Citation: | Xiao Shi, Jianxin Yu, Yuewu Sun, Zhen Xu, Hui Li. A Novel Gymnosperm Wood from the Lopingian (Late Permian) in Zhangzi, Shanxi, North China and Its Paleoecological and Paleogeographic Implications. Journal of Earth Science, 2024, 35(1): 167-176. doi: 10.1007/s12583-021-1510-3 |
The Permian-Triassic transition saw extreme climatic changes that severely impacted the terrestrial ecosystem. Fossil plants, particularly fossil woods, are sensitive to climatic changes, and they, therefore, are unique materials revealing extreme environmental and climatic changes on land at that time. Abundant conifer woods were discovered in the Lopingian (Late Permian) strata of the Sunjiagou Formation in Shanxi Province, North China. The newly finding permineralized woods record the unique landscape of Lopingian North China. They represent a new conifer genus and species:
Brea, M., Artabe, A., Spalletti, L. A., 2008. Ecological Reconstruction of a Mixed Middle Triassic Forest from Argentina. Alcheringa, 32(4): 365–393. https://doi.org/10.1080/03115510802417760 |
Brea, M., Matheos, S. D., Raigemborn, M. S., et al., 2011. Paleoecology and Paleoenvironments of Podocarp Trees in the Ameghino Petrified Forest (Golfo San Jorge Basin, Patagonia, Argentina): Constraints for Early Paleogene Paleoclimate. Geologica Acta, 9(1): 13–28. https://doi.org/10.1344/105.000001647 |
Domeier, M., Torsvik, T. H., 2014. Plate Tectonics in the Late Paleozoic. Geoscience Frontiers, 5(3): 303–350. https://doi.org/10.1016/j.gsf.2014.01.002 |
Dubiel, R. F., Smoot, J. P., 1994. Criteria for Interpreting Paleoclimate from Red Beds: A Tool for Pangean Reconstructions. In: Embry, A. F., Beauchamp, B., Glass, B. J., eds., Pangea: Global Environments and Resources, Canadian Society of Petroleum Geologists, Memoir. Canadian Society of Petroleum Geologists, Calgary, 17: 295–310 |
Falcon-Lang, H. J., 2000a. A Method to Distinguish between Woods Produced by Evergreen and Deciduous Coniferopsids on the Basis of Growth Ring Anatomy: A New Palaeoecological Tool. Palaeontology, 43(4): 785–793. https://doi.org/10.1111/1475-4983.00149 |
Falcon-Lang, H. J., 2000b. The Relationship between Leaf Longevity and Growth Ring Markedness in Modern Conifer Woods and Its Implications for Palaeoclimatic Studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(3/4): 317–328. https://doi.org/10.1016/S0031-0182(00)00079-1 |
Falcon-Lang, H. J., 2003. Growth Interruptions in Silicified Conifer Woods from the Upper Cretaceous Two Medicine Formation, Montana, USA: Implications for Palaeoclimate and Dinosaur Palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 199(3/4): 299–314. https://doi.org/10.1016/s0031-0182(03)00539-x |
Feng, Z., Wang, J., Rößler, R., 2010. Palaeoginkgoxylon Zhoui, a New Ginkgophyte Wood from the Guadalupian (Permian) of China and Its Evolutionary Implications. Review of Palaeobotany and Palynology, 162(2): 146–158. https://doi.org/10.1016/j.revpalbo.2010.06.010 |
Feng, Z., 2012. Ningxiaites Specialis, a New Woody Gymnosperm from the Uppermost Permian of China. Review of Palaeobotany and Palynology, 181: 34–46. https://doi.org/10.1016/j.revpalbo.2012.05.005 |
Feng, Z., Wang, J., Liu, L. J., et al., 2012. A Novel Coniferous Tree Trunk with Septate Pith from the Guadalupian (Permian) of China: Ecological and Evolutionary Significance. International Journal of Plant Sciences, 173(7): 835–848. https://doi.org/10.1086/666660 |
He, J., Wang, S. J., Hilton, J., et al., 2013. Xuanweioxylon Scalariforme Gen. et Sp. Nov. : Novel Permian Coniferophyte Stems with Scalariform Bordered Pitting on Secondary Xylem Tracheids. Review of Palaeobotany and Palynology, 197: 152–165. https://doi.org/10.1016/j.revpalbo.2013.05.010 |
He, X. Z., Wang, S. J., Wan, M. L., et al., 2016. Gigantopteris Schenk Ex Yabe in the Capitanian-Wuchiapingian (Middle–Late Permian) Flora of Central Shanxi in North China: Palaeobiogeographical and Palaeoecological Implications. Journal of Asian Earth Sciences, 116: 115–121. https://doi.org/10.1016/j.jseaes.2015.11.009 |
Haberlandt, G., 1914. Physiological Plant Anatomy. Macmillan and Co., London |
