Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 4
Aug 2024
Turn off MathJax
Article Contents
Xinggang Tang, Lingjian Wang, Huiyong Wang, Yingdan Yuan, Dou Huang, Jinchi Zhang. Predicted Climate Change will Increase Landslide Risk in Hanjiang River Basin, China. Journal of Earth Science, 2024, 35(4): 1334-1354. doi: 10.1007/s12583-021-1511-2
Citation: Xinggang Tang, Lingjian Wang, Huiyong Wang, Yingdan Yuan, Dou Huang, Jinchi Zhang. Predicted Climate Change will Increase Landslide Risk in Hanjiang River Basin, China. Journal of Earth Science, 2024, 35(4): 1334-1354. doi: 10.1007/s12583-021-1511-2

Predicted Climate Change will Increase Landslide Risk in Hanjiang River Basin, China

doi: 10.1007/s12583-021-1511-2
More Information
  • Corresponding author: Jinchi Zhang, zhangjc8811@gmail.com
  • Received Date: 12 Apr 2021
  • Accepted Date: 08 Jul 2021
  • Available Online: 16 Aug 2024
  • Issue Publish Date: 30 Aug 2024
  • Landslides are widespread geomorphological phenomena with complex mechanisms that have caused extensive causalities and property damage worldwide. The scale and frequency of landslides are presently increasing owing to the warming effects of climate change, which further increases the associated safety risks. In this study, the relationship between historical landslides and environmental variables in the Hanjiang River Basin was determined and an optimized model was used to constrain the relative contribution of variables and best spatial response curve. The optimal MaxEnt model was used to predict the current distribution of landslides and influence of future rainfall changes on the landslide susceptibility. The results indicate that environmental variables in the study area statistically correlate with landslide events over the past 20 years. The MaxEnt model evaluation was applied to landslide hazards in the Hanjiang River Basin based on current climate change scenarios. The results indicate that 25.9% of the study area is classified as a high-risk area. The main environmental variables that affect the distribution of landslides include altitude, slope, normalized difference vegetation index, annual precipitation, distance from rivers, and distance from roads, with a cumulative contribution rate of approximately 90%. The annual rainfall in the Hanjiang River Basin will continue to increase under future climate warming scenarios. Increased rainfall will further increase the extent of high- and medium-risk areas in the basin, especially when following the RCP8.5 climate prediction, which is expected to increase the high-risk area by 10.7% by 2070. Furthermore, high landslide risk areas in the basin will migrate to high-altitude areas in the future, which poses new challenges for the prevention and control of landslide risks. This study demonstrates the usefulness of the MaxEnt model as a tool for landslide susceptibility prediction in the Hanjiang River Basin caused by global warming and yields robust prediction results. This approach therefore provides an important reference for river basin management and disaster reduction and prevention. The study on landslide risks also supports the hypothesis that global climate change will further enhance the frequency and intensity of landslide activity throughout the course of the 21st Century.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Ahmed, T., Singh, D., 2020. Probability Density Functions Based Classification of MODIS NDVI Time Series Data and Monitoring of Vegetation Growth Cycle. Advances in Space Research, 66(4): 873–886. https://doi.org/10.1016/j.asr.2020.05.004
    Arabameri, A., Pradhan, B., Rezaei, K., et al., 2020. An Ensemble Model for Landslide Susceptibility Mapping in a Forested Area. Geocarto International, 35(15): 1680–1705. https://doi.org/10.1080/10106049.2019.1585484
