| Al-Ani, T., 2013. Mineralogy and Petrography of Siilinjärvi Carbonatite and Glimmerite Rocks, Eastern Finland. Geological Survey of Finland Report, 164 http://tupa.gtk.fi/raportti/arkisto/164_2013.pdf | 
		
				
				| Al-Ani, T., Molnár, F., Lintinen, P., et al., 2018. Geology and Mineralogy of Rare Earth Elements Deposits and Occurrences in Finland. Minerals, 8(8): 356.  https://doi.org/10.3390/min8080356 | 
		
				
				| Allsopp, H., Kostlin, E., Welke, H., et al., 1979. Rb-Sr and U-Pb Geochronology of Late Precambrian-Early Palaeozoic Igneous Activity in the Richtersveld (South Africa) and Southern South West Africa. Transactions of the Geological Society of South Africa, 82(2): 185-204 | 
		
				
				| Andersen, A. K., Clark, J. G., Larson, P. B., et al., 2016. Mineral Chemistry and Petrogenesis of a HFSE(+HREE) Occurrence, Peripheral to Carbonatites of the Bear Lodge Alkaline Complex, Wyoming. American Mineralogist, 101(7): 1604-1623.  https://doi.org/10.2138/am-2016-5532 | 
		
				
				| Arden, K. M., Halden, N. M., 1999. Crystallization and Alteration History of Britholite in Rare-Earth-Element-Enriched Pegmatitic Segregations Associated with the Eden Lake Complex, Manitoba, Canada. The Canadian Mineralogist, 37(5): 1239-1253 http://www.researchgate.net/publication/256305779_Crystallization_and_alteration_history_of_britholite_in_rare-earth-element-enriched_pegmatitic_segregations_associated_with_the_Eden_Lake_Complex_Manitoba_Canada | 
		
				
				| Baatar, M., Ochir, G., Kynicky, J., et al., 2013. Some Notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu Alkaline Complexes, Southern Mongolia. International Journal of Geosciences, 4(8): 1200-1214.  https://doi.org/10.4236/ijg.2013.48114 | 
		
				
				| Banks, G., Walter, B., Marks, M., et al., 2019. A Workflow to Define, Map and Name a Carbonatite- or Alkaline Igneous-Associated REE-HFSE Mineral System: A Case Study from SW Germany. Minerals, 9(2): 97.  https://doi.org/10.3390/min9020097 | 
		
				
				| Bartels, A., Nielsen, T. F. D., Lee, S. R., et al., 2015. Petrological and Geochemical Characteristics of Mesoproterozoic Dyke Swarms in the Gardar Province, South Greenland: Evidence for a Major Sub-Continental Lithospheric Mantle Component in the Generation of the Magmas. Mineralogical Magazine, 79(4): 909-939.  https://doi.org/10.1180/minmag.2015.079.4.04 | 
		
				
				| Be'eri-Shlevin, Y., Katzir, Y., Whitehouse, M., 2009. Post-Collisional Tectonomagmatic Evolution in the Northern Arabian-Nubian Shield: Time Constraints from Ion-Probe U-Pb Dating of Zircon. Journal of the Geological Society, 166(1): 71-85.  https://doi.org/10.1144/0016-76492007-169 | 
		
				
				| Beard, C. D., van Hinsberg, V. J., Stix, J., et al., 2019. Clinopyroxene/Melt Trace Element Partitioning in Sodic Alkaline Magmas. Journal of Petrology, 60(9): 1797-1823.  https://doi.org/10.1093/petrology/egz052 | 
		
				
				| Beard, C. D., Hinsberg, V. J., Stix, J., et al., 2020. The Effect of Fluorine on Clinopyroxene/Melt Trace-Element Partitioning. Contributions to Mineralogy and Petrology, 175(5): 1-19.  https://doi.org/10.1007/s00410-020-1672-5 | 
		
				
				| Bell, K., Tilton, G. R., 2001. Nd, Pb and Sr Isotopic Compositions of East African Carbonatites: Evidence for Mantle Mixing and Plume Inhomogeneity. Journal of Petrology, 42(10): 1927-1945.  https://doi.org/10.1093/petrology/42.10.1927 | 
		
				
				| Bernard, C., Estrade, G., Salvi, S., et al., 2020. Alkali Pyroxenes and Amphiboles: A Window on Rare Earth Elements and other High Field Strength Elements Behavior through the Magmatic-Hydrothermal Transition of Peralkaline Granitic Systems. Contributions to Mineralogy and Petrology, 175(9): 1-27.  https://doi.org/10.1007/s00410-020-01723-y | 
		
				
				| Bianchini, G., Beccaluva, L., Siena, F., 2008. Post-Collisional and Intraplate Cenozoic Volcanism in the Rifted Apennines/Adriatic Domain. Lithos, 101(1/2): 125-140.  https://doi.org/10.1016/j.lithos.2007.07.011 | 
		
				
				| Black, R., Lameyre, J., Bonin, B., 1985. The Structural Setting of Alkaline Complexes. Journal of African Earth Sciences, 3(1/2): 5-16.  https://doi.org/10.1016/0899-5362(85)90019-3 | 
		
				
				| Blichert-Toft, J., Arndt, N. T., Ludden, J. N., 1996. Precambrian Alkaline Magmatism. Lithos, 37(2/3): 97-111.  https://doi.org/10.1016/0024-4937(95)00031-3 | 
		
				
				| Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1/2): 1-24.  https://doi.org/10.1016/j.lithos.2004.04.042 | 
		
				
				| Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29.  https://doi.org/10.1016/j.lithos.2006.12.007 | 
		
				
				| Broom-Fendley, S., Smith, M. P., Andrade, M. B., et al., 2020. Sulfur-Bearing Monazite-(Ce) from the Eureka Carbonatite, Namibia: Oxidation State, Substitution Mechanism, and Formation Conditions. Mineralogical Magazine, 84(1): 35-48.  https://doi.org/10.1180/mgm.2019.79 | 
		
				
				| Buyse, F., Dewaele, S., Decrée, S., et al., 2020. Mineralogical and Geochemical Study of the Rare Earth Element Mineralization at Gakara (Burundi). Ore Geology Reviews, 124: 103659.  https://doi.org/10.1016/j.oregeorev.2020.103659 | 
		
				
				| Castor, S. B., 2008. The Mountain Pass Rare-Earth Carbonatite and Associated Ultrapotassic Rocks, California. The Canadian Mineralogist, 46(4): 779-806.  https://doi.org/10.3749/canmin.46.4.779 | 
		
				
				| Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society London Special Publications, 318(1): 1-36.  https://doi.org/10.1144/sp318.1 | 
		
				
				| Chakhmouradian, A. R., Mumin, A. H., Demény, A., et al., 2008. Postorogenic Carbonatites at Eden Lake, Trans-Hudson Orogen (Northern Manitoba, Canada): Geological Setting, Mineralogy and Geochemistry. Lithos, 103(3/4): 503-526.  https://doi.org/10.1016/j.lithos.2007.11.004 | 
		
				
				| Chakhmouradian, A. R., Zaitsev, A. N., 2012. Rare Earth Mineralization in Igneous Rocks: Sources and Processes. Elements, 8(5): 347-353 doi:  10.2113/gselements.8.5.347 | 
		
				
				| Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703.  https://doi.org/10.1016/s1367-9120(03)00118-4 | 
		
				
				| Chung, S. -L., Chu, M. -F., Zhang, Y., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196.  https://doi.org/10.1016/j.earscirev.2004.05.001 | 
		
				
				| Çimen, O., Corcoran, L., Kuebler, C., et al., 2020. Geochemical, Stable (O, C, and B) and Radiogenic (Sr, Nd, Pb) Isotopic Data from the Eskişehir-Kızılcaören (NW-Anatolia) and the Malatya-Kuluncak (E-central Anatolia) F-REE-Th Deposits, Turkey: Implications for Nature of Carbonate-Hosted Mineralization. Turkish Journal of Earth Sciences, 29(5): 798-814 doi:  10.3906/yer-2001-7 | 
		
				
				| Çimen, O., Kuebler, C., Monaco, B., et al., 2018. Boron, Carbon, Oxygen and Radiogenic Isotope Investigation of Carbonatite from the Miaoya Complex, Central China: Evidences for Late-Stage REE Hydrothermal Event and Mantle Source Heterogeneity. Lithos, 322: 225-237.  https://doi.org/10.1016/j.lithos.2018.10.018 | 
		
				
				| Corner, B., 2008. Crustal Framework of Namibia Derived from an Integrated Interpretation of Geophysical and Geological Data. Communs. Geol. Surv. Namibia, 12: 15-22 http://www.researchgate.net/publication/284314088_Crustal_framework_of_Namibia_derived_from_an_integrated_interpretation_of_geophysical_and_geological_data | 
		
				
				| Couzinié, S., Laurent, O., Moyen, J. F., et al., 2016. Post-Collisional Magmatism: Crustal Growth not Identified by Zircon Hf-O Isotopes. Earth and Planetary Science Letters, 456: 182-195.  https://doi.org/10.1016/j.epsl.2016.09.033 | 
		
				
				| Deady, E., Lacinska, A., Goodenough, K., et al., 2019. Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey. Minerals, 9(4): 208.  https://doi.org/10.3390/min9040208 | 
		
				
				| Decrée, S., Savolainen, M., Mercadier, J., et al., 2020. Geochemical and Spectroscopic Investigation of Apatite in the Siilinjärvi Carbonatite Complex: Keys to Understanding Apatite Forming Processes and Assessing Potential for Rare Earth Elements. Applied Geochemistry, 123: 104778.  https://doi.org/10.1016/j.apgeochem.2020.104778 | 
		
				
				| Dietzel, C. A. F., Kristandt, T., Dahlgren, S., et al., 2019. Hydrothermal Processes in the Fen Alkaline-Carbonatite Complex, Southern Norway. Ore Geology Reviews, 111: 102969.  https://doi.org/10.1016/j.oregeorev.2019.102969 | 
		
				
				| Dilek, Y., Altunkaynak, Ş., 2007. Cenozoic Crustal Evolution and Mantle Dynamics of Post-Collisional Magmatism in Western Anatolia. International Geology Review, 49(5): 431-453.  https://doi.org/10.2747/0020-6814.49.5.431 | 
		
				
				| Dilek, Y., Altunkaynak, Ş., 2009. Geochemical and Temporal Evolution of Cenozoic Magmatism in Western Turkey: Mantle Response to Collision, Slab Break-off, and Lithospheric Tearing in an Orogenic Belt. Geological Society Special Publication, 311: 213-233.  https://doi.org/10.1144/sp311.8 | 
		
				
				| Dostal, J., 2017. Rare Earth Element Deposits of Alkaline Igneous Rocks. Resources, 6(3): 34.  https://doi.org/10.3390/resources6030034 | 
		
				
				| Dunai, T., Stoessel, G., Ziegler, U., 1989. Note: A Sr Isotope Study of the Eureka Carbonatite, Damaraland, Namibia. Communs. Geol. Surv. Namibia, 5: 91-92 http://www.mme.gov.na/files/publications/281_Dunai%20et%20al_Eureka%20carbonatite.pdf | 
		
				
				| Dunai, T. J., 1989. Petrographische, Geochemische und Lagerstättenkundliche Untersuchungen an Karbonatitgängen auf der Farm Eureka Nr 99: [Dissertation]. Verlag nicht ermittelbar, Damaraland, Namibia | 
		
				
				| Elliott, H. A. L., Wall, F., Chakhmouradian, A. R., et al., 2018. Fenites Associated with Carbonatite Complexes: A Review. Ore Geology Reviews, 93: 38-59.  https://doi.org/10.1016/j.oregeorev.2017.12.003 | 
		
				
				| Evans, D. A. D., Mitchell, R. N., 2011. Assembly and Breakup of the Core of Paleoproterozoic-Mesoproterozoic Supercontinent Nuna. Geology, 39(5): 443-446.  https://doi.org/10.1130/g31654.1 | 
		
				
				| Fedele, L., Lustrino, M., Melluso, L., et al., 2015. Trace-Element Partitioning between Plagioclase, Alkali Feldspar, Ti-Magnetite, Biotite, Apatite, and Evolved Potassic Liquids from Campi Flegrei (Southern Italy). American Mineralogist, 100(1): 233-249.  https://doi.org/10.2138/am-2015-4995 | 
		
				
				| Feng, M., Song, W. L., Kynicky, J., et al., 2020. Primary Rare Earth Element Enrichment in Carbonatites: Evidence from Melt Inclusions in Ulgii Khiid Carbonatite, Mongolia. Ore Geology Reviews, 117: 103294.  https://doi.org/10.1016/j.oregeorev.2019.103294 | 
		
				
				| Florisbal, L. M., Bitencourt, M. D. F., Janasi, V. D. A., et al., 2012. Petrogenesis of Syntectonic Granites Emplaced at the Transition from Thrusting to Transcurrent Tectonics in Post-Collisional Setting: Whole-Rock and Sr-Nd-Pb Isotope Geochemistry in the Neoproterozoic Quatro Ilhas and Mariscal Granites, Southern Brazil. Lithos, 153: 53-71.  https://doi.org/10.1016/j.lithos.2012.04.031 | 
		
				
				| Foley, S. F., Venturelli, G., Green, D. H., et al., 1987. The Ultrapotassic Rocks: Characteristics, Classification, and Constraints for Petrogenetic Models. Earth-Science Reviews, 24(2): 81-134.  https://doi.org/10.1016/0012-8252(87)90001-8 | 
		
				
				| Förster, M. W., Buhre, S., Xu, B., et al., 2020. Two-Stage Origin of K-Enrichment in Ultrapotassic Magmatism Simulated by Melting of Experimentally Metasomatized Mantle. Minerals, 10(1): 41.  https://doi.org/10.3390/min10010041 | 
		
				
				| Fowler, M., Rollinson, H., 2012. Phanerozoic Sanukitoids from Caledonian Scotland: Implications for Archean Subduction. Geology, 40(12): 1079-1082.  https://doi.org/10.1130/g33371.1 | 
		
				
				| Fowler, M. B., Kocks, H., Darbyshire, D. P. F., et al., 2008. Petrogenesis of High Ba-Sr Plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos, 105(1/2): 129-148.  https://doi.org/10.1016/j.lithos.2008.03.003 | 
		
				
				| Freeburn, R., Bouilhol, P., Maunder, B., et al., 2017. Numerical Models of the Magmatic Processes Induced by Slab Breakoff. Earth and Planetary Science Letters, 478: 203-213.  https://doi.org/10.1016/j.epsl.2017.09.008 | 
		
				
				| Gardiner, N. J., Kirkland, C. L., van Kranendonk, M. J., 2016. The Juvenile Hafnium Isotope Signal as a Record of Supercontinent Cycles. Scientific Reports, 6: 38503.  https://doi.org/10.1038/srep38503 | 
		
				
				| Gonçalves, G. O., Lana, C., Scholz, R., et al., 2018. The Diamantina Monazite: A New Low-Th Reference Material for Microanalysis. Geostandards and Geoanalytical Research, 42(1): 25-47.  https://doi.org/10.1111/ggr.12192 | 
		
				
				| Goodenough, K. M., Upton, B. G. J., Ellam, R. M., 2002. Long-Term Memory of Subduction Processes in the Lithospheric Mantle: Evidence from the Geochemistry of Basic Dykes in the Gardar Province of South Greenland. Journal of the Geological Society, 159(6): 705-714.  https://doi.org/10.1144/0016-764901-154 | 
		
				
				| Goodenough, K. M., Millar, I., Strachan, R. A., et al., 2011. Timing of Regional Deformation and Development of the Moine Thrust Zone in the Scottish Caledonides: Constraints from the U-Pb Geochronology of Alkaline Intrusions. Journal of the Geological Society, 168(1): 99-114.  https://doi.org/10.1144/0016-76492010-020 | 
		
				
				| Goodenough, K. M., Schilling, J., Jonsson, E., et al., 2016. Europeʼs Rare Earth Element Resource Potential: An Overview of REE Metallogenetic Provinces and Their Geodynamic Setting. Ore Geology Reviews, 72: 838-856.  https://doi.org/10.1016/j.oregeorev.2015.09.019 | 
		
				
				| Goodenough, K. M., Wall, F., Merriman, D., 2018. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Natural Resources Research, 27(2): 201-216.  https://doi.org/10.1007/s11053-017-9336-5 | 
		
				
				| Gozzi, F., Gaeta, M., Freda, C., et al., 2014. Primary Magmatic Calcite Reveals Origin from Crustal Carbonate. Lithos, 190/191: 191-203.  https://doi.org/10.1016/j.lithos.2013.12.008 | 
		
				
				| Griffiths, D., 2011. Metallogenesis of Rare Earth Elements in Ultramafic Rocks of the Loch Borralan Complex: [Dissertation]. University of Exeter, Exeter | 
		
				
				| Gültekin, A. H., Örgün, Y., Suner, F., 2003. Geology, Mineralogy and Fluid Inclusion Data of the Kizilcaören Fluorite-Barite-REE Deposit, Eskisehir, Turkey. Journal of Asian Earth Sciences, 21(4): 365-376.  https://doi.org/10.1016/s1367-9120(02)00019-6 | 
		
				
				| Guo, D. X., Liu, Y., 2019. Occurrence and Geochemistry of Bastnäsite in Carbonatite-Related REE Deposits, Mianning-Dechang REE Belt, Sichuan Province, SW China. Ore Geology Reviews, 107: 266-282.  https://doi.org/10.1016/j.oregeorev.2019.02.028 | 
		
				
				| Guo, Z. F., Wilson, M., Liu, J. Q., et al., 2006. Post-Collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetan Plateau: Constraints on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms. Journal of Petrology, 47(6): 1177-1220.  https://doi.org/10.1093/petrology/egl007 | 
		
				
				| Halden, N. M., Fryer, B. J., 1999. Geochemical Characteristics of the Eden Lake Complex: Evidence for Anorogenic Magmatism in the Trans-Hudson Orogen. Canadian Journal of Earth Sciences, 36(1): 91-103.  https://doi.org/10.1139/e98-089 | 
		
				
				| Hatzl, T., 1992. Die Genese der Karbonatit-und Alkalivulkanit-Assoziierten Fluorit-Baryt-Bastnäsit-Vererzung bei Kizilçaören (Türkei). Inst. für Allg. u. Angewandte Geologie d. Ludwig-Maximilians-Univ. | 
		
				
				| Holdsworth, R. E., McErlean, M. A., Strachan, R. A., 1999. The Influence of Country Rock Structural Architecture during Pluton Emplacement: The Loch Loyal Syenites, Scotland. Journal of the Geological Society, 156(1): 163-175.  https://doi.org/10.1144/gsjgs.156.1.0163 | 
		
				
				| Holwell, D. A., Fiorentini, M., McDonald, I., et al., 2019. A Metasomatized Lithospheric Mantle Control on the Metallogenic Signature of Post-Subduction Magmatism. Nature Communications, 10: 3511.  https://doi.org/10.1038/s41467-019-11065-4 | 
		
				
				| Hoskin, P. W. O., Kinny, P. D., Wyborn, D., et al., 2000. Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: an Integrated Approach. Journal of Petrology, 41(9): 1365-1396.  https://doi.org/10.1093/petrology/41.9.1365 | 
		
				
				| Hou, Z. Q., Tian, S. H., Yuan, Z. X., et al., 2006. The Himalayan Collision Zone Carbonatites in Western Sichuan, SW China: Petrogenesis, Mantle Source and Tectonic Implication. Earth and Planetary Science Letters, 244(1/2): 234-250.  https://doi.org/10.1016/j.epsl.2006.01.052 | 
		
				
				| Hou, Z. Q., Tian, S. H., Xie, Y. L., et al., 2009. The Himalayan Mianning-Dechang REE Belt Associated with Carbonatite-Alkaline Complexes, Eastern Indo-Asian Collision Zone, SW China. Ore Geology Reviews, 36(1/2/3): 65-89.  https://doi.org/10.1016/j.oregeorev.2009.03.001 | 
		
				
				| Hou, Z. Q., Liu, Y., Tian, S. H., et al., 2015. Formation of Carbonatite-Related Giant Rare-Earth-Element Deposits by the Recycling of Marine Sediments. Scientific Reports, 5: 10231.  https://doi.org/10.1038/srep10231 | 
		
				
				| Hou, Z. Q., Zhang, H. R., 2015. Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain. Ore Geology Reviews, 70: 346-384.  https://doi.org/10.1016/j.oregeorev.2014.10.026 | 
		
				
				| Hronsky, J. M. A., Groves, D. I., Loucks, R. R., et al., 2012. A Unified Model for Gold Mineralisation in Accretionary Orogens and Implications for Regional-Scale Exploration Targeting Methods. Mineralium Deposita, 47(4): 339-358.  https://doi.org/10.1007/s00126-012-0402-y | 
		
				
				| Hughes, H. S. R., Goodenough, K. M., Walters, A. S., et al., 2013. The Structure and Petrology of the Cnoc Nan Cuilean Intrusion, Loch Loyal Syenite Complex, NW Scotland. Geological Magazine, 150(5): 783-800.  https://doi.org/10.1017/s0016756812000957 | 
		
				
				| Hulett, S. R. W., Simonetti, A., Troy Rasbury, E., et al., 2016. Recycling of Subducted Crustal Components into Carbonatite Melts Revealed by Boron Isotopes. Nature Geoscience, 9(12): 904-908.  https://doi.org/10.1038/ngeo2831 | 
		
				
				| Hutchison, W., Babiel, R. J., Finch, A. A., et al., 2019. Sulphur Isotopes of Alkaline Magmas Unlock Long-Term Records of Crustal Recycling on Earth. Nature Communications, 10: 4208.  https://doi.org/10.1038/s41467-019-12218-1 | 
		
				
				| Ihlen, P. M., Schiellerup, H., Gautneb, H., et al., 2014. Characterization of Apatite Resources in Norway and Their REE Potential—A Review. Ore Geology Reviews, 58: 126-147.  https://doi.org/10.1016/j.oregeorev.2013.11.003 | 
		
				
				| Ivanov, A. V., Levitskii, I. V., Levitskii, V. I., et al., 2019. Shoshonitic Magmatism in the Paleoproterozoic of the South-Western Siberian Craton: an Analogue of the Modern Post-Collision Setting. Lithos, 328/329: 88-100.  https://doi.org/10.1016/j.lithos.2019.01.015 | 
		
				
				| Jia, Y. H., Liu, Y., 2020. Factors Controlling the Generation and Diversity of Giant Carbonatite-Related Rare Earth Element Deposits: Insights from the Mianning-Dechang Belt. Ore Geology Reviews, 121: 103472.  https://doi.org/10.1016/j.oregeorev.2020.103472 | 
		
				
				| Jones, J. H., Walker, D., Pickett, D. A., et al., 1995. Experimental Investigations of the Partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between Immiscible Carbonate and Silicate Liquids. Geochimica et Cosmochimica Acta, 59(7): 1307-1320.  https://doi.org/10.1016/0016-7037(95)00045-2 | 
		
				
				| Jung, S., Mezger, K., 2003. Petrology of Basement-Dominated Terranes: I. Regional Metamorphic T-t Path from U-Pb Monazite and Sm-Nd Garnet Geochronology (Central Damara Orogen, Namibia). Chemical Geology, 198(3/4): 223-247.  https://doi.org/10.1016/s0009-2541(03)00037-8 | 
		
				
				| Jung, S., Hoernes, S., Hoffer, E., 2005. Petrogenesis of Cogenetic Nepheline and Quartz Syenites and Granites (Northern Damara Orogen, Namibia): Enriched Mantle versus Crustal Contamination. The Journal of Geology, 113(6): 651-672.  https://doi.org/10.1086/467475 | 
		
				
				| Jung, S., Brandt, S., Bast, R., et al., 2019. Metamorphic Petrology of a High-T/ Low-P Granulite Terrane (Damara Belt, Namibia)—Constraints from Pseudosection Modelling and High-Precision Lu-Hf Garnet-Whole Rock Dating. Journal of Metamorphic Geology, 37(1): 41-69.  https://doi.org/10.1111/jmg.12448 | 
		
				
				| Jung, S., Hauff, F., Berndt, J., 2020a. Generation of a Potassic to Ultrapotassic Alkaline Complex in a Syn-Collisional Setting through Flat Subduction: Constraints on Magma Sources and Processes (Otjimbingwe Alkaline Complex, Damara Orogen, Namibia). Gondwana Research, 82: 267-287.  https://doi.org/10.1016/j.gr.2020.01.004 | 
		
				
				| Jung, S., Pfänder, J. A., Hauff, F., et al., 2020b. Crust-Mantle Interaction during Syn-Collisional Magmatism—Evidence from the Oamikaub Diorite and Neikhoes Metagabbro (Damara Orogen, Namibia). Precambrian Research, 351: 105955.  https://doi.org/10.1016/j.precamres.2020.105955 | 
		
				
				| Kelley, K. D., Ludington, S., 2002. Cripple Creek and Other Alkaline-Related Gold Deposits in the Southern Rocky Mountains, USA: Influence of Regional Tectonics. Mineralium Deposita, 37(1): 38-60.  https://doi.org/10.1007/s00126-001-0229-4 | 
		
				
				| Kim, N., Cheong, A. C. S., Yi, K., et al., 2016. Post-Collisional Carbonatite-Hosted Rare Earth Element Mineralization in the Hongcheon Area, Central Gyeonggi Massif, Korea: Ion Microprobe Monazite U-Th-Pb Geochronology and Nd-Sr Isotope Geochemistry. Ore Geology Reviews, 79: 78-87.  https://doi.org/10.1016/j.oregeorev.2016.05.016 | 
		
				
				| Kim, S. W., Oh, C. W., Williams, I. S., et al., 2006. Phanerozoic High-Pressure Eclogite and Intermediate-Pressure Granulite Facies Metamorphism in the Gyeonggi Massif, South Korea: Implications for the Eastward Extension of the Dabie-Sulu Continental Collision Zone. Lithos, 92(3/4): 357-377.  https://doi.org/10.1016/j.lithos.2006.03.050 | 
		
				
				| Küster, D., Harms, U., 1998. Post-Collisional Potassic Granitoids from the Southern and Northwestern Parts of the Late Neoproterozoic East African Orogen: A Review. Lithos, 45(1/2/3/4): 177-195.  https://doi.org/10.1016/s0024-4937(98)00031-0 | 
		
				
				| Küster, D., 2009. Granitoid-Hosted Ta Mineralization in the Arabian-Nubian Shield: Ore Deposit Types, Tectono-Metallogenetic Setting and Petrogenetic Framework. Ore Geology Reviews, 35(1): 68-86.  https://doi.org/10.1016/j.oregeorev.2008.09.008 | 
		
				
				| Lehmann, J., Saalmann, K., Naydenov, K. V., et al., 2016. Structural and Geochronological Constraints on the Pan-African Tectonic Evolution of the Northern Damara Belt, Namibia. Tectonics, 35(1): 103-135.  https://doi.org/10.1002/2015tc003899 | 
		
				
				| Liégeois, J. P., Navez, J., Hertogen, J., et al., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids. the Use of Sliding Normalization. Lithos, 45(1/2/3/4): 1-28.  https://doi.org/10.1016/s0024-4937(98)00023-1 | 
		
				
				| Liu, C., Runyon, S. E., Knoll, A. H., et al., 2019. The Same and not the Same: Ore Geology, Mineralogy and Geochemistry of Rodinia Assembly Versus other Supercontinents. Earth-Science Reviews, 196: 102860.  https://doi.org/10.1016/j.earscirev.2019.05.004 | 
		
				
				| Liu, Y., Hou, Z. Q., Tian, S. H., et al., 2015. Zircon U-Pb Ages of the Mianning-Dechang Syenites, Sichuan Province, Southwestern China: Constraints on the Giant REE Mineralization Belt and Its Regional Geological Setting. Ore Geology Reviews, 64: 554-568.  https://doi.org/10.1016/j.oregeorev.2014.03.017 | 
		
				
				| Liu, Y., Hou, Z. Q., 2017. A Synthesis of Mineralization Styles with an Integrated Genetic Model of Carbonatite-Syenite-Hosted REE Deposits in the Cenozoic Mianning-Dechang REE Metallogenic Belt, the Eastern Tibetan Plateau, Southwestern China. Journal of Asian Earth Sciences, 137: 35-79.  https://doi.org/10.1016/j.jseaes.2017.01.010 | 
		
				
				| Liu, Y., Chakhmouradian, A. R., Hou, Z. Q., et al., 2019. Development of REE Mineralization in the Giant Maoniuping Deposit (Sichuan, China): Insights from Mineralogy, Fluid Inclusions, and Trace-Element Geochemistry. Mineralium Deposita, 54(5): 701-718.  https://doi.org/10.1007/s00126-018-0836-y | 
		
				
				| Longridge, L., Gibson, R. L., Kinnaird, J. A., et al., 2017. New Constraints on the Age and Conditions of LPHT Metamorphism in the Southwestern Central Zone of the Damara Belt, Namibia and Implications for Tectonic Setting. Lithos, 278/279/280/281: 361-382.  https://doi.org/10.1016/j.lithos.2017.02.006 | 
		
				
				| Markl, G., Marks, M. A. W., Frost, B. R., 2010. On the Controls of Oxygen Fugacity in the Generation and Crystallization of Peralkaline Melts. Journal of Petrology, 51(9): 1831-1847.  https://doi.org/10.1093/petrology/egq040 | 
		
				
				| Marks, M., Markl, G., 2001. Fractionation and Assimilation Processes in the Alkaline Augite Syenite Unit of the Ilímaussaq Intrusion, South Greenland, as Deduced from Phase Equilibria. Journal of Petrology, 42(10): 1947-1969.  https://doi.org/10.1093/petrology/42.10.1947 | 
		
				
				| Marks, M. A. W., Hettmann, K., Schilling, J., et al., 2011. The Mineralogical Diversity of Alkaline Igneous Rocks: Critical Factors for the Transition from Miaskitic to Agpaitic Phase Assemblages. Journal of Petrology, 52(3): 439-455.  https://doi.org/10.1093/petrology/egq086 | 
		
				
				| Marks, M. A. W., Markl, G., 2017. A Global Review on Agpaitic Rocks. Earth-Science Reviews, 173: 229-258.  https://doi.org/10.1016/j.earscirev.2017.06.002 | 
		
				
				| Martin, R. F., Whitley, J. E., Woolley, A. R., 1978. An Investigation of Rare-Earth Mobility: Fenitized Quartzites, Borralan Complex, N.W. Scotland. Contributions to Mineralogy and Petrology, 66(1): 69-73.  https://doi.org/10.1007/bf00376086 | 
		
				
				| McCuaig, T. C., Beresford, S., Hronsky, J., 2010. Translating the Mineral Systems Approach into an Effective Exploration Targeting System. Ore Geology Reviews, 38(3): 128-138.  https://doi.org/10.1016/j.oregeorev.2010.05.008 | 
		
				
				| McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253.  https://doi.org/10.1016/0009-2541(94)00140-4 | 
		
				
				| McLemore, V. T., 2018. Rare Earth Elements (REE) Deposits Associated with Great Plain Margin Deposits (Alkaline-Related), Southwestern United States and Eastern Mexico. Resources, 7(1): 8.  https://doi.org/10.3390/resources7010008 | 
		
				
				| Meert, J. G., 2012. What's in a Name? The Columbia (Paleopangaea/Nuna) Supercontinent. Gondwana Research, 21(4): 987-993.  https://doi.org/10.1016/j.gr.2011.12.002 | 
		
				
				| Milani, L., Kinnaird, J. A., Lehmann, J., et al., 2015. Role of Crustal Contribution in the Early Stage of the Damara Orogen, Namibia: New Constraints from Combined U-Pb and Lu-Hf Isotopes from the Goas Magmatic Complex. Gondwana Research, 28(3): 961-986.  https://doi.org/10.1016/j.gr.2014.08.007 | 
		
				
				| Miller, R. M., 2008. The Geology of Namibia. Ministry of Mines and Energy, Geological Survey of Namibia, Windhoek | 
		
				
				| Mitchell, R. H., 2005. Carbonatites and Carbonatites and Carbonatites. The Canadian Mineralogist, 43(6): 2049-2068.  https://doi.org/10.2113/gscanmin.43.6.2049 | 
		
				
				| Möller, V., Williams-Jones, A. E., 2016. Petrogenesis of the Nechalacho Layered Suite, Canada: Magmatic Evolution of a REE-Nb-Rich Nepheline Syenite Intrusion. Journal of Petrology, 57(2): 229-276.  https://doi.org/10.1093/petrology/egw003 | 
		
				
				| Mollo, S., Vona, A., 2014. The Geochemical Evolution of Clinopyroxene in the Roman Province: A Window on Decarbonation from Wall-Rocks to Magma. Lithos, 192-195: 1-7.  https://doi.org/10.1016/j.lithos.2014.01.009 | 
		
				
				| Moore, M., Chakhmouradian, A. R., Mariano, A. N., et al., 2015. Evolution of Rare-Earth Mineralization in the Bear Lodge Carbonatite, Wyoming: Mineralogical and Isotopic Evidence. Ore Geology Reviews, 64: 499-521.  https://doi.org/10.1016/j.oregeorev.2014.03.015 | 
		
				
				| Müntener, O., Kelemen, P. B., Grove, T. L., 2001. The Role of H2O during Crystallization of Primitive Arc Magmas under Uppermost Mantle Conditions and Genesis of Igneous Pyroxenites: An Experimental Study. Contributions to Mineralogy and Petrology, 141(6): 643-658.  https://doi.org/10.1007/s004100100266 | 
		
				
				| Nabyl, Z., Massuyeau, M., Gaillard, F., et al., 2020. A Window in the Course of Alkaline Magma Differentiation Conducive to Immiscible REE-Rich Carbonatites. Geochimica et Cosmochimica Acta, 282: 297-323.  https://doi.org/10.1016/j.gca.2020.04.008 | 
		
				
				| Nikiforov, A. V., Öztürk, H., Altuncu, S., et al., 2014. Kizilcaören Ore-Bearing Complex with Carbonatites (Northwestern Anatolia, Turkey): Formation Time and Mineralogy of Rocks. Geology of Ore Deposits, 56(1): 35-60.  https://doi.org/10.1134/s107570151401005x | 
		
				
				| Nikiforov, A. V., Yarmolyuk, V. V., 2019. Late Mesozoic Carbonatite Provinces in Central Asia: Their Compositions, Sources and Genetic Settings. Gondwana Research, 69: 56-72.  https://doi.org/10.1016/j.gr.2018.11.014 | 
		
				
				| Nikolenko, A. M., Redina, A. A., Doroshkevich, A. G., et al., 2018. The Origin of Magnetite-Apatite Rocks of Mushgai-Khudag Complex, South Mongolia: Mineral Chemistry and Studies of Melt and Fluid Inclusions. Lithos, 320/321: 567-582.  https://doi.org/10.1016/j.lithos.2018.08.030 | 
		
				
				| Nikolenko, A. M., Doroshkevich, A. G., Ponomarchuk, A. V., et al., 2020. Ar-Ar Geochronology and Petrogenesis of the Mushgai-Khudag Alkaline-Carbonatite Complex (Southern Mongolia). Lithos, 372/373: 105675.  https://doi.org/10.1016/j.lithos.2020.105675 | 
		
				
				| Notholt, A., Highley, D., Harding, R., 1985. Investigation of Phosphate (Apatite) Potential of Loch Borralan Igneous Complex, Northwest Highlands, Scotland. Transactions of the Institution of Mining and Metallurgy, Section B, Applied Earth Science, 94: 58--65 | 
		
				
				| Ntiharirizwa, S., Boulvais, P., Poujol, M., et al., 2018. Geology and U-Th-Pb Dating of the Gakara REE Deposit, Burundi. Minerals, 8(9): 394.  https://doi.org/10.3390/min8090394 | 
		
				
				| O'Brien, H., Heilimo, E., Heino, P., 2015. The Archean Siilinjärvi Carbonatite Complex. Mineral Deposits of Finland. Elsevier, Amsterdam. 327-343. https://doi.org/10.1016/b978-0-12-410438-9.00013-3 | 
		
				
				| Oh, C. W., Lee, B. C., Yi, S. B., et al., 2019. Correlation of Paleoproterozoic Igneous and Metamorphic Events of the Korean Peninsula and China; Its Implication to the Tectonics of Northeast Asia. Precambrian Research, 326: 344-362.  https://doi.org/10.1016/j.precamres.2018.03.010 | 
		
				
				| Öztürk, H., Altuncu, S., Hanilçi, N., et al., 2019. Rare Earth Element-Bearing Fluorite Deposits of Turkey: An Overview. Ore Geology Reviews, 105: 423-444.  https://doi.org/10.1016/j.oregeorev.2018.12.021 | 
		
				
				| Padilha, D. F., Bitencourt, M. D. F., Nardi, L. V. S., et al., 2019. Sources and Settings of Ediacaran Post-Collisional Syenite-Monzonite-Diorite Shoshonitic Magmatism from Southernmost Brazil. Lithos, 344/345: 482-503.  https://doi.org/10.1016/j.lithos.2019.06.004 | 
		
				
				| Parsons, I., 1965. The Feldspathic Syenites of the Loch Ailsh Intrusion, Assynt, Scotland. Journal of Petrology, 6(3): 365-394.  https://doi.org/10.1093/petrology/6.3.365 | 
		
				
				| Parsons, I., McKirdy, A. P., 1983. Inter-Relationship of Igneous Activity and Thrusting in Assynt: Excavations at Loch Borralan. Scottish Journal of Geology, 19(1): 59-66.  https://doi.org/10.1144/sjg19010059 | 
		
				
				| Peccerillo, A., 1992. Potassic and Ultrapotassic Rocks: Compositional Characteristics, Petrogenesis, and Geologic Significance. Episodes, 15(4): 243-251.  https://doi.org/10.18814/epiiugs/1992/v15i4/002 | 
		
		
				
				| Peng, P., Zhai, M. G., Guo, J. H., et al., 2008. Petrogenesis of Triassic Post-Collisional Syenite Plutons in the Sino-Korean Craton: An Example from North Korea. Geological Magazine, 145(5): 637-647.  https://doi.org/10.1017/s0016756808005037 | 
		
				
				| Pilet, S., Baker, M. B., Stolper, E. M., 2008. Metasomatized Lithosphere and the Origin of Alkaline Lavas. Science, 320(5878): 916-919.  https://doi.org/10.1126/science.1156563 | 
		
				
				| Plank, T., 2014. The Chemical Composition of Subducting Sediments. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry (Second Edition). Elsevier, Oxford. 607-629. https://doi.org/10.1016/b978-0-08-095975-7.00319-3 | 
		
				
				| Poletti, J. E., Cottle, J. M., Hagen-Peter, G. A., et al., 2016. Petrochronological Constraints on the Origin of the Mountain Pass Ultrapotassic and Carbonatite Intrusive Suite, California. Journal of Petrology, 57(8): 1555-1598.  https://doi.org/10.1093/petrology/egw050 | 
		
				
				| Prelević, D., Akal, C., Foley, S. F., et al., 2012. Ultrapotassic Mafic Rocks as Geochemical Proxies for Post-Collisional Dynamics of Orogenic Lithospheric Mantle: The Case of Southwestern Anatolia, Turkey. Journal of Petrology, 53(5): 1019-1055.  https://doi.org/10.1093/petrology/egs008 | 
		
				
				| Prowatke, S., Klemme, S., 2005. Effect of Melt Composition on the Partitioning of Trace Elements between Titanite and Silicate Melt. Geochimica et Cosmochimica Acta, 69(3): 695-709.  https://doi.org/10.1016/j.gca.2004.06.037 | 
		
				
				| Richards, J. P., 2011. High Sr/Y Arc Magmas and Porphyry Cu±Mo±Au Deposits: Just Add Water. Economic Geology, 106(7): 1075-1081.  https://doi.org/10.2113/econgeo.106.7.1075 | 
		
				
				| Richards, J. P., Mumin, A. H., 2013. Magmatic-Hydrothermal Processes within an Evolving Earth: Iron Oxide-Copper-Gold and Porphyry Cu±Mo±Au Deposits. Geology, 41(7): 767-770.  https://doi.org/10.1130/g34275.1 | 
		
				
				| Richards, J. P., 2015. Tectonic, Magmatic, and Metallogenic Evolution of the Tethyan Orogen: From Subduction to Collision. Ore Geology Reviews, 70: 323-345.  https://doi.org/10.1016/j.oregeorev.2014.11.009 | 
		
				
				| Sarapää, O., Al-Ani, T., Lahti, S. I., et al., 2013. Rare Earth Exploration Potential in Finland. Journal of Geochemical Exploration, 133: 25-41.  https://doi.org/10.1016/j.gexplo.2013.05.003 | 
		
				
				| Sarıfakıoğlu, E., Özen, H., Hall, C., 2009. Petrogenesis of Extension- Related Alkaline Volcanism in Karaburhan (Sivrihisar-Eskisehir), NW Anatolia, Turkey. Journal of Asian Earth Sciences, 35(6): 502-515.  https://doi.org/10.1016/j.jseaes.2009.03.002 | 
		
				
				| Slezak, P., Spandler, C., Border, A., et al., 2021. Geology and Ore Genesis of the Carbonatite-Associated Yangibana REE District, Gascoyne Province, Western Australia. Mineralium Deposita, 56(5): 1007-1026.  https://doi.org/10.1007/s00126-020-01026-z | 
		
				
				| Smith, M. P., Moore, K., Kavecsánszki, D., et al., 2016. From Mantle to Critical Zone: A Review of Large and Giant Sized Deposits of the Rare Earth Elements. Geoscience Frontiers, 7(3): 315-334.  https://doi.org/10.1016/j.gsf.2015.12.006 | 
		
				
				| Smithies, R. H., Marsh, J. S., 1998. The Marinkas Quellen Carbonatite Complex, Southern Namibia; Carbonatite Magmatism with an Uncontaminated Depleted Mantle Signature in a Continental Setting. Chemical Geology, 148(3/4): 201-212.  https://doi.org/10.1016/s0009-2541(98)00029-1 | 
		
				
				| Sokół, K., Halama, R., Meliksetian, K., et al., 2018. Alkaline Magmas in Zones of Continental Convergence: The Tezhsar Volcano-Intrusive Ring Complex, Armenia. Lithos, 320/321: 172-191.  https://doi.org/10.1016/j.lithos.2018.08.028 | 
		
				
				| Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science China Earth Sciences, 58(8): 1284-1304.  https://doi.org/10.1007/s11430-015-5102-x | 
		
				
				| Spandler, C., Slezak, P., Nazari-Dehkordi, T., 2020. Tectonic Significance of Australian Rare Earth Element Deposits. Earth-Science Reviews, 207: 103219.  https://doi.org/10.1016/j.earscirev.2020.103219 | 
		
				
				| Stoppa, F., Schiazza, M., Rosatelli, G., et al., 2019. Italian Carbonatite System: From Mantle to Ore-Deposit. Ore Geology Reviews, 114: 103041.  https://doi.org/10.1016/j.oregeorev.2019.103041 | 
		
				
				| Stumpfl, E. F., Kirikoglu, M. S., 1985. Fluorite-Barite-Rare Earths Deposits at Kizilcaoren, Turkey.  S. Mitt. Österr. Geol. Ges. , 78: 193-200 http://www.landesmuseum.at/pdf_frei_remote/MittGeolGes_78_0193-0200.pdf | 
		
				
				| Styles, M. T., Gunn, A. G., Rollin, K. E., 2004. A Preliminary Study of PGE in the Late Caledonian Loch Borralan and Loch Ailsh Alkaline Pyroxenite-Syenite Complexes, North-West Scotland. Mineralium Deposita, 39(2): 240-255.  https://doi.org/10.1007/s00126-003-0404-x | 
		
				
				| Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261-280.  https://doi.org/10.1086/629302 | 
		
				
				| Thi, N. T., Wada, H., Ishikawa, T., et al., 2014. Geochemistry and Petrogenesis of Carbonatites from South Nam Xe, Lai Chau Area, Northwest Vietnam. Mineralogy and Petrology, 108(3): 371-390.  https://doi.org/10.1007/s00710-013-0301-7 | 
		
				
				| Thirlwall, M. F., Burnard, P., 1990. Pb-Sr-Nd Isotope and Chemical Study of the Origin of Undersaturated and Oversaturated Shoshonitic Magmas from the Borralan Pluton, Assynt, NW Scotland. Journal of the Geological Society, 147(2): 259-269.  https://doi.org/10.1144/gsjgs.147.2.0259 | 
		
				
				| Thompson, R. N., Fowler, M. B., 1986. Subduction-Related Shoshonitic and Ultrapotassic Magmatism: A Study of Siluro-Ordovician Syenites from the Scottish Caledonides. Contributions to Mineralogy and Petrology, 94(4): 507-522.  https://doi.org/10.1007/bf00376342 | 
		
				
				| Tucker, R. D., Belkin, H. E., Schulz, K. J., et al., 2012. A Major Light Rare-Earth Element (Lree) Resource in the Khanneshin Carbonatite Complex, Southern Afghanistan. Economic Geology, 107(2): 197-208.  https://doi.org/10.2113/econgeo.1f07.2.197 | 
		
				
				| Vasyukova, O. V., Williams-Jones, A. E., 2019. Tracing the Evolution of a Fertile REE Granite by Modelling Amphibole-Melt Partitioning, the Strange Lake Story. Chemical Geology, 514: 79-89.  https://doi.org/10.1016/j.chemgeo.2019.03.030 | 
		
				
				| Veevers, J. J., 2007. Pan-Gondwanaland Post-Collisional Extension Marked by 650-500 Ma Alkaline Rocks and Carbonatites and Related Detrital Zircons: A Review. Earth-Science Reviews, 83(1/2): 1-47.  https://doi.org/10.1016/j.earscirev.2007.03.001 | 
		
				
				| Veksler, I. V., Petibon, C., Jenner, G. A., et al., 1998. Trace Element Partitioning in Immiscible Silicate-Carbonate Liquid Systems: An Initial Experimental Study Using a Centrifuge Autoclave. Journal of Petrology, 39(11/12): 2095-2104.  https://doi.org/10.1093/petroj/39.11-12.2095 | 
		
				
				| Vigneresse, J. L., Ballouard, C., Liu, X., et al., 2021. Toward a Global Conceptual Model for Metal Enrichment in Felsic, Mafic-Ultramafic, and Alkaline-Carbonatitic Magmas. Ore Geology Reviews, 129: 103925.  https://doi.org/10.1016/j.oregeorev.2020.103925 | 
		
				
				| von Knorring, O., Clifford, T. N., 1960. On a Skarn Monazite Occurrence from the Namib Desert near Usakos, South-West Africa. Mineralogical Magazine and Journal of the Mineralogical Society, 32(251): 650-653.  https://doi.org/10.1180/minmag.1960.032.251.06 | 
		
				
				| Wall, F., Mariano, A. N., 1995. Rare Earth Minerals in Carbonatites: A Discussion Centred on the Kangankunde Carbonatite, Malawi. Mineralogical Society Series, 7: 193-226 http://www.researchgate.net/publication/304098756_Rare_earth_minerals_in_carbonatites_A_discussion_centred_on_the_Kangankunde_carbonatite_Malawi | 
		
				
				| Walsh, J. N., Buckley, F., Barker, J., 1981. The Simultaneous Determination of the Rare-Earth Elements in Rocks Using Inductively Coupled Plasma Source Spectrometry. Chemical Geology, 33(1/2/3/4): 141-153.  https://doi.org/10.1016/0009-2541(81)90091-7 | 
		
