Citation: | Xinyu Liu, Qi Zhang, Chengli Zhang. Identification of the Original Tectonic Setting for Oceanic Andesite Using Discrimination Diagrams: An Approach Based on Global Geochemical Data Synthesis. Journal of Earth Science, 2022, 33(3): 696-705. doi: 10.1007/s12583-021-1507-y |
Systematical analyses of data from GEOROC and PetDB database show that large amount of Cenozoic andesites occurred in the various oceanic environments such as mid-oceanic ridge, plume- related island and oceanic arc. In this study, we employed the geochemical data of 351 mid-ocean ridge andesites (MORA), 2 539 plume-related andesites (PRA) and 3 488 oceanic arc andesites (OAA) from the database to discuss the relationship between andesite tectonic settings and their geochemical features, thereby making an attempt to construct tectonic discrimination diagrams. Based on the data-driven pattern, all available elements were employed to derive logratios for the possible coordinates, and the overlap-rate calculation was adopted to evaluate the discrimination effect of more than 330 000 prospective diagrams. Finally, four tectonic discrimination diagrams have been successfully established to identify MORA, PRA and OAA, which can be utilized to identify the original settings of andesite with an age range from Cenozoic to Archean a certain extent. Of these diagrams, PRA is mainly distinguished by high LREE/HREE ratio due to enriched mantle source. Whereas, OAA is mainly characterized by high LILE/HFSE ratio, which reveals that fluids derived from subducted slab play an important role in forming oceanic arc andesites. Consequently, the petrogenesis of andesites is closely related to their tectonic settings. However, it should be noted that those andesites formed in both continental and oceanic environments cannot be effectively distinguished using these diagrams. We strongly recommend integrating the discrimination diagrams result with other geological information to reach a comprehensive interpretation of evolution history with those ancient andesites. This paper presents a case study which suggests that data-driven method is a powerful tool for solving geological problems in this 'big data' era.
Agrawal, S., Guevara, M., Verma, S. P., 2008. Tectonic Discrimination of Basic and Ultrabasic Volcanic Rocks through Log-Transformed Ratios of Immobile Trace Elements. International Geology Review, 50(12): 1057–1079. https://doi.org/10.2747/0020-6814.50.12.1057 |
Aitchison, J., 1986. The Statistical Analysis of Compositional Data. Springer Netherlands, Berlin. 430 |
Annen, C., Sparks, R. S. J., 2002. Effects of Repetitive Emplacement of Basaltic Intrusions on Thermal Evolution and Melt Generation in the Crust. Earth and Planetary Science Letters, 203(3/4): 937–955. https://doi.org/10.1016/s0012-821x(02)00929-9 |
Annen, C., Blundy, J. D., Sparks, R. S. J., 2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 47(3): 505–539. https://doi.org/10.1093/petrology/egi084 |
Arevalo, R. Jr., McDonough, W. F., 2010. Chemical Variations and Regional Diversity Observed in MORB. Chemical Geology, 271(1/2): 70–85. https://doi.org/10.1016/j.chemgeo.2009.12.013 |
Bailey, J. C., 1981. Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites. Chemical Geology, 32(1/2/3/4): 139–154. https://doi.org/10.1016/0009-2541(81)90135-2 |
Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605–626. https://doi.org/10.1016/S0024-4937(98)00085-1 |
Beier, C., Haase, K. M., Brandl, P. A., et al., 2017. Primitive Andesites from the Taupo Volcanic Zone Formed by Magma Mixing. Contributions to Mineralogy and Petrology, 172(5): 1–14. https://doi.org/10.1007/s00410-017-1354-0 |
Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., 2006. Compositional Data Analysis in the Geosciences: From Theory to Practice. Geological Society, London. 214 |
Capedri, S., Venturelli, G., Bocchi, G., et al., 1980. The Geochemistry and Petrogenesis of an Ophiolitic Sequence from Pindos, Greece. Contributions to Mineralogy and Petrology, 74(2): 189–200. https://doi.org/10.1007/bf01132004 doi: 10.1007/BF01132004 |
Chappell, B. W., Stephens, W. E., 1988. Origin of Infracrustal (Ⅰ-Type) Granite Magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2/3): 71–86. https://doi.org/10.1017/s0263593300014139 |
Chen, L., Zhao, Z. F., 2017. Origin of Continental Arc Andesites: The Composition of Source Rocks is the Key. Journal of Asian Earth Sciences, 145: 217–232. https://doi.org/10.1016/j.jseaes.2017.04.012 |
DeMets, C., Gordon, R. G., Argus, D. F., et al., 1990. Current Plate Motions. Geophysical Journal International, 101(2): 425–478. https://doi.org/10.1111/j.1365-246x.1990.tb06579.x doi: 10.1111/j.1365-246X.1990.tb06579.x |
DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189–202. https://doi.org/10.1016/0012-821x(81)90153-9 doi: 10.1016/0012-821X(81)90153-9 |
Frisch, W., Meschede, M., Blakey, R., 2011. Plate Tectonics: Continental Drift and Mountain Building. Springer-Verlag Berlin, Heidelberg, London. 1–212 |
Ge, C., Gu, H. O., Wang, F. Y., et al., 2018. Determination of Distribution Region Based on Data Density: A Case Study of TAS Diagram. Chinese Journal of Geology, 53(4): 1240–1253 (in Chinese with English Abstract) |
Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics. Springer-Verlag Berlin Heidelberg, New York. 387 |
Gómez-Tuena, A., Straub, S. M., Zellmer, G. F., 2014. An Introduction to Orogenic Andesites and Crustal Growth. Geological Society, London, Special Publications, 385(1): 1–13. https://doi.org/10.1144/sp385.16 doi: 10.1144/SP385.16 |
Green, T. H., Ringwood, A. E., 1968. Genesis of the Calc-Alkaline Igneous Rock Suite. Contributions to Mineralogy and Petrology, 18(2): 105–162. https://doi.org/10.1007/bf00371806 doi: 10.1007/BF00371806 |
Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., et al., 2003. Fractional Crystallization and Mantle-Melting Controls on Calc-Alkaline Differentiation Trends. Contributions to Mineralogy and Petrology, 145(5): 515–533. https://doi.org/10.1007/s00410-003-0448-z |
Grove, T. L., Baker, M. B., 1984. Phase Equilibrium Controls on the Tholeiitic Versus Calc-Alkaline Differentiation Trends. Journal of Geophysical Research: Solid Earth, 89(B5): 3253–3274. https://doi.org/10.1029/jb089ib05p03253 doi: 10.1029/JB089iB05p03253 |
Guo, F., Nakamura, E., Fan, W. M., et al., 2009. Mineralogical and Geochemical Constraints on Magmatic Evolution of Paleocene Adakitic Andesites from the Yanji Area, NE China. Lithos, 112(3/4): 321–341. https://doi.org/10.1016/j.lithos.2009.03.017 |
Halliday, A. N., Lee, D. C., Tommasini, S., et al., 1995. Incompatible Trace Elements in OIB and MORB and Source Enrichment in the Sub-Oceanic Mantle. Earth and Planetary Science Letters, 133(3/4): 379–395. https://doi.org/10.1016/0012-821x(95)00097-v |
Han, Q. S., Peng, S. B., Polat, A., et al., 2018. A ca. 2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China: Evidence from High-Mg Basalts and Andesites. Precambrian Research, 309: 309–324. https://doi.org/10.1016/j.precamres.2017.05.015 |
Hawkesworth, C. J., Hergt, J. M., Ellam, R. M., et al., 1991. Element Fluxes Associated with Subduction Related Magmatism. Philosophical Transactions of the Royal Society, 335: 393–405. https://doi.org/10.1098/rsta.1991.0054 |
He, H. Y., Li, Y. L., Wang, C. S., et al., 2018. Late Cretaceous (ca. 95 Ma) Magnesian Andesites in the Biluoco Area, Southern Qiangtang Subterrane, Central Tibet: Petrogenetic and Tectonic Implications. Lithos, 302/303: 389–404. https://doi.org/10.1016/j.lithos.2018.01.013 |
Hoffmann, I. B., Philipp, R. P., Borghetti, C., 2018. Geochemistry and Origin of the Rhyacian Tholeiitic Metabasalts and Meta-Andesites from the Vila Nova Greenstone Belt, Guyana Shield, Amapá, Brazil. Journal of South American Earth Sciences, 88: 29–49. https://doi.org/10.1016/j.jsames.2018.07.009 |
Jiao, S. T., Zhang, Q., Zhou, Y. Z., et al., 2018. Progress and Challenges of Big Data Research on Petrology and Geochemistry. Solid Earth Sciences, 3(4): 105–114. https://doi.org/10.1016/j.sesci.2018.06.002 |
Kay, S. M., Kay, R. W., Citron, G. P., 1982. Tectonic Controls on Tholeiitic and Calc-Alkaline Magmatism in the Aleutian Arc. Journal of Geophysical Research: Solid Earth, 87(B5): 4051–4072. https://doi.org/10.1029/jb087ib05p04051 doi: 10.1029/JB087iB05p04051 |
Kelemen, P. B., 1995. Genesis of High Mg# Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1): 1–19. https://doi.org/10.1007/bf00311004 doi: 10.1007/BF00311004 |
Li, X. W., Mo, X. X., Yu, X. H., et al., 2013. Petrology and Geochemistry of the Early Mesozoic Pyroxene Andesites in the Maixiu Area, West Qinling, China: Products of Subduction or Syn-Collision? Lithos, 172/173: 158–174. https://doi.org/10.1016/j.lithos.2013.04.010 |
Maitre, R. W. L., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge. 254 |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 |
Mayer-Schnberger, V., Cukier, K., 2013. Big Data: A Revolution That Will Transform How We Live, Work, and Think. Houghton Mifflin Harcourt, Boston. 256 |
McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4): 358–374. https://doi.org/10.1016/0012-821x(91)90029-h |
Michael, P. J., Cornell, W. C., 1998. Influence of Spreading Rate and Magma Supply on Crystallization and Assimilation beneath Mid-Ocean Ridges: Evidence from Chlorine and Major Element Chemistry of Mid-Ocean Ridge Basalts. Journal of Geophysical Research: Solid Earth, 103(B8): 18325–18356. https://doi.org/10.1029/98jb00791 doi: 10.1029/98JB00791 |
Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321–355. https://doi.org/10.2475/ajs.274.4.321 |
Niu, Y. L., Batiza, R., 1993. Chemical Variation Trends at Fast and Slow Spreading Mid-Ocean Ridges. Journal of Geophysical Research: Solid Earth, 98(B5): 7887–7902. https://doi.org/10.1029/93jb00149 doi: 10.1029/93JB00149 |
Pawlowsky, G. V., Egozcue, J. J., 2006. Compositional Data and Their Analysis: an Introduction. Geological Society, London, Special Publications, 264(1): 1–10. https://doi.org/10.1144/gsl.sp.2006.264.01.01 doi: 10.1144/GSL.SP.2006.264.01.01 |
Pearce, J. A., Cann, J. R., 1971. Ophiolite Origin Investigated by Discriminant Analysis Using Ti, Zr and Y. Earth and Planetary Science Letters, 12(3): 339–349. https://doi.org/10.1016/0012-821x(71)90220-2 doi: 10.1016/0012-821X(71)90220-2 |
Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290–300. https://doi.org/10.1016/0012-821x(73)90129-5 doi: 10.1016/0012-821X(73)90129-5 |
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984a. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956 |
Pearce, J. A., Lippard, S. J., Roberts, S., 1984b. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geological Society, London, Special Publications, 16(1): 77–94. https://doi.org/10.1144/gsl.sp.1984.016.01.06 doi: 10.1144/GSL.SP.1984.016.01.06 |
Pertermann, M., Hirschmann, M. M., 2003. Anhydrous Partial Melting Experiments on MORB-like Eclogite. Journal of Petrology, 44(12): 2173–2201 doi: 10.1093/petrology/egg074 |
Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825–828. https://doi.org/10.1130/0091-7613(1993)0210825:oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2 |
Sarbas, B., Nohl, U., 2009. The GEOROC Database—A Decade of "Online Geochemistry". Geochmica et Cosmochimica Acta, 73(13): A1158 |
Spencer, C. J., Dyck, B., Mottram, C. M., et al., 2019. Deconvolving the Pre-Himalayan Indian Margin—Tales of Crustal Growth and Destruction. Geoscience Frontiers, 10(3): 863–872. https://doi.org/10.1016/j.gsf. 2018.02.007 doi: 10.1016/j.gsf.2018.02.007 |
