., et al., 2008. Copper Isotope Fractionation during Its Interaction with Soil and Aquatic Microorganisms and Metal Oxy(Hydr)Oxides: Possible Structural Control. Geochimica et Cosmochimica Acta, 72(7): 1742-1757.
    Pratesi, G., Cipriani, C., 2000. Selective Depth Analyses of the Alteration Products of Bornite, Chalcopyrite and Pyrite Performed by XPS, AES, RBS. European Journal of Mineralogy, 12(2): 397-409.
    Revels, B. N., Zhang, R. F., Adkins, J. F., et al., 2015. Fractionation of Iron Isotopes during Leaching of Natural Particles by Acidic and Circumneutral Leaches and Development of an Optimal Leach for Marine Particulate Iron Isotopes. Geochimica et Cosmochimica Acta, 166: 92-104.
    Rubio, B., Nombela, M. A., Vilas, F., 2000. Geochemistry of Major and Trace Elements in Sediments of the Ria de Vigo (NW Spain): An Assessment of Metal Pollution. Marine Pollution Bulletin, 40(11): 968-980.
    Sherman, D. M., 2001. Quantum Chemistry and Classical Simulations of Metal Complexes in Aqueous Solutions. Reviews in Mineralogy and Geochemistry, 42(1): 273-317.
    Singovszka, E., Balintova, M., Demcak, S., et al., 2017. Metal Pollution Indices of Bottom Sediment and Surface Water Affected by Acid Mine Drainage. Metals, 7(8): 284.
    Song, S. M., Mathur, R., Ruiz, J., et al., 2016. Fingerprinting Two Metal Contaminants in Streams with Cu Isotopes near the Dexing Mine, China. Science of the Total Environment, 544: 677-685.
    Srivastava, P., Singh, B., Angove, M., 2005. Competitive Adsorption Behavior of Heavy Metals on Kaolinite. Journal of Colloid and Interface Science, 290(1): 28-38.
    Stone, W. E., Fleet, M. E., 1991. Nickel-Copper Sulfides from the 1959 Eruption of Kilauea Volcano, Hawaii: Contrasting Compositions and Phase Relations in Eruption Pumice and Kilauea Iki Lava Lake. American Mineralogist, 76(7/8): 1363-1372
    Suchet, P. A., Probst, J. L., 1993. Modelling of Atmospheric CO2 Consumption by Chemical Weathering of Rocks: Application to the Garonne, Congo and Amazon Basins. Chemical Geology, 107(3/4): 205-210.
    Todd, E. C., Sherman, D. M., Purton, J. A., 2003. Surface Oxidation of Chalcopyrite (CuFeS2) under Ambient Atmospheric and Aqueous (pH 2-10) Conditions: Cu, Fe L- and O K-Edge X-Ray Spectroscopy. Geochimica et Cosmochimica Acta, 67(12): 2137-2146.
    Vance, D., Archer, C., Bermin, J., et al., 2008. The Copper Isotope Geochemistry of Rivers and the Oceans. Earth and Planetary Science Letters, 274(1/2): 204-213.
    Vance, D., Matthews, A., Keech, A., et al., 2016. The Behaviour of Cu and Zn Isotopes during Soil Development: Controls on the Dissolved Load of Rivers. Chemical Geology, 445: 36-53.
    Wall, A., Heaney, P. J., Mathur, R., et al., 2007. Insights into Copper Isotope Fractionation during the Oxidative Phase Transition of Chalcocite, Using Time-Resolved Synchrotron X-Ray Diffraction. Geochimica et Cosmochimica Acta, 71(15): A1081-A1081
    Wall, A. J., Mathur, R., Post, J. E., et al., 2011. Cu Isotope Fractionation during Bornite Dissolution: An in situ X-Ray Diffraction Analysis. Ore Geology Reviews, 42(1): 62-70. 2011.01.001 doi: 10.1016/j.oregeorev.2011.01.001
    Zeng, J., Han, G. L., 2020. Preliminary Copper Isotope Study on Particulate Matter in Zhujiang River, Southwest China: Application for Source Identification. Ecotoxicology and Environmental Safety, 198: 110663.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views(200) PDF downloads(62) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint