Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Kathryn M. Goodenough, Eimear A. Deady, Charles D. Beard, Sam Broom-Fendley, Holly A. L. Elliott, Frederick van den Berg, Hüseyin Öztürk. Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements. Journal of Earth Science, 2021, 32(6): 1332-1358. doi: 10.1007/s12583-021-1500-5
Citation: Kathryn M. Goodenough, Eimear A. Deady, Charles D. Beard, Sam Broom-Fendley, Holly A. L. Elliott, Frederick van den Berg, Hüseyin Öztürk. Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements. Journal of Earth Science, 2021, 32(6): 1332-1358. doi: 10.1007/s12583-021-1500-5

Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements

doi: 10.1007/s12583-021-1500-5
More Information
  • Corresponding author: Kathryn M. Goodenough, kmgo@bgs.ac.uk
  • Received Date: 19 Dec 2020
  • Accepted Date: 22 Jun 2021
  • Publish Date: 30 Dec 2021
  • The rare earth elements (REE) are critical raw materials for much of modern technology, particularly renewable energy infrastructure and electric vehicles that are vital for the energy transition. Many of the world's largest REE deposits occur in alkaline rocks and carbonatites, which are found in intracontinental, rift-related settings, and also in syn-to post-collisional settings. Post-collisional settings host significant REE deposits, such as those of the Mianning-Dechang belt in China. This paper reviews REE mineralization in syn-to post-collisional alkaline-carbonatite complexes worldwide, in order to demonstrate some of the key physical and chemical features of these deposits. We use three examples, in Scotland, Namibia, and Turkey, to illustrate the structure of these systems. We review published geochemical data and use these to build up a broad model for the REE mineral system in post-collisional alkaline-carbonatite complexes. It is evident that immiscibility of carbonate-rich magmas and fluids plays an important part in generating mineralization in these settings, with REE, Ba and F partitioning into the carbonate-rich phase. The most significant REE mineralization in post-collisional alkaline-carbonatite complexes occurs in shallow-level, carbothermal or carbonatite intrusions, but deeper carbonatite bodies and associated alteration zones may also have REE enrichment.

     

  • loading
  • Al-Ani, T., 2013. Mineralogy and Petrography of Siilinjärvi Carbonatite and Glimmerite Rocks, Eastern Finland. Geological Survey of Finland Report, 164 http://tupa.gtk.fi/raportti/arkisto/164_2013.pdf
    Al-Ani, T., Molnár, F., Lintinen, P., et al., 2018. Geology and Mineralogy of Rare Earth Elements Deposits and Occurrences in Finland. Minerals, 8(8): 356. https://doi.org/10.3390/min8080356
    Allsopp, H., Kostlin, E., Welke, H., et al., 1979. Rb-Sr and U-Pb Geochronology of Late Precambrian-Early Palaeozoic Igneous Activity in the Richtersveld (South Africa) and Southern South West Africa. Transactions of the Geological Society of South Africa, 82(2): 185-204
    Andersen, A. K., Clark, J. G., Larson, P. B., et al., 2016. Mineral Chemistry and Petrogenesis of a HFSE(+HREE) Occurrence, Peripheral to Carbonatites of the Bear Lodge Alkaline Complex, Wyoming. American Mineralogist, 101(7): 1604-1623. https://doi.org/10.2138/am-2016-5532
    Arden, K. M., Halden, N. M., 1999. Crystallization and Alteration History of Britholite in Rare-Earth-Element-Enriched Pegmatitic Segregations Associated with the Eden Lake Complex, Manitoba, Canada. The Canadian Mineralogist, 37(5): 1239-1253 http://www.researchgate.net/publication/256305779_Crystallization_and_alteration_history_of_britholite_in_rare-earth-element-enriched_pegmatitic_segregations_associated_with_the_Eden_Lake_Complex_Manitoba_Canada
    Baatar, M., Ochir, G., Kynicky, J., et al., 2013. Some Notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu Alkaline Complexes, Southern Mongolia. International Journal of Geosciences, 4(8): 1200-1214. https://doi.org/10.4236/ijg.2013.48114
    Banks, G., Walter, B., Marks, M., et al., 2019. A Workflow to Define, Map and Name a Carbonatite- or Alkaline Igneous-Associated REE-HFSE Mineral System: A Case Study from SW Germany. Minerals, 9(2): 97. https://doi.org/10.3390/min9020097
    Bartels, A., Nielsen, T. F. D., Lee, S. R., et al., 2015. Petrological and Geochemical Characteristics of Mesoproterozoic Dyke Swarms in the Gardar Province, South Greenland: Evidence for a Major Sub-Continental Lithospheric Mantle Component in the Generation of the Magmas. Mineralogical Magazine, 79(4): 909-939. https://doi.org/10.1180/minmag.2015.079.4.04
    Be'eri-Shlevin, Y., Katzir, Y., Whitehouse, M., 2009. Post-Collisional Tectonomagmatic Evolution in the Northern Arabian-Nubian Shield: Time Constraints from Ion-Probe U-Pb Dating of Zircon. Journal of the Geological Society, 166(1): 71-85. https://doi.org/10.1144/0016-76492007-169
    Beard, C. D., van Hinsberg, V. J., Stix, J., et al., 2019. Clinopyroxene/Melt Trace Element Partitioning in Sodic Alkaline Magmas. Journal of Petrology, 60(9): 1797-1823. https://doi.org/10.1093/petrology/egz052
    Beard, C. D., Hinsberg, V. J., Stix, J., et al., 2020. The Effect of Fluorine on Clinopyroxene/Melt Trace-Element Partitioning. Contributions to Mineralogy and Petrology, 175(5): 1-19. https://doi.org/10.1007/s00410-020-1672-5
    Bell, K., Tilton, G. R., 2001. Nd, Pb and Sr Isotopic Compositions of East African Carbonatites: Evidence for Mantle Mixing and Plume Inhomogeneity. Journal of Petrology, 42(10): 1927-1945. https://doi.org/10.1093/petrology/42.10.1927
    Bernard, C., Estrade, G., Salvi, S., et al., 2020. Alkali Pyroxenes and Amphiboles: A Window on Rare Earth Elements and other High Field Strength Elements Behavior through the Magmatic-Hydrothermal Transition of Peralkaline Granitic Systems. Contributions to Mineralogy and Petrology, 175(9): 1-27. https://doi.org/10.1007/s00410-020-01723-y
    Bianchini, G., Beccaluva, L., Siena, F., 2008. Post-Collisional and Intraplate Cenozoic Volcanism in the Rifted Apennines/Adriatic Domain. Lithos, 101(1/2): 125-140. https://doi.org/10.1016/j.lithos.2007.07.011
    Black, R., Lameyre, J., Bonin, B., 1985. The Structural Setting of Alkaline Complexes. Journal of African Earth Sciences, 3(1/2): 5-16. https://doi.org/10.1016/0899-5362(85)90019-3
    Blichert-Toft, J., Arndt, N. T., Ludden, J. N., 1996. Precambrian Alkaline Magmatism. Lithos, 37(2/3): 97-111. https://doi.org/10.1016/0024-4937(95)00031-3
    Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1/2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
    Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
    Broom-Fendley, S., Smith, M. P., Andrade, M. B., et al., 2020. Sulfur-Bearing Monazite-(Ce) from the Eureka Carbonatite, Namibia: Oxidation State, Substitution Mechanism, and Formation Conditions. Mineralogical Magazine, 84(1): 35-48. https://doi.org/10.1180/mgm.2019.79
    Buyse, F., Dewaele, S., Decrée, S., et al., 2020. Mineralogical and Geochemical Study of the Rare Earth Element Mineralization at Gakara (Burundi). Ore Geology Reviews, 124: 103659. https://doi.org/10.1016/j.oregeorev.2020.103659
    Castor, S. B., 2008. The Mountain Pass Rare-Earth Carbonatite and Associated Ultrapotassic Rocks, California. The Canadian Mineralogist, 46(4): 779-806. https://doi.org/10.3749/canmin.46.4.779
    Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society London Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1
    Chakhmouradian, A. R., Mumin, A. H., Demény, A., et al., 2008. Postorogenic Carbonatites at Eden Lake, Trans-Hudson Orogen (Northern Manitoba, Canada): Geological Setting, Mineralogy and Geochemistry. Lithos, 103(3/4): 503-526. https://doi.org/10.1016/j.lithos.2007.11.004
    Chakhmouradian, A. R., Zaitsev, A. N., 2012. Rare Earth Mineralization in Igneous Rocks: Sources and Processes. Elements, 8(5): 347-353 doi: 10.2113/gselements.8.5.347
    Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. https://doi.org/10.1016/s1367-9120(03)00118-4
    Chung, S. -L., Chu, M. -F., Zhang, Y., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
    Çimen, O., Corcoran, L., Kuebler, C., et al., 2020. Geochemical, Stable (O, C, and B) and Radiogenic (Sr, Nd, Pb) Isotopic Data from the Eskişehir-Kızılcaören (NW-Anatolia) and the Malatya-Kuluncak (E-central Anatolia) F-REE-Th Deposits, Turkey: Implications for Nature of Carbonate-Hosted Mineralization. Turkish Journal of Earth Sciences, 29(5): 798-814 doi: 10.3906/yer-2001-7
    Çimen, O., Kuebler, C., Monaco, B., et al., 2018. Boron, Carbon, Oxygen and Radiogenic Isotope Investigation of Carbonatite from the Miaoya Complex, Central China: Evidences for Late-Stage REE Hydrothermal Event and Mantle Source Heterogeneity. Lithos, 322: 225-237. https://doi.org/10.1016/j.lithos.2018.10.018
    Corner, B., 2008. Crustal Framework of Namibia Derived from an Integrated Interpretation of Geophysical and Geological Data. Communs. Geol. Surv. Namibia, 12: 15-22 http://www.researchgate.net/publication/284314088_Crustal_framework_of_Namibia_derived_from_an_integrated_interpretation_of_geophysical_and_geological_data
    Couzinié, S., Laurent, O., Moyen, J. F., et al., 2016. Post-Collisional Magmatism: Crustal Growth not Identified by Zircon Hf-O Isotopes. Earth and Planetary Science Letters, 456: 182-195. https://doi.org/10.1016/j.epsl.2016.09.033
    Deady, E., Lacinska, A., Goodenough, K., et al., 2019. Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey. Minerals, 9(4): 208. https://doi.org/10.3390/min9040208
    Decrée, S., Savolainen, M., Mercadier, J., et al., 2020. Geochemical and Spectroscopic Investigation of Apatite in the Siilinjärvi Carbonatite Complex: Keys to Understanding Apatite Forming Processes and Assessing Potential for Rare Earth Elements. Applied Geochemistry, 123: 104778. https://doi.org/10.1016/j.apgeochem.2020.104778
    Dietzel, C. A. F., Kristandt, T., Dahlgren, S., et al., 2019. Hydrothermal Processes in the Fen Alkaline-Carbonatite Complex, Southern Norway. Ore Geology Reviews, 111: 102969. https://doi.org/10.1016/j.oregeorev.2019.102969
    Dilek, Y., Altunkaynak, Ş., 2007. Cenozoic Crustal Evolution and Mantle Dynamics of Post-Collisional Magmatism in Western Anatolia. International Geology Review, 49(5): 431-453. https://doi.org/10.2747/0020-6814.49.5.431
    Dilek, Y., Altunkaynak, Ş., 2009. Geochemical and Temporal Evolution of Cenozoic Magmatism in Western Turkey: Mantle Response to Collision, Slab Break-off, and Lithospheric Tearing in an Orogenic Belt. Geological Society Special Publication, 311: 213-233. https://doi.org/10.1144/sp311.8
    Dostal, J., 2017. Rare Earth Element Deposits of Alkaline Igneous Rocks. Resources, 6(3): 34. https://doi.org/10.3390/resources6030034
    Dunai, T., Stoessel, G., Ziegler, U., 1989. Note: A Sr Isotope Study of the Eureka Carbonatite, Damaraland, Namibia. Communs. Geol. Surv. Namibia, 5: 91-92 http://www.mme.gov.na/files/publications/281_Dunai%20et%20al_Eureka%20carbonatite.pdf
    Dunai, T. J., 1989. Petrographische, Geochemische und Lagerstättenkundliche Untersuchungen an Karbonatitgängen auf der Farm Eureka Nr 99: [Dissertation]. Verlag nicht ermittelbar, Damaraland, Namibia
    Elliott, H. A. L., Wall, F., Chakhmouradian, A. R., et al., 2018. Fenites Associated with Carbonatite Complexes: A Review. Ore Geology Reviews, 93: 38-59. https://doi.org/10.1016/j.oregeorev.2017.12.003
    Evans, D. A. D., Mitchell, R. N., 2011. Assembly and Breakup of the Core of Paleoproterozoic-Mesoproterozoic Supercontinent Nuna. Geology, 39(5): 443-446. https://doi.org/10.1130/g31654.1
    Fedele, L., Lustrino, M., Melluso, L., et al., 2015. Trace-Element Partitioning between Plagioclase, Alkali Feldspar, Ti-Magnetite, Biotite, Apatite, and Evolved Potassic Liquids from Campi Flegrei (Southern Italy). American Mineralogist, 100(1): 233-249. https://doi.org/10.2138/am-2015-4995
    Feng, M., Song, W. L., Kynicky, J., et al., 2020. Primary Rare Earth Element Enrichment in Carbonatites: Evidence from Melt Inclusions in Ulgii Khiid Carbonatite, Mongolia. Ore Geology Reviews, 117: 103294. https://doi.org/10.1016/j.oregeorev.2019.103294
    Florisbal, L. M., Bitencourt, M. D. F., Janasi, V. D. A., et al., 2012. Petrogenesis of Syntectonic Granites Emplaced at the Transition from Thrusting to Transcurrent Tectonics in Post-Collisional Setting: Whole-Rock and Sr-Nd-Pb Isotope Geochemistry in the Neoproterozoic Quatro Ilhas and Mariscal Granites, Southern Brazil. Lithos, 153: 53-71. https://doi.org/10.1016/j.lithos.2012.04.031
    Foley, S. F., Venturelli, G., Green, D. H., et al., 1987. The Ultrapotassic Rocks: Characteristics, Classification, and Constraints for Petrogenetic Models. Earth-Science Reviews, 24(2): 81-134. https://doi.org/10.1016/0012-8252(87)90001-8
    Förster, M. W., Buhre, S., Xu, B., et al., 2020. Two-Stage Origin of K-Enrichment in Ultrapotassic Magmatism Simulated by Melting of Experimentally Metasomatized Mantle. Minerals, 10(1): 41. https://doi.org/10.3390/min10010041
    Fowler, M., Rollinson, H., 2012. Phanerozoic Sanukitoids from Caledonian Scotland: Implications for Archean Subduction. Geology, 40(12): 1079-1082. https://doi.org/10.1130/g33371.1
    Fowler, M. B., Kocks, H., Darbyshire, D. P. F., et al., 2008. Petrogenesis of High Ba-Sr Plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos, 105(1/2): 129-148. https://doi.org/10.1016/j.lithos.2008.03.003
    Freeburn, R., Bouilhol, P., Maunder, B., et al., 2017. Numerical Models of the Magmatic Processes Induced by Slab Breakoff. Earth and Planetary Science Letters, 478: 203-213. https://doi.org/10.1016/j.epsl.2017.09.008
    Gardiner, N. J., Kirkland, C. L., van Kranendonk, M. J., 2016. The Juvenile Hafnium Isotope Signal as a Record of Supercontinent Cycles. Scientific Reports, 6: 38503. https://doi.org/10.1038/srep38503
    Gonçalves, G. O., Lana, C., Scholz, R., et al., 2018. The Diamantina Monazite: A New Low-Th Reference Material for Microanalysis. Geostandards and Geoanalytical Research, 42(1): 25-47. https://doi.org/10.1111/ggr.12192
    Goodenough, K. M., Upton, B. G. J., Ellam, R. M., 2002. Long-Term Memory of Subduction Processes in the Lithospheric Mantle: Evidence from the Geochemistry of Basic Dykes in the Gardar Province of South Greenland. Journal of the Geological Society, 159(6): 705-714. https://doi.org/10.1144/0016-764901-154
    Goodenough, K. M., Millar, I., Strachan, R. A., et al., 2011. Timing of Regional Deformation and Development of the Moine Thrust Zone in the Scottish Caledonides: Constraints from the U-Pb Geochronology of Alkaline Intrusions. Journal of the Geological Society, 168(1): 99-114. https://doi.org/10.1144/0016-76492010-020
    Goodenough, K. M., Schilling, J., Jonsson, E., et al., 2016. Europeʼs Rare Earth Element Resource Potential: An Overview of REE Metallogenetic Provinces and Their Geodynamic Setting. Ore Geology Reviews, 72: 838-856. https://doi.org/10.1016/j.oregeorev.2015.09.019
    Goodenough, K. M., Wall, F., Merriman, D., 2018. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Natural Resources Research, 27(2): 201-216. https://doi.org/10.1007/s11053-017-9336-5
    Gozzi, F., Gaeta, M., Freda, C., et al., 2014. Primary Magmatic Calcite Reveals Origin from Crustal Carbonate. Lithos, 190/191: 191-203. https://doi.org/10.1016/j.lithos.2013.12.008
    Griffiths, D., 2011. Metallogenesis of Rare Earth Elements in Ultramafic Rocks of the Loch Borralan Complex: [Dissertation]. University of Exeter, Exeter
    Gültekin, A. H., Örgün, Y., Suner, F., 2003. Geology, Mineralogy and Fluid Inclusion Data of the Kizilcaören Fluorite-Barite-REE Deposit, Eskisehir, Turkey. Journal of Asian Earth Sciences, 21(4): 365-376. https://doi.org/10.1016/s1367-9120(02)00019-6
    Guo, D. X., Liu, Y., 2019. Occurrence and Geochemistry of Bastnäsite in Carbonatite-Related REE Deposits, Mianning-Dechang REE Belt, Sichuan Province, SW China. Ore Geology Reviews, 107: 266-282. https://doi.org/10.1016/j.oregeorev.2019.02.028
    Guo, Z. F., Wilson, M., Liu, J. Q., et al., 2006. Post-Collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetan Plateau: Constraints on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms. Journal of Petrology, 47(6): 1177-1220. https://doi.org/10.1093/petrology/egl007
    Halden, N. M., Fryer, B. J., 1999. Geochemical Characteristics of the Eden Lake Complex: Evidence for Anorogenic Magmatism in the Trans-Hudson Orogen. Canadian Journal of Earth Sciences, 36(1): 91-103. https://doi.org/10.1139/e98-089
    Hatzl, T., 1992. Die Genese der Karbonatit-und Alkalivulkanit-Assoziierten Fluorit-Baryt-Bastnäsit-Vererzung bei Kizilçaören (Türkei). Inst. für Allg. u. Angewandte Geologie d. Ludwig-Maximilians-Univ.
    Holdsworth, R. E., McErlean, M. A., Strachan, R. A., 1999. The Influence of Country Rock Structural Architecture during Pluton Emplacement: The Loch Loyal Syenites, Scotland. Journal of the Geological Society, 156(1): 163-175. https://doi.org/10.1144/gsjgs.156.1.0163
    Holwell, D. A., Fiorentini, M., McDonald, I., et al., 2019. A Metasomatized Lithospheric Mantle Control on the Metallogenic Signature of Post-Subduction Magmatism. Nature Communications, 10: 3511. https://doi.org/10.1038/s41467-019-11065-4
    Hoskin, P. W. O., Kinny, P. D., Wyborn, D., et al., 2000. Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: an Integrated Approach. Journal of Petrology, 41(9): 1365-1396. https://doi.org/10.1093/petrology/41.9.1365
    Hou, Z. Q., Tian, S. H., Yuan, Z. X., et al., 2006. The Himalayan Collision Zone Carbonatites in Western Sichuan, SW China: Petrogenesis, Mantle Source and Tectonic Implication. Earth and Planetary Science Letters, 244(1/2): 234-250. https://doi.org/10.1016/j.epsl.2006.01.052
    Hou, Z. Q., Tian, S. H., Xie, Y. L., et al., 2009. The Himalayan Mianning-Dechang REE Belt Associated with Carbonatite-Alkaline Complexes, Eastern Indo-Asian Collision Zone, SW China. Ore Geology Reviews, 36(1/2/3): 65-89. https://doi.org/10.1016/j.oregeorev.2009.03.001
    Hou, Z. Q., Liu, Y., Tian, S. H., et al., 2015. Formation of Carbonatite-Related Giant Rare-Earth-Element Deposits by the Recycling of Marine Sediments. Scientific Reports, 5: 10231. https://doi.org/10.1038/srep10231
    Hou, Z. Q., Zhang, H. R., 2015. Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain. Ore Geology Reviews, 70: 346-384. https://doi.org/10.1016/j.oregeorev.2014.10.026
    Hronsky, J. M. A., Groves, D. I., Loucks, R. R., et al., 2012. A Unified Model for Gold Mineralisation in Accretionary Orogens and Implications for Regional-Scale Exploration Targeting Methods. Mineralium Deposita, 47(4): 339-358. https://doi.org/10.1007/s00126-012-0402-y
    Hughes, H. S. R., Goodenough, K. M., Walters, A. S., et al., 2013. The Structure and Petrology of the Cnoc Nan Cuilean Intrusion, Loch Loyal Syenite Complex, NW Scotland. Geological Magazine, 150(5): 783-800. https://doi.org/10.1017/s0016756812000957
    Hulett, S. R. W., Simonetti, A., Troy Rasbury, E., et al., 2016. Recycling of Subducted Crustal Components into Carbonatite Melts Revealed by Boron Isotopes. Nature Geoscience, 9(12): 904-908. https://doi.org/10.1038/ngeo2831
    Hutchison, W., Babiel, R. J., Finch, A. A., et al., 2019. Sulphur Isotopes of Alkaline Magmas Unlock Long-Term Records of Crustal Recycling on Earth. Nature Communications, 10: 4208. https://doi.org/10.1038/s41467-019-12218-1
    Ihlen, P. M., Schiellerup, H., Gautneb, H., et al., 2014. Characterization of Apatite Resources in Norway and Their REE Potential—A Review. Ore Geology Reviews, 58: 126-147. https://doi.org/10.1016/j.oregeorev.2013.11.003
    Ivanov, A. V., Levitskii, I. V., Levitskii, V. I., et al., 2019. Shoshonitic Magmatism in the Paleoproterozoic of the South-Western Siberian Craton: an Analogue of the Modern Post-Collision Setting. Lithos, 328/329: 88-100. https://doi.org/10.1016/j.lithos.2019.01.015
    Jia, Y. H., Liu, Y., 2020. Factors Controlling the Generation and Diversity of Giant Carbonatite-Related Rare Earth Element Deposits: Insights from the Mianning-Dechang Belt. Ore Geology Reviews, 121: 103472. https://doi.org/10.1016/j.oregeorev.2020.103472
    Jones, J. H., Walker, D., Pickett, D. A., et al., 1995. Experimental Investigations of the Partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between Immiscible Carbonate and Silicate Liquids. Geochimica et Cosmochimica Acta, 59(7): 1307-1320. https://doi.org/10.1016/0016-7037(95)00045-2
    Jung, S., Mezger, K., 2003. Petrology of Basement-Dominated Terranes: I. Regional Metamorphic T-t Path from U-Pb Monazite and Sm-Nd Garnet Geochronology (Central Damara Orogen, Namibia). Chemical Geology, 198(3/4): 223-247. https://doi.org/10.1016/s0009-2541(03)00037-8
    Jung, S., Hoernes, S., Hoffer, E., 2005. Petrogenesis of Cogenetic Nepheline and Quartz Syenites and Granites (Northern Damara Orogen, Namibia): Enriched Mantle versus Crustal Contamination. The Journal of Geology, 113(6): 651-672. https://doi.org/10.1086/467475
    Jung, S., Brandt, S., Bast, R., et al., 2019. Metamorphic Petrology of a High-T/ Low-P Granulite Terrane (Damara Belt, Namibia)—Constraints from Pseudosection Modelling and High-Precision Lu-Hf Garnet-Whole Rock Dating. Journal of Metamorphic Geology, 37(1): 41-69. https://doi.org/10.1111/jmg.12448
    Jung, S., Hauff, F., Berndt, J., 2020a. Generation of a Potassic to Ultrapotassic Alkaline Complex in a Syn-Collisional Setting through Flat Subduction: Constraints on Magma Sources and Processes (Otjimbingwe Alkaline Complex, Damara Orogen, Namibia). Gondwana Research, 82: 267-287. https://doi.org/10.1016/j.gr.2020.01.004
    Jung, S., Pfänder, J. A., Hauff, F., et al., 2020b. Crust-Mantle Interaction during Syn-Collisional Magmatism—Evidence from the Oamikaub Diorite and Neikhoes Metagabbro (Damara Orogen, Namibia). Precambrian Research, 351: 105955. https://doi.org/10.1016/j.precamres.2020.105955
    Kelley, K. D., Ludington, S., 2002. Cripple Creek and Other Alkaline-Related Gold Deposits in the Southern Rocky Mountains, USA: Influence of Regional Tectonics. Mineralium Deposita, 37(1): 38-60. https://doi.org/10.1007/s00126-001-0229-4
    Kim, N., Cheong, A. C. S., Yi, K., et al., 2016. Post-Collisional Carbonatite-Hosted Rare Earth Element Mineralization in the Hongcheon Area, Central Gyeonggi Massif, Korea: Ion Microprobe Monazite U-Th-Pb Geochronology and Nd-Sr Isotope Geochemistry. Ore Geology Reviews, 79: 78-87. https://doi.org/10.1016/j.oregeorev.2016.05.016
    Kim, S. W., Oh, C. W., Williams, I. S., et al., 2006. Phanerozoic High-Pressure Eclogite and Intermediate-Pressure Granulite Facies Metamorphism in the Gyeonggi Massif, South Korea: Implications for the Eastward Extension of the Dabie-Sulu Continental Collision Zone. Lithos, 92(3/4): 357-377. https://doi.org/10.1016/j.lithos.2006.03.050
    Küster, D., Harms, U., 1998. Post-Collisional Potassic Granitoids from the Southern and Northwestern Parts of the Late Neoproterozoic East African Orogen: A Review. Lithos, 45(1/2/3/4): 177-195. https://doi.org/10.1016/s0024-4937(98)00031-0
    Küster, D., 2009. Granitoid-Hosted Ta Mineralization in the Arabian-Nubian Shield: Ore Deposit Types, Tectono-Metallogenetic Setting and Petrogenetic Framework. Ore Geology Reviews, 35(1): 68-86. https://doi.org/10.1016/j.oregeorev.2008.09.008
    Lehmann, J., Saalmann, K., Naydenov, K. V., et al., 2016. Structural and Geochronological Constraints on the Pan-African Tectonic Evolution of the Northern Damara Belt, Namibia. Tectonics, 35(1): 103-135. https://doi.org/10.1002/2015tc003899
    Liégeois, J. P., Navez, J., Hertogen, J., et al., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids. the Use of Sliding Normalization. Lithos, 45(1/2/3/4): 1-28. https://doi.org/10.1016/s0024-4937(98)00023-1
    Liu, C., Runyon, S. E., Knoll, A. H., et al., 2019. The Same and not the Same: Ore Geology, Mineralogy and Geochemistry of Rodinia Assembly Versus other Supercontinents. Earth-Science Reviews, 196: 102860. https://doi.org/10.1016/j.earscirev.2019.05.004
    Liu, Y., Hou, Z. Q., Tian, S. H., et al., 2015. Zircon U-Pb Ages of the Mianning-Dechang Syenites, Sichuan Province, Southwestern China: Constraints on the Giant REE Mineralization Belt and Its Regional Geological Setting. Ore Geology Reviews, 64: 554-568. https://doi.org/10.1016/j.oregeorev.2014.03.017
    Liu, Y., Hou, Z. Q., 2017. A Synthesis of Mineralization Styles with an Integrated Genetic Model of Carbonatite-Syenite-Hosted REE Deposits in the Cenozoic Mianning-Dechang REE Metallogenic Belt, the Eastern Tibetan Plateau, Southwestern China. Journal of Asian Earth Sciences, 137: 35-79. https://doi.org/10.1016/j.jseaes.2017.01.010
    Liu, Y., Chakhmouradian, A. R., Hou, Z. Q., et al., 2019. Development of REE Mineralization in the Giant Maoniuping Deposit (Sichuan, China): Insights from Mineralogy, Fluid Inclusions, and Trace-Element Geochemistry. Mineralium Deposita, 54(5): 701-718. https://doi.org/10.1007/s00126-018-0836-y
    Longridge, L., Gibson, R. L., Kinnaird, J. A., et al., 2017. New Constraints on the Age and Conditions of LPHT Metamorphism in the Southwestern Central Zone of the Damara Belt, Namibia and Implications for Tectonic Setting. Lithos, 278/279/280/281: 361-382. https://doi.org/10.1016/j.lithos.2017.02.006
    Markl, G., Marks, M. A. W., Frost, B. R., 2010. On the Controls of Oxygen Fugacity in the Generation and Crystallization of Peralkaline Melts. Journal of Petrology, 51(9): 1831-1847. https://doi.org/10.1093/petrology/egq040
    Marks, M., Markl, G., 2001. Fractionation and Assimilation Processes in the Alkaline Augite Syenite Unit of the Ilímaussaq Intrusion, South Greenland, as Deduced from Phase Equilibria. Journal of Petrology, 42(10): 1947-1969. https://doi.org/10.1093/petrology/42.10.1947
    Marks, M. A. W., Hettmann, K., Schilling, J., et al., 2011. The Mineralogical Diversity of Alkaline Igneous Rocks: Critical Factors for the Transition from Miaskitic to Agpaitic Phase Assemblages. Journal of Petrology, 52(3): 439-455. https://doi.org/10.1093/petrology/egq086
    Marks, M. A. W., Markl, G., 2017. A Global Review on Agpaitic Rocks. Earth-Science Reviews, 173: 229-258. https://doi.org/10.1016/j.earscirev.2017.06.002
    Martin, R. F., Whitley, J. E., Woolley, A. R., 1978. An Investigation of Rare-Earth Mobility: Fenitized Quartzites, Borralan Complex, N.W. Scotland. Contributions to Mineralogy and Petrology, 66(1): 69-73. https://doi.org/10.1007/bf00376086
    McCuaig, T. C., Beresford, S., Hronsky, J., 2010. Translating the Mineral Systems Approach into an Effective Exploration Targeting System. Ore Geology Reviews, 38(3): 128-138. https://doi.org/10.1016/j.oregeorev.2010.05.008
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
    McLemore, V. T., 2018. Rare Earth Elements (REE) Deposits Associated with Great Plain Margin Deposits (Alkaline-Related), Southwestern United States and Eastern Mexico. Resources, 7(1): 8. https://doi.org/10.3390/resources7010008
    Meert, J. G., 2012. What's in a Name? The Columbia (Paleopangaea/Nuna) Supercontinent. Gondwana Research, 21(4): 987-993. https://doi.org/10.1016/j.gr.2011.12.002
    Milani, L., Kinnaird, J. A., Lehmann, J., et al., 2015. Role of Crustal Contribution in the Early Stage of the Damara Orogen, Namibia: New Constraints from Combined U-Pb and Lu-Hf Isotopes from the Goas Magmatic Complex. Gondwana Research, 28(3): 961-986. https://doi.org/10.1016/j.gr.2014.08.007
    Miller, R. M., 2008. The Geology of Namibia. Ministry of Mines and Energy, Geological Survey of Namibia, Windhoek
    Mitchell, R. H., 2005. Carbonatites and Carbonatites and Carbonatites. The Canadian Mineralogist, 43(6): 2049-2068. https://doi.org/10.2113/gscanmin.43.6.2049
    Möller, V., Williams-Jones, A. E., 2016. Petrogenesis of the Nechalacho Layered Suite, Canada: Magmatic Evolution of a REE-Nb-Rich Nepheline Syenite Intrusion. Journal of Petrology, 57(2): 229-276. https://doi.org/10.1093/petrology/egw003
    Mollo, S., Vona, A., 2014. The Geochemical Evolution of Clinopyroxene in the Roman Province: A Window on Decarbonation from Wall-Rocks to Magma. Lithos, 192-195: 1-7. https://doi.org/10.1016/j.lithos.2014.01.009
    Moore, M., Chakhmouradian, A. R., Mariano, A. N., et al., 2015. Evolution of Rare-Earth Mineralization in the Bear Lodge Carbonatite, Wyoming: Mineralogical and Isotopic Evidence. Ore Geology Reviews, 64: 499-521. https://doi.org/10.1016/j.oregeorev.2014.03.015
    Müntener, O., Kelemen, P. B., Grove, T. L., 2001. The Role of H2O during Crystallization of Primitive Arc Magmas under Uppermost Mantle Conditions and Genesis of Igneous Pyroxenites: An Experimental Study. Contributions to Mineralogy and Petrology, 141(6): 643-658. https://doi.org/10.1007/s004100100266
    Nabyl, Z., Massuyeau, M., Gaillard, F., et al., 2020. A Window in the Course of Alkaline Magma Differentiation Conducive to Immiscible REE-Rich Carbonatites. Geochimica et Cosmochimica Acta, 282: 297-323. https://doi.org/10.1016/j.gca.2020.04.008
    Nikiforov, A. V., Öztürk, H., Altuncu, S., et al., 2014. Kizilcaören Ore-Bearing Complex with Carbonatites (Northwestern Anatolia, Turkey): Formation Time and Mineralogy of Rocks. Geology of Ore Deposits, 56(1): 35-60. https://doi.org/10.1134/s107570151401005x
    Nikiforov, A. V., Yarmolyuk, V. V., 2019. Late Mesozoic Carbonatite Provinces in Central Asia: Their Compositions, Sources and Genetic Settings. Gondwana Research, 69: 56-72. https://doi.org/10.1016/j.gr.2018.11.014
    Nikolenko, A. M., Redina, A. A., Doroshkevich, A. G., et al., 2018. The Origin of Magnetite-Apatite Rocks of Mushgai-Khudag Complex, South Mongolia: Mineral Chemistry and Studies of Melt and Fluid Inclusions. Lithos, 320/321: 567-582. https://doi.org/10.1016/j.lithos.2018.08.030
    Nikolenko, A. M., Doroshkevich, A. G., Ponomarchuk, A. V., et al., 2020. Ar-Ar Geochronology and Petrogenesis of the Mushgai-Khudag Alkaline-Carbonatite Complex (Southern Mongolia). Lithos, 372/373: 105675. https://doi.org/10.1016/j.lithos.2020.105675
    Notholt, A., Highley, D., Harding, R., 1985. Investigation of Phosphate (Apatite) Potential of Loch Borralan Igneous Complex, Northwest Highlands, Scotland. Transactions of the Institution of Mining and Metallurgy, Section B, Applied Earth Science, 94: 58--65
    Ntiharirizwa, S., Boulvais, P., Poujol, M., et al., 2018. Geology and U-Th-Pb Dating of the Gakara REE Deposit, Burundi. Minerals, 8(9): 394. https://doi.org/10.3390/min8090394
    O'Brien, H., Heilimo, E., Heino, P., 2015. The Archean Siilinjärvi Carbonatite Complex. Mineral Deposits of Finland. Elsevier, Amsterdam. 327-343. https://doi.org/10.1016/b978-0-12-410438-9.00013-3
    Oh, C. W., Lee, B. C., Yi, S. B., et al., 2019. Correlation of Paleoproterozoic Igneous and Metamorphic Events of the Korean Peninsula and China; Its Implication to the Tectonics of Northeast Asia. Precambrian Research, 326: 344-362. https://doi.org/10.1016/j.precamres.2018.03.010
    Öztürk, H., Altuncu, S., Hanilçi, N., et al., 2019. Rare Earth Element-Bearing Fluorite Deposits of Turkey: An Overview. Ore Geology Reviews, 105: 423-444. https://doi.org/10.1016/j.oregeorev.2018.12.021
    Padilha, D. F., Bitencourt, M. D. F., Nardi, L. V. S., et al., 2019. Sources and Settings of Ediacaran Post-Collisional Syenite-Monzonite-Diorite Shoshonitic Magmatism from Southernmost Brazil. Lithos, 344/345: 482-503. https://doi.org/10.1016/j.lithos.2019.06.004
    Parsons, I., 1965. The Feldspathic Syenites of the Loch Ailsh Intrusion, Assynt, Scotland. Journal of Petrology, 6(3): 365-394. https://doi.org/10.1093/petrology/6.3.365
    Parsons, I., McKirdy, A. P., 1983. Inter-Relationship of Igneous Activity and Thrusting in Assynt: Excavations at Loch Borralan. Scottish Journal of Geology, 19(1): 59-66. https://doi.org/10.1144/sjg19010059
    Peccerillo, A., 1992. Potassic and Ultrapotassic Rocks: Compositional Characteristics, Petrogenesis, and Geologic Significance. Episodes, 15(4): 243-251. https://doi.org/10.18814/epiiugs/1992/v15i4/002
    Pehrsson, S. J., Eglington, B. M., Evans, D. A. D., et al., 2016. Metallogeny and Its Link to Orogenic Style during the Nuna Supercontinent Cycle. Geological Society, London, Special Publications, 424(1): 83-94. https://doi.org/10.1144/sp424.5
    Peng, P., Zhai, M. G., Guo, J. H., et al., 2008. Petrogenesis of Triassic Post-Collisional Syenite Plutons in the Sino-Korean Craton: An Example from North Korea. Geological Magazine, 145(5): 637-647. https://doi.org/10.1017/s0016756808005037
    Pilet, S., Baker, M. B., Stolper, E. M., 2008. Metasomatized Lithosphere and the Origin of Alkaline Lavas. Science, 320(5878): 916-919. https://doi.org/10.1126/science.1156563
    Plank, T., 2014. The Chemical Composition of Subducting Sediments. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry (Second Edition). Elsevier, Oxford. 607-629. https://doi.org/10.1016/b978-0-08-095975-7.00319-3
    Poletti, J. E., Cottle, J. M., Hagen-Peter, G. A., et al., 2016. Petrochronological Constraints on the Origin of the Mountain Pass Ultrapotassic and Carbonatite Intrusive Suite, California. Journal of Petrology, 57(8): 1555-1598. https://doi.org/10.1093/petrology/egw050
    Prelević, D., Akal, C., Foley, S. F., et al., 2012. Ultrapotassic Mafic Rocks as Geochemical Proxies for Post-Collisional Dynamics of Orogenic Lithospheric Mantle: The Case of Southwestern Anatolia, Turkey. Journal of Petrology, 53(5): 1019-1055. https://doi.org/10.1093/petrology/egs008
    Prowatke, S., Klemme, S., 2005. Effect of Melt Composition on the Partitioning of Trace Elements between Titanite and Silicate Melt. Geochimica et Cosmochimica Acta, 69(3): 695-709. https://doi.org/10.1016/j.gca.2004.06.037
    Richards, J. P., 2011. High Sr/Y Arc Magmas and Porphyry Cu±Mo±Au Deposits: Just Add Water. Economic Geology, 106(7): 1075-1081. https://doi.org/10.2113/econgeo.106.7.1075
    Richards, J. P., Mumin, A. H., 2013. Magmatic-Hydrothermal Processes within an Evolving Earth: Iron Oxide-Copper-Gold and Porphyry Cu±Mo±Au Deposits. Geology, 41(7): 767-770. https://doi.org/10.1130/g34275.1
    Richards, J. P., 2015. Tectonic, Magmatic, and Metallogenic Evolution of the Tethyan Orogen: From Subduction to Collision. Ore Geology Reviews, 70: 323-345. https://doi.org/10.1016/j.oregeorev.2014.11.009
    Sarapää, O., Al-Ani, T., Lahti, S. I., et al., 2013. Rare Earth Exploration Potential in Finland. Journal of Geochemical Exploration, 133: 25-41. https://doi.org/10.1016/j.gexplo.2013.05.003
    Sarıfakıoğlu, E., Özen, H., Hall, C., 2009. Petrogenesis of Extension- Related Alkaline Volcanism in Karaburhan (Sivrihisar-Eskisehir), NW Anatolia, Turkey. Journal of Asian Earth Sciences, 35(6): 502-515. https://doi.org/10.1016/j.jseaes.2009.03.002
    Slezak, P., Spandler, C., Border, A., et al., 2021. Geology and Ore Genesis of the Carbonatite-Associated Yangibana REE District, Gascoyne Province, Western Australia. Mineralium Deposita, 56(5): 1007-1026. https://doi.org/10.1007/s00126-020-01026-z
    Smith, M. P., Moore, K., Kavecsánszki, D., et al., 2016. From Mantle to Critical Zone: A Review of Large and Giant Sized Deposits of the Rare Earth Elements. Geoscience Frontiers, 7(3): 315-334. https://doi.org/10.1016/j.gsf.2015.12.006
    Smithies, R. H., Marsh, J. S., 1998. The Marinkas Quellen Carbonatite Complex, Southern Namibia; Carbonatite Magmatism with an Uncontaminated Depleted Mantle Signature in a Continental Setting. Chemical Geology, 148(3/4): 201-212. https://doi.org/10.1016/s0009-2541(98)00029-1
    Sokół, K., Halama, R., Meliksetian, K., et al., 2018. Alkaline Magmas in Zones of Continental Convergence: The Tezhsar Volcano-Intrusive Ring Complex, Armenia. Lithos, 320/321: 172-191. https://doi.org/10.1016/j.lithos.2018.08.028
    Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science China Earth Sciences, 58(8): 1284-1304. https://doi.org/10.1007/s11430-015-5102-x
    Spandler, C., Slezak, P., Nazari-Dehkordi, T., 2020. Tectonic Significance of Australian Rare Earth Element Deposits. Earth-Science Reviews, 207: 103219. https://doi.org/10.1016/j.earscirev.2020.103219
    Stoppa, F., Schiazza, M., Rosatelli, G., et al., 2019. Italian Carbonatite System: From Mantle to Ore-Deposit. Ore Geology Reviews, 114: 103041. https://doi.org/10.1016/j.oregeorev.2019.103041
    Stumpfl, E. F., Kirikoglu, M. S., 1985. Fluorite-Barite-Rare Earths Deposits at Kizilcaoren, Turkey. S. Mitt. Österr. Geol. Ges. , 78: 193-200 http://www.landesmuseum.at/pdf_frei_remote/MittGeolGes_78_0193-0200.pdf
    Styles, M. T., Gunn, A. G., Rollin, K. E., 2004. A Preliminary Study of PGE in the Late Caledonian Loch Borralan and Loch Ailsh Alkaline Pyroxenite-Syenite Complexes, North-West Scotland. Mineralium Deposita, 39(2): 240-255. https://doi.org/10.1007/s00126-003-0404-x
    Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261-280. https://doi.org/10.1086/629302
    Thi, N. T., Wada, H., Ishikawa, T., et al., 2014. Geochemistry and Petrogenesis of Carbonatites from South Nam Xe, Lai Chau Area, Northwest Vietnam. Mineralogy and Petrology, 108(3): 371-390. https://doi.org/10.1007/s00710-013-0301-7
    Thirlwall, M. F., Burnard, P., 1990. Pb-Sr-Nd Isotope and Chemical Study of the Origin of Undersaturated and Oversaturated Shoshonitic Magmas from the Borralan Pluton, Assynt, NW Scotland. Journal of the Geological Society, 147(2): 259-269. https://doi.org/10.1144/gsjgs.147.2.0259
    Thompson, R. N., Fowler, M. B., 1986. Subduction-Related Shoshonitic and Ultrapotassic Magmatism: A Study of Siluro-Ordovician Syenites from the Scottish Caledonides. Contributions to Mineralogy and Petrology, 94(4): 507-522. https://doi.org/10.1007/bf00376342
    Tucker, R. D., Belkin, H. E., Schulz, K. J., et al., 2012. A Major Light Rare-Earth Element (Lree) Resource in the Khanneshin Carbonatite Complex, Southern Afghanistan. Economic Geology, 107(2): 197-208. https://doi.org/10.2113/econgeo.1f07.2.197
    Vasyukova, O. V., Williams-Jones, A. E., 2019. Tracing the Evolution of a Fertile REE Granite by Modelling Amphibole-Melt Partitioning, the Strange Lake Story. Chemical Geology, 514: 79-89. https://doi.org/10.1016/j.chemgeo.2019.03.030
    Veevers, J. J., 2007. Pan-Gondwanaland Post-Collisional Extension Marked by 650-500 Ma Alkaline Rocks and Carbonatites and Related Detrital Zircons: A Review. Earth-Science Reviews, 83(1/2): 1-47. https://doi.org/10.1016/j.earscirev.2007.03.001
    Veksler, I. V., Petibon, C., Jenner, G. A., et al., 1998. Trace Element Partitioning in Immiscible Silicate-Carbonate Liquid Systems: An Initial Experimental Study Using a Centrifuge Autoclave. Journal of Petrology, 39(11/12): 2095-2104. https://doi.org/10.1093/petroj/39.11-12.2095
    Vigneresse, J. L., Ballouard, C., Liu, X., et al., 2021. Toward a Global Conceptual Model for Metal Enrichment in Felsic, Mafic-Ultramafic, and Alkaline-Carbonatitic Magmas. Ore Geology Reviews, 129: 103925. https://doi.org/10.1016/j.oregeorev.2020.103925
    von Knorring, O., Clifford, T. N., 1960. On a Skarn Monazite Occurrence from the Namib Desert near Usakos, South-West Africa. Mineralogical Magazine and Journal of the Mineralogical Society, 32(251): 650-653. https://doi.org/10.1180/minmag.1960.032.251.06
    Wall, F., Mariano, A. N., 1995. Rare Earth Minerals in Carbonatites: A Discussion Centred on the Kangankunde Carbonatite, Malawi. Mineralogical Society Series, 7: 193-226 http://www.researchgate.net/publication/304098756_Rare_earth_minerals_in_carbonatites_A_discussion_centred_on_the_Kangankunde_carbonatite_Malawi
    Walsh, J. N., Buckley, F., Barker, J., 1981. The Simultaneous Determination of the Rare-Earth Elements in Rocks Using Inductively Coupled Plasma Source Spectrometry. Chemical Geology, 33(1/2/3/4): 141-153. https://doi.org/10.1016/0009-2541(81)90091-7
    Walters, A. S., Goodenough, K. M., Hughes, H. S. R., et al., 2013. Enrichment of Rare Earth Elements during Magmatic and Post-Magmatic Processes: A Case Study from the Loch Loyal Syenite Complex, Northern Scotland. Contributions to Mineralogy and Petrology, 166(4): 1177-1202. https://doi.org/10.1007/s00410-013-0916-z
    Wang, D. H., Yang, J. M., Yan, S. H., et al., 2001. A Special Orogenic-Type Rare Earth Element Deposit in Maoniuping, Sichuan, China: Geology and Geochemistry. Resource Geology, 51(3): 177-188. https://doi.org/10.1111/j.1751-3928.2001.tb00090.x
    Wang, T., Guo, L., Zhang, L., et al., 2015. Timing and Evolution of Jurassic-Cretaceous Granitoid Magmatisms in the Mongol-Okhotsk Belt and Adjacent Areas, NE Asia: Implications for Transition from Contractional Crustal Thickening to Extensional Thinning and Geodynamic Settings. Journal of Asian Earth Sciences, 97: 365-392. https://doi.org/10.1016/j.jseaes.2014.10.005
    Weckmann, U., Ritter, O., Haak, V., 2003. A Magnetotelluric Study of the Damara Belt in Namibia: 2. MT Phases over 90° Reveal the Internal Structure of the Waterberg Fault/Omaruru Lineament. Physics of the Earth and Planetary Interiors, 138(2): 91-112. https://doi.org/10.1016/s0031-9201(03)00079-7
    Weller, O. M., St-Onge, M. R., 2017. Record of Modern-Style Plate Tectonics in the Palaeoproterozoic Trans-Hudson Orogen. Nature Geoscience, 10(4): 305-311. https://doi.org/10.1038/ngeo2904
    Whalen, J. B., Wodicka, N., Taylor, B. E., et al., 2010. Cumberland Batholith, Trans-Hudson Orogen, Canada: Petrogenesis and Implications for Paleoproterozoic Crustal and Orogenic Processes. Lithos, 117(1/2/3/4): 99-118. https://doi.org/10.1016/j.lithos.2010.02.008
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185-187. https://doi.org/10.2138/am.2010.3371
    Williams-Jones, A. E., Samson, I. M., Olivo, G. R., 2000. The Genesis of Hydrothermal Fluorite-REE Deposits in the Gallinas Mountains, New Mexico. Economic Geology, 95(2): 327-341. https://doi.org/10.2113/gsecongeo.95.2.327
    Woodard, J., Hetherington, C. J., 2014. Carbonatite in a Post-Collisional Tectonic Setting: Geochronology and Emplacement Conditions at Naantali, SW Finland. Precambrian Research, 240: 94-107. https://doi.org/10.1016/j.precamres.2013.10.017
    Woolley, A. R., Symes, R. F., Elliott, C. J., 1972. Metasomatized (Fenitized) Quartzites from the Borralan Complex, Scotland. Mineralogical Magazine, 38(299): 819-836. https://doi.org/10.1180/minmag.1972.038.299.06
    Woolley, A. R., 1970. The Structural Relationships of the Loch Borrolan Complex, Scotland. Geological Journal, 7(1): 171-182. https://doi.org/10.1002/gj.3350070110
    Xie, Y. L., Li, Y. X., Hou, Z. Q., et al., 2015. A Model for Carbonatite Hosted REE Mineralisation—The Mianning-Dechang REE Belt, Western Sichuan Province, China. Ore Geology Reviews, 70: 595-612. https://doi.org/10.1016/j.oregeorev.2014.10.027
    Xu, C., Huang, Z. L., Liu, C. Q., et al., 2003. Geochemistry of Carbonatites in Maoniuping REE Deposit, Sichuan Province, China. Science in China Series D: Earth Sciences, 46(3): 246-256. https://doi.org/10.1360/03yd9023
    Xu, C., Campbell, I. H., Kynicky, J., et al., 2008. Comparison of the Daluxiang and Maoniuping Carbonatitic REE Deposits with Bayan Obo REE Deposit, China. Lithos, 106(1/2): 12-24. https://doi.org/10.1016/j.lithos.2008.06.005
    Xu, C., Taylor, R. N., Li, W. B., et al., 2012. Comparison of Fluorite Geochemistry from REE Deposits in the Panxi Region and Bayan Obo, China. Journal of Asian Earth Sciences, 57: 76-89. https://doi.org/10.1016/j.jseaes.2012.06.007
    Yang, Y. T., Guo, Z. X., Song, C. C., et al., 2015. A Short-Lived but Significant Mongol-Okhotsk Collisional Orogeny in Latest Jurassic-Earliest Cretaceous. Gondwana Research, 28(3): 1096-1116. https://doi.org/10.1016/j.gr.2014.09.010
    Yasukawa, K., Nakamura, K., Fujinaga, K., et al., 2016. Tracking the Spatiotemporal Variations of Statistically Independent Components Involving Enrichment of Rare-Earth Elements in Deep-Sea Sediments. Scientific Reports, 6: 29603. https://doi.org/10.1038/srep29603
    Ying, Y. C., Chen, W., Lu, J., et al., 2017. In situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290/291: 159-171. https://doi.org/10.1016/j.lithos.2017.08.003
    Young, B. N., Parsons, I., Threadgould, R., 1994. Carbonatite near the Loch Borralan Intrusion, Assynt. Journal of the Geological Society, 151(6): 945-954. https://doi.org/10.1144/gsjgs.151.6.0945
    Zanetti, A., Mazzucchelli, M., Rivalenti, G., et al., 1999. The Finero Phlogopite-Peridotite Massif: An Example of Subduction-Related Metasomatism. Contributions to Mineralogy and Petrology, 134(2/3): 107-122. https://doi.org/10.1007/s004100050472
    Zheng, X., Liu, Y., 2019. Mechanisms of Element Precipitation in Carbonatite-Related Rare-Earth Element Deposits: Evidence from Fluid Inclusions in the Maoniuping Deposit, Sichuan Province, Southwestern China. Ore Geology Reviews, 107: 218-238. https://doi.org/10.1016/j.oregeorev.2019.02.021
    Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76-93. https://doi.org/10.1016/j.earscirev.2017.01.012
    Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(1091) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return