Straub, S. M., Gomez-Tuena, A., Stuart, F. M., et al., 2011. Formation of Hybrid Arc Andesites beneath Thick Continental Crust. Earth and Planetary Science Letters, 303(3/4): 337–347. https://doi.org/10.1016/j.epsl.2011.01.013 |
Streck, M. J., Leeman, W. P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351–354. https://doi.org/10.1130/g23286a.1 doi: 10.1130/G23286A.1 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 |
Szilas, K., Hoffmann, J. E., Scherstén, A., et al., 2013. Archaean Andesite Petrogenesis: Insights from the Grædefjord Supracrustal Belt, Southern West Greenland. Precambrian Research, 236: 1–15. https://doi.org/10.1016/j.precamres.2013.07.013 |
Takahashi, E., 1986. Genesis of Calc-Alkali Andesite Magma in a Hydrous Mantle-Crust Boundary: Petrology of Lherzolite Xenoliths from the Ichinomegata Crater, Oga Peninsula, Northeast Japan, Part Ⅱ. Journal of Volcanology and Geothermal Research, 29(1/2/3/4): 355–395. https://doi.org/10.1016/0377-0273(86)90051-x |
Verma, S. P., Verma, S. K., 2013. First 15 Probability-Based Multidimensional Tectonic Discrimination Diagrams for Intermediate Magmas and Their Robustness Against Postemplacement Compositional Changes and Petrogenetic Processes. Turkish Journal of Earth Sciences, 22: 931–995. https://doi.org/10.3906/yer-1204-6 |
Verma, S. P., Rivera-Gómez, M. A., Díaz-González, L., et al., 2016. Log-Ratio Transformed Major Element Based Multidimensional Classification for Altered High-Mg Igneous Rocks. Geochemistry, Geophysics, Geosystems, 17(12): 4955–4972. https://doi.org/10.1002/2016gc006652 doi: 10.1002/2016GC006652 |
Wanless, V. D., Perfit, M. R., Ridley, W. I., et al., 2010. Dacite Petrogenesis on Mid-Ocean Ridges: Evidence for Oceanic Crustal Melting and Assimilation. Journal of Petrology, 51(12): 2377–2410. https://doi.org/10.1093/petrology/egq056 |
Weaver, B. L., Wood, D. A., Tarney, J., et al., 1986. Role of Subducted Sediment in the Genesis of Ocean-Island Basalts: Geochemical Evidence from South Atlantic Ocean Islands. Geology, 14(4): 275–278. https://doi.org/10.1130/0091-7613(1986)14275:rossit>2.0.co;2 doi: 10.1130/0091-7613(1986)14<275:ROSSIT>2.0.CO;2 |
Weaver, B. L., 1991a. Trace Element Evidence for the Origin of Ocean-Island Basalts. Geology, 19(2): 123–126. https://doi.org/10.1130/0091-7613(1991)0190123:teefto>2.3.co;2 doi: 10.1130/0091-7613(1991)019<0123:TEEFTO>2.3.CO;2 |
Weaver, B. L., 1991b. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2/3/4): 381–397. https://doi.org/10.1016/0012-821x(91)90217-6 |
Wilkinson, J. F. G., 1982. The Genesis of Mid-Ocean Ridge Basalt. Earth-Science Reviews, 18(1): 1–57. https://doi.org/10.1016/0012-8252(82)90002-2 |
Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30. https://doi.org/10.1016/0012-821x(80)90116-8 doi: 10.1016/0012-821X(80)90116-8 |
Wood, D. A., Joron, J. L., Treuil, M., 1979. A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings. Earth and Planetary Science Letters, 45(2): 326–336. https://doi.org/10.1016/0012-821x(79)90133-x doi: 10.1016/0012-821X(79)90133-X |
Yang, Z. F., Li, J., Jiang, Q. B., et al., 2019. Using Major Element Logratios to Recognize Compositional Patterns of Basalt: Implications for Source Lithological and Compositional Heterogeneities. Journal of Geophysical Research: Solid Earth, 124(4): 3458–3490. https://doi.org/10.1029/2018jb016145 doi: 10.1029/2018JB016145 |
Zheng, Y. F., 2019. Subduction Zone Geochemistry. Geoscience Frontiers, 10(4): 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003 |
Zhu, M. S., Miao, L. C., Yang, S. H., 2013. Genesis and Evolution of Subduction-Zone Andesites: Evidence from Melt Inclusions. International Geology Review, 55(10): 1179–1190. https://doi.org/10.1080/00206814.2013.767527 |