    Aslam, H. M. U., Butt, A. A., Shabir, H., et al., 2020. Climatic Events and Natural Disasters of 21st Century: A Perspective of Pakistan. International Journal of Economic and Environmental Geology, 11(2): 46–54 doi: 10.46660/ijeeg.Vol11.Iss2.2020.445
    Baeza, C., Corominas, J., 2001. Assessment of Shallow Landslide Susceptibility by Means of Multivariate Statistical Techniques. Earth Surface Processes and Landforms, 26(12): 1251–1263. https://doi.org/10.1002/esp.263
    Baeza, S., Paruelo, J. M., 2020. Land Use/Land Cover Change (2000–2014) in the Rio de La Plata Grasslands: An Analysis Based on MODIS NDVI Time Series. Remote Sensing, 12(3): 381. https://doi.org/10.3390/rs12030381
    Bai, M. Z., Du, Y. Q., Chen, Y., et al., 2017. Risk Assessment of Long Gas and Oil Pipeline Projects Inducing Landslide Disasters during Construction. Journal of Performance of Constructed Facilities, 31(5): 170–186. https://doi.org/10.1061/(asce)cf.1943-5509.0000986
    Bajracharya, D., 1983. Deforestation in the Food/Fuel Context: Historical and Political Perspectives from Nepal. Mountain Research and Development, 3(3): 227–240. https://doi.org/10.2307/3673017
    Baldwin, R., 2009. Use of Maximum Entropy Modeling in Wildlife Research. Entropy, 11(4): 854–866. https://doi.org/10.3390/e11040854
    Beaty, C. B., 1956. Landslides and Slope Exposure. The Journal of Geology, 64(1): 70–74. https://doi.org/10.1086/626317
    Borgogno-Mondino, E., Lessio, A., Gomarasca, M. A., 2016. A Fast Operative Method for NDVI Uncertainty Estimation and Its Role in Vegetation Analysis. European Journal of Remote Sensing, 49(1): 137–156. https://doi.org/10.5721/eujrs20164908
    Buckman-Sewald, J., Whorton, C. R., Root, K. V., 2014. Developing Macrohabitat Models for Bats in Parks Using Maxent and Testing them with Data Collected by Citizen Scientists. International Journal of Biodiversity and Conservation, 6(2): 171–183. https://doi.org/10.5897/ijbc2013.0647
    Buma, J., 2000. Finding the most Suitable Slope Stability Model for the Assessment of the Impact of Climate Change on a ­landslide in Southeast France. Earth Surface Processes and Landforms, 25(6): 565–582. https://doi.org/10.1002/1096-9837(200006)25:6565:aid-esp90>3.0.co;2-d doi: 10.1002/1096-9837(200006)25:6565:aid-esp90>3.0.co;2-d
    Cascini, L., 2008. Applicability of Landslide Susceptibility and Hazard Zoning at Different Scales. Engineering Geology, 102(3/4): 164–177. https://doi.org/10.1016/j.enggeo.2008.03.016
    Cascini, L., Calvello, M., Grimaldi, G. M., 2010. Groundwater Modeling for the Analysis of Active Slow-Moving Landslides. Journal of Geotechnical and Geoenvironmental Engineering, 136(9): 1220–1230. https://doi.org/10.1061/(asce)gt.1943-5606.0000323
    Chen, C. W., Tung, Y. S., Liou, J. J., et al., 2019. Assessing Landslide Characteristics in a Changing Climate in Northern Taiwan. Catena, 175: 263–277. https://doi.org/10.1016/j.catena.2018.12.023
    Chen, S., Luo, Z. K., Pan, X. B., 2013. Natural Disasters in China: 1900-2011. Natural Hazards, 69(3): 1597–1605. https://doi.org/10.1007/s11069-013-0765-0
    Chen, W., Pourghasemi, H. R., Kornejady, A., et al., 2017. Landslide Spatial Modeling: Introducing New Ensembles of ANN, MaxEnt, and SVM Machine Learning Techniques. Geoderma, 305: 314–327. https://doi.org/10.1016/j.geoderma.2017.06.020
    Chen, W., Pourghasemi, H. R., Naghibi, S. A., 2018. A Comparative Study of Landslide Susceptibility Maps Produced Using Support Vector Machine with Different Kernel Functions and Entropy Data Mining Models in China. Bulletin of Engineering Geology and the Environment, 77(2): 647–664. https://doi.org/10.1007/s10064-017-1010-y
    Chen, W., Sun, Z. H., Han, J. C., 2019. Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. Applied Sciences, 9(1): 171–183. https://doi.org/10.3390/app9010171
    Chiu, Y. Y., Chen, H. E., Yeh, K. C., 2019. Investigation of the Influence of Rainfall Runoff on Shallow Landslides in Unsaturated Soil Using a Mathematical Model. Water, 11(6): 1178–1192. https://doi.org/10.3390/w11061178