Hu, S. R., Gao, W. T., Liu, H., 1990. The Discovery of the Plane of Unconfirmity under the Bottom Surface of Pingdingshan Sandstone and the Preliminary Discussion about the Boundary of the Permian–Triassic System, Henan Province. Coal Geology & Exploration, 18(4): 12–15, 71 (in Chinese with English Abstract) |
Li, X. X., 1997. The Origin, Evolution and Distribution of the Cathaysian Flora in East Asia. Acta Palaeontologica Sinica, 36: 411–422. (in Chinese with English Abstract) |
Liu, J., Li, L., 2013. Large Tetrapod Burrows from the Permian Naobaogou Formation of the Daqingshan Area, Nei Mongol, China. Acta Geologica Sinica: English Edition, 87(6): 1501–1507. https://doi.org/10.1111/1755-6724.12154 |
Looy, C. V., Ranks, S. L., Chaney, D. S., et al., 2016. Biological and Physical Evidence for Extreme Seasonality in Central Permian Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology, 451: 210–226. https://doi.org/10.1016/j.palaeo.2016.02.016 |
Metcalfe, C. R., Chalk, L., 1950. Anatomy of the Dicotyledons. Clarendon Press, Oxford |
Mikesell, J. E., Schroeder, A. C., 1980. Development of Chambered Pith in Stems of Phytolacca Americana L. (Phytolaccaceae). American Journal of Botany, 67(1): 111–118. https://doi.org/10.1002/j.1537-2197.1980.tb07629.x |
Montañez, I. P., Tabor, N. J., Niemeier, D., et al., 2007. CO2-Forced Climate and Vegetation Instability during Late Paleozoic Deglaciation. Science, 315(5808): 87–91. https://doi.org/10.1126/science.1134207 |
Norin, E., 1924. The Lithological Character of the Permian Sediments of the Angara Series in Central Shansi, N. China. Geologiska Föreningen i Stockholm Förhandlingar, 46(1/2): 19–55. https://doi.org/10.1080/11035892409444877 |
Norin, E., 1922. The Late Palaeozoic and Early Mesozoic Sediments of Central Shansi. Bulletin of the Geological Survey of China, 4: 1–79 |
Ouyang, S., Hou, J. P., 1999. On Characteristics of the Cathaysian Palynoflora. Acta Palaeontologica Sinica, 38(3): 261–281 (in Chinese with English Abstract) |
Parrish, J. T., 1995. Geologic Evidence of Permian Climate. In: Scholle, P. A., Tadeusz, M. P., Ulmer-Scholle, D. S., eds., The Permian of Northern Pangea. Springer Verlag, London. 53–61 |
Parrish, J. T., 1998. Interpreting Pre-Quaternary Climate from the Geologic Record. Columbia University Press, New York |
Pant, D. D., Singh, V. K., 1987. Xylotomy of Some Woods from Raniganj Formation (Permian), Raniganj Coalfield, India. Palaeontographica B, 203: 5–82 |
Philippe, M., Bamford, M. K., 2008. A Key to Morphogenera Used for Mesozoic Conifer-Like Woods. Review of Palaeobotany and Palynology, 148(2/3/4): 184–207. https://doi.org/10.1016/j.revpalbo.2007.09.004 |
Philippe, M., 1995. Bois Fossiles du Jurassique de Franche-Comté (Nord-est de la France): Systématique et Biogéographie. Palaeontogr., Abt. B, 236: 45–103 |
Schweingruber, F. H., 1992. Annual Growth Rings and Growth Zones in Woody Plants in Southern Australia. IAWA Journal, 13(4): 359–379. https://doi.org/10.1163/22941932-90001290 |
Schweingruber, F. H., 1996. Tree Rings and Environment Dendroecology. Swiss Federal Institute for Forest, Berne. 1–609 |
Sheldon, N. D., 2005. Do Red Beds Indicate Paleoclimatic Conditions?: A Permian Case Study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3/4): 305–319. https://doi.org/10.1016/j.palaeo.2005.06.009 |
Shi, G. R., Waterhouse, J. B., 2010. Late Palaeozoic Global Changes Affecting High-Latitude Environments and Biotas: An Introduction. Palaeogeography, Palaeoclimatology, Palaeoecology, 298(1/2): 1–16. https://doi.org/10.1016/j.palaeo.2010.07.021 |
Shi, X. A., Yu, J. X., Li, H., et al., 2014. Xinjiangoxylon Gen. Nov., a New Gymnosperm from the Latest Permian of China. Acta Geologica Sinica: English Edition, 88(5): 1356–1363. https://doi.org/10.1111/1755-6724.12303 |
Shi, X., Yu, J. X., Broutin, J., et al., 2015. Junggaropitys, a New Gymnosperm Stem from the Middle-Late Triassic of Junggar Basin, Northwest China, and Its Palaeoecological and Palaeoclimatic Implications. Review of Palaeobotany and Palynology, 223: 10–20. https://doi.org/10.1016/j.revpalbo.2015.07.013 |