				
				| Walters, A. S., Goodenough, K. M., Hughes, H. S. R., et al., 2013. Enrichment of Rare Earth Elements during Magmatic and Post-Magmatic Processes: A Case Study from the Loch Loyal Syenite Complex, Northern Scotland. Contributions to Mineralogy and Petrology, 166(4): 1177-1202.  https://doi.org/10.1007/s00410-013-0916-z | 
		
				
				| Wang, D. H., Yang, J. M., Yan, S. H., et al., 2001. A Special Orogenic-Type Rare Earth Element Deposit in Maoniuping, Sichuan, China: Geology and Geochemistry. Resource Geology, 51(3): 177-188.  https://doi.org/10.1111/j.1751-3928.2001.tb00090.x | 
		
				
				| Wang, T., Guo, L., Zhang, L., et al., 2015. Timing and Evolution of Jurassic-Cretaceous Granitoid Magmatisms in the Mongol-Okhotsk Belt and Adjacent Areas, NE Asia: Implications for Transition from Contractional Crustal Thickening to Extensional Thinning and Geodynamic Settings. Journal of Asian Earth Sciences, 97: 365-392.  https://doi.org/10.1016/j.jseaes.2014.10.005 | 
		
				
				| Weckmann, U., Ritter, O., Haak, V., 2003. A Magnetotelluric Study of the Damara Belt in Namibia: 2. MT Phases over 90° Reveal the Internal Structure of the Waterberg Fault/Omaruru Lineament. Physics of the Earth and Planetary Interiors, 138(2): 91-112.  https://doi.org/10.1016/s0031-9201(03)00079-7 | 
		
				
				| Weller, O. M., St-Onge, M. R., 2017. Record of Modern-Style Plate Tectonics in the Palaeoproterozoic Trans-Hudson Orogen. Nature Geoscience, 10(4): 305-311.  https://doi.org/10.1038/ngeo2904 | 
		
				
				| Whalen, J. B., Wodicka, N., Taylor, B. E., et al., 2010. Cumberland Batholith, Trans-Hudson Orogen, Canada: Petrogenesis and Implications for Paleoproterozoic Crustal and Orogenic Processes. Lithos, 117(1/2/3/4): 99-118.  https://doi.org/10.1016/j.lithos.2010.02.008 | 
		
				
				| Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185-187.  https://doi.org/10.2138/am.2010.3371 | 
		
				
				| Williams-Jones, A. E., Samson, I. M., Olivo, G. R., 2000. The Genesis of Hydrothermal Fluorite-REE Deposits in the Gallinas Mountains, New Mexico. Economic Geology, 95(2): 327-341.  https://doi.org/10.2113/gsecongeo.95.2.327 | 
		
				
				| Woodard, J., Hetherington, C. J., 2014. Carbonatite in a Post-Collisional Tectonic Setting: Geochronology and Emplacement Conditions at Naantali, SW Finland. Precambrian Research, 240: 94-107.  https://doi.org/10.1016/j.precamres.2013.10.017 | 
		
				
				| Woolley, A. R., Symes, R. F., Elliott, C. J., 1972. Metasomatized (Fenitized) Quartzites from the Borralan Complex, Scotland. Mineralogical Magazine, 38(299): 819-836.  https://doi.org/10.1180/minmag.1972.038.299.06 | 
		
				
				| Woolley, A. R., 1970. The Structural Relationships of the Loch Borrolan Complex, Scotland. Geological Journal, 7(1): 171-182.  https://doi.org/10.1002/gj.3350070110 | 
		
				
				| Xie, Y. L., Li, Y. X., Hou, Z. Q., et al., 2015. A Model for Carbonatite Hosted REE Mineralisation—The Mianning-Dechang REE Belt, Western Sichuan Province, China. Ore Geology Reviews, 70: 595-612.  https://doi.org/10.1016/j.oregeorev.2014.10.027 | 
		
				
				| Xu, C., Huang, Z. L., Liu, C. Q., et al., 2003. Geochemistry of Carbonatites in Maoniuping REE Deposit, Sichuan Province, China. Science in China Series D:  Earth Sciences, 46(3): 246-256.  https://doi.org/10.1360/03yd9023 | 
		
				
				| Xu, C., Campbell, I. H., Kynicky, J., et al., 2008. Comparison of the Daluxiang and Maoniuping Carbonatitic REE Deposits with Bayan Obo REE Deposit, China. Lithos, 106(1/2): 12-24.  https://doi.org/10.1016/j.lithos.2008.06.005 | 
		
				
				| Xu, C., Taylor, R. N., Li, W. B., et al., 2012. Comparison of Fluorite Geochemistry from REE Deposits in the Panxi Region and Bayan Obo, China. Journal of Asian Earth Sciences, 57: 76-89.  https://doi.org/10.1016/j.jseaes.2012.06.007 | 
		
				
				| Yang, Y. T., Guo, Z. X., Song, C. C., et al., 2015. A Short-Lived but Significant Mongol-Okhotsk Collisional Orogeny in Latest Jurassic-Earliest Cretaceous. Gondwana Research, 28(3): 1096-1116.  https://doi.org/10.1016/j.gr.2014.09.010 | 
		
				
				| Yasukawa, K., Nakamura, K., Fujinaga, K., et al., 2016. Tracking the Spatiotemporal Variations of Statistically Independent Components Involving Enrichment of Rare-Earth Elements in Deep-Sea Sediments. Scientific Reports, 6: 29603.  https://doi.org/10.1038/srep29603 | 
		
				
				| Ying, Y. C., Chen, W., Lu, J., et al., 2017. In situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290/291: 159-171.  https://doi.org/10.1016/j.lithos.2017.08.003 | 
		
				
				| Young, B. N., Parsons, I., Threadgould, R., 1994. Carbonatite near the Loch Borralan Intrusion, Assynt. Journal of the Geological Society, 151(6): 945-954.  https://doi.org/10.1144/gsjgs.151.6.0945 | 
		
				
				| Zanetti, A., Mazzucchelli, M., Rivalenti, G., et al., 1999. The Finero Phlogopite-Peridotite Massif: An Example of Subduction-Related Metasomatism. Contributions to Mineralogy and Petrology, 134(2/3): 107-122.  https://doi.org/10.1007/s004100050472 | 
		
				
				| Zheng, X., Liu, Y., 2019. Mechanisms of Element Precipitation in Carbonatite-Related Rare-Earth Element Deposits: Evidence from Fluid Inclusions in the Maoniuping Deposit, Sichuan Province, Southwestern China. Ore Geology Reviews, 107: 218-238.  https://doi.org/10.1016/j.oregeorev.2019.02.021 | 
		
				
				| Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76-93.  https://doi.org/10.1016/j.earscirev.2017.01.012 | 
		
				
				| Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571.  https://doi.org/10.1146/annurev.ea.14.050186.002425 |