    Ciabatta, L., Camici, S., Brocca, L., et al., 2016. Assessing the Impact of Climate-Change Scenarios on Landslide Occurrence in Umbria Region, Italy. Journal of Hydrology, 541: 285–295. https://doi.org/10.1016/j.jhydrol.2016.02.007
    Coe, J. A., 2017. Landslide Hazards and Climate Change: A Perspective from the United States. Slope Safety Preparedness for Impact of Climate Change, 1: 479–523. https://doi.org/10.1201/9781315387789-14
    Coe, J., Godt, J., Baum, R., et al., 2004. Landslide Susceptibility from Topography in Guatemala. Landslides: Evaluation and Stabilization 1: 69–78. https://doi.org/10.1201/b16816-8
    Collison, A., Wade, S., Griffiths, J., et al., 2000. Modelling the Impact of Predicted Climate Change on Landslide Frequency and Magnitude in SE England. Engineering Geology, 55(3): 205–218. https://doi.org/10.1016/S0013-7952(99)00121-0
    Convertino, M., Troccoli, A., Catani, F., 2013. Detecting Fingerprints of Landslide Drivers: A MaxEnt Model. Journal of Geophysical Research: Earth Surface, 118(3): 1367–1386. https://doi.org/10.1002/jgrf.20099
    Coops, N. C., Waring, R. H., Moncrieff, J. B., 2000. Estimating Mean Monthly Incident Solar Radiation on Horizontal and Inclined Slopes from Mean Monthly Temperatures Extremes. International Journal of Biometeorology, 44(4): 204–211. https://doi.org/10.1007/s004840000073
    Corominas, J., Moya, J., 1999. Reconstructing Recent Landslide Activity in Relation to Rainfall in the Llobregat River Basin, Eastern Pyrenees, Spain. Geomorphology, 30(1/2): 79–93. https://doi.org/10.1016/S0169-555X(99)00046-X
    Crawford, B. A., Maerz, J. C., Moore, C. T., 2020. Expert-Informed Habitat Suitability Analysis for At-Risk Species Assessment and Conservation Planning. Journal of Fish and Wildlife Management, 11(1): 130–150. https://doi.org/10.3996/092019-jfwm-075
    Crozier, M. J., 2010a. Landslide Geomorphology: An Argument for Recognition, with Examples from New Zealand. Geomorphology, 120(1/2): 3–15. https://doi.org/10.1016/j.geomorph.2009.09.010
    Crozier, M. J., 2010b. Deciphering the Effect of Climate Change on Landslide Activity: A Review. Geomorphology, 124(3/4): 260–267. https://doi.org/10.1016/j.geomorph.2010.04.009
    Cui, P., Zhu, Y. Y., Han, Y. S., et al., 2009. The 12 may Wenchuan Earthquake-Induced Landslide Lakes: Distribution and Preliminary Risk Evaluation. Landslides, 6(3): 209–223. https://doi.org/10.1007/s10346-009-0160-9
    Cui, X. F., Graf, H. F., 2009. Recent Land Cover Changes on the Tibetan Plateau: A Review. Climatic Change, 94(1/2): 47–61. https://doi.org/10.1007/s10584-009-9556-8
    Danjon, F., Barker, D. H., Drexhage, M., et al., 2008. Using Three-Dimensional Plant Root Architecture in Models of Shallow-Slope Stability. Annals of Botany, 101(8): 1281–1293. https://doi.org/10.1093/aob/mcm199
    Debortoli, N. S., Camarinha, P. I. M., Marengo, J. A., et al., 2017. An Index of Brazil's Vulnerability to Expected Increases in Natural Flash Flooding and Landslide Disasters in the Context of Climate Change. Natural Hazards, 86(2): 557–582. https://doi.org/10.1007/s11069-016-2705-2
    Deng, H., Wu, L. Z., Huang, R. Q., et al., 2017. Formation of the Siwanli Ancient Landslide in the Dadu River, China. Landslides, 14(1): 385–394. https://doi.org/10.1007/s10346-016-0756-9
    Di Napoli, M., Carotenuto, F., Cevasco, A., et al., 2020. Machine Learning Ensemble Modelling as a Tool to Improve Landslide Susceptibility Mapping Reliability. Landslides, 17(8): 1897–1914. https://doi.org/10.1007/s10346-020-01392-9
    Diaz, J. H., 2006. Global Climate Changes, Natural Disasters, and Travel Health Risks. Journal of Travel Medicine, 13(6): 361–372. https://doi.org/10.1111/j.1708-8305.2006.00072.x
    Dolidon, N., Hofer, T., Jansky, L., et al., 2009. Watershed and Forest Management for Landslide Risk Reduction. Landslides-Disaster Risk Reduction. Springer, Berlin, Heidelberg. 633–649. https://doi.org/10.1007/978-3-540-69970-5_33