Shi, X., Yu, J. X., Broutin, J., et al., 2017. Turpanopitys Taoshuyuanense Gen. et Sp. Nov., a Novel Woody Branch Discovered in Early Triassic Deposits of the Turpan Basin, Northwest China, and Its Palaeoecological and Palaeoclimate Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 468: 314–326. https://doi.org/10.1016/j.palaeo.2016.12.026 |
Shi, X. A., Lang, J. B., Li, N., et al., 2021. Fossil Woods from the Olenekian (Late Early Triassic) Shaofanggou Formation in the Junggar Basin, Northern Xinjiang, North-West China. Geological Journal, 56(12): 6223–6230. https://doi.org/10.1002/gj.4193 |
Speer, J. H., 2010. Fundamentals of Tree Ring Research. The University of Arizona Press, Tucson. 1–360 |
Šternberg, K., Auinger, E. A., Both, F., et al., 1820. Versuch einer Geognostisch-Botanischen Darstellung der Flora der Vorwelt. In Kommission im Deutschen Museum, Leipzig Und. |
Stevens, L. G., Hilton, J., Bond, D. P. G., et al., 2011. Radiation and Extinction Patterns in Permian Floras from North China as Indicators for Environmental and Climate Change. Journal of the Geological Society, 168(2): 607–619. https://doi.org/10.1144/0016-76492010-042 |
Solereder, H., 1908. Systematic Anatomy of the Dicotyledons. Clarendon Press, Oxford |
Tarelkin, Y., Delvaux, C., De Ridder, M., et al., 2016. Growth-Ring Distinctness and Boundary Anatomy Variability in Tropical Trees. IAWA Journal, 37(2): 275–294. https://doi.org/10.1163/22941932-20160134 |
van der Voo, R., 1988. Paleozoic Paleogeography of North America, Gondwana, and Intervening Displaced Terranes: Comparisons of Paleomagnetism with Paleoclimatology and Biogeographical Patterns. Geological Society of America Bulletin, 100(3): 311–324. https://doi.org/10.1130/0016-7606(1988)100<0311:pponag>2.3.co;2 doi: 10.1130/0016-7606(1988)100<0311:pponag>2.3.co;2 |
Veneklaas, E. J., Fajardo, A., Obregon, S., et al., 2005. Gallery Forest Types and Their Environmental Correlates in a Colombian Savanna Landscape. Ecography, 28(2): 236–252. https://doi.org/10.1111/j.0906-7590.2005.03934.x |
Walker, T. R., 1976. Diagenetic Origin of Continental Red Beds. In: Falke, H., ed., The Continental Permain in Central, West, and South Europe. Springer, Dordrecht. 240–282. |
Wang, J., 2010. Late Paleozoic Macrofloral Assemblages from Weibei Coalfield, with Reference to Vegetational Change through the Late Paleozoic Ice-Age in the North China Block. International Journal of Coal Geology, 83(2/3): 292–317. https://doi.org/10.1016/j.coal.2009.10.007 |
Wang, Y., Yang, J. H., Yuan, D. X., et al., 2022. Conodont Biostratigraphic Constraint on the Lower Taiyuan Formation in Southern North China and Its Paleogeographic Implications. Journal of Earth Science, 33(6): 1480–1493. https://doi.org/10.1007/s12583-021-1526-8 |
Wang, Z. Q., Wang, L. X., 1986. Late Permian Fossil Plants from the Lower Part of the Shiqianfeng (Shihchienfeng) Group in North China. Bulletin of the Tianjin Institute Geology and Mineral Resources, Chinese Academy Geological Sciences, 15: 1–80 (in Chinese with English Abstract) |
Wang, Z. Q., 1993. Evolutionary Ecosystem of Permian and Triassic Redbeds in North China: A Historical Record of Natural Global Desertification. New Mexico Mus. Nat. Hist. Sci. Bull. , 3: 471–476 |
Wang, Z. Q., Chen, A. S., 2001. Traces of Arborescent Lycopsids and Dieback of the Forest Vegetation in Relation to the Terminal Permian Mass Extinction in North China. Review of Palaeobotany and Palynology, 117(4): 217–243. https://doi.org/10.1016/S0034-6667(01)00094-X |
Wei, H. B., Gou, X. D., Yang, J. Y., et al., 2019. Fungi-Plant-Arthropods Interactions in a New Conifer Wood from the Uppermost Permian of China Reveal Complex Ecological Relationships and Trophic Networks. Review of Palaeobotany and Palynology, 271: 104100. https://doi.org/10.1016/j.revpalbo.2019.07.005 |
Worbes, M., 1999. Annual Growth Rings, Rainfall-Dependent Growth and Long-Term Growth Patterns of Tropical Trees from the Caparo Forest Reserve in Venezuela. Journal of Ecology, 87(3): 391–403. https://doi.org/10.1046/j.1365-2745.1999.00361.x |
Wu, Q., Ramezani, J., Zhang, H. A., et al., 2021. High-Precision U-Pb Age Constraints on the Permian Floral Turnovers, Paleoclimate Change, and Tectonics of the North China Block. Geology, 49(6): 677–681. https://doi.org/10.1130/g48051.1 |