    Dore, M. H. I., 2005. Climate Change and Changes in Global Precipitation Patterns: What do we Know? Environment International, 31(8): 1167–1181. https://doi.org/10.1016/j.envint.2005.03.004
    Du, X. D., Jin, X. B., Yang, X. L., et al., 2015. Spatial-Temporal Pattern Changes of Main Agriculture Natural Disasters in China during 1990-2011. Journal of Geographical Sciences, 25(4): 387–398. https://doi.org/10.1007/s11442-015-1175-x
    Duan, R. Y., Kong, X. Q., Huang, M. Y., et al., 2014. The Predictive Performance and Stability of Six Species Distribution Models. PLoS One, 9(11): e112764. https://doi.org/10.1371/journal.pone.0112764
    Dudík, M., Schapire, R. E., Phillips, S. J., 2005. Correcting Sample Selection Bias in Maximum Entropy Density Estimation. Advances in Neural Information Processing Systems: 323–330
    Duong, L. T., 2010. Natural Disasters and Policies to Confront: A Case Study of Vietnam. Global Warming and Climate Change. Palgrave Macmillan UK, London. 159–171. https://doi.org/10.1057/9780230281257_10
    Eriksson, T., Dalerum, F., 2018. Identifying Potential Areas for an Expanding Wolf Population in Sweden. Biological Conservation, 220: 170–181. https://doi.org/10.1016/j.biocon.2018.02.019
    Felicísimo, Á. M., Cuartero, A., Remondo, J., et al., 2013. Mapping Landslide Susceptibility with Logistic Regression, Multiple Adaptive Regression Splines, Classification and Regression Trees, and Maximum Entropy Methods: A Comparative Study. Landslides, 10(2): 175–189. https://doi.org/10.1007/s10346-012-0320-1
    Fick, S. E., Hijmans, R. J., 2017. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology, 37(12): 4302–4315. https://doi.org/10.1002/joc.5086
    Freitas, G. H. S., Costa, L. M., Silva, P. H. V. B. P., et al., 2019. Spatial Ecology and Conservation of the Microendemic Ovenbird Cipo Cinclodes (Cinclodes Espinhacensis) from the Brazilian Highlands. Journal of Field Ornithology, 90(2): 128–142. https://doi.org/10.1111/jofo.12296
    Fustos, I., Abarca-del-Rio, R., Moreno-Yaeger, P., et al., 2020. Rainfall-Induced Landslides Forecast Using Local Precipitation and Global Climate Indexes. Natural Hazards, 102(1): 115–131. https://doi.org/10.1007/s11069-020-03913-0
    Galve, J. P., Cevasco, A., Brandolini, P., et al., 2015. Assessment of Shallow Landslide Risk Mitigation Measures Based on Land Use Planning through Probabilistic Modelling. Landslides, 12(1): 101–114. https://doi.org/10.1007/s10346-014-0478-9
    Gao, X. C., Liu, H. L., Zhang, W. G., et al., 2019. Influences of Reservoir Water Level Drawdown on Slope Stability and Reliability Analysis. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 13(2): 145–153. https://doi.org/10.1080/17499518.2018.1516293
    García-Ruiz, J. M., Beguería, S., Alatorre, L. C., et al., 2010. Land Cover Changes and Shallow Landsliding in the Flysch Sector of the Spanish Pyrenees. Geomorphology, 124(3/4): 250–259. https://doi.org/10.1016/j.geomorph.2010.03.036
    Gariano, S. L., Rianna, G., Petrucci, O., et al., 2017. Assessing Future Changes in the Occurrence of Rainfall-Induced Landslides at a Regional Scale. Science of the Total Environment, 596/597: 417–426. https://doi.org/10.1016/j.scitotenv.2017.03.103
    Gharari, S., Hrachowitz, M., Fenicia, F., et al., 2011. Hydrological Landscape Classification: Investigating the Performance of HAND Based Landscape Classifications in a Central European Meso-Scale Catchment. Hydrology and Earth System Sciences, 15(11): 3275–3291. https://doi.org/10.5194/hess-15-3275-2011
    Godefroid, S., 2001. Temporal Analysis of the Brussels Flora as Indicator for Changing Environmental Quality. Landscape and Urban Planning, 52(4): 203–224. https://doi.org/10.1016/S0169-2046(00)00117-1
    Goetz, J. N., Brenning, A., Petschko, H., et al., 2015. Evaluating Machine Learning and Statistical Prediction Techniques for Landslide Susceptibility Modeling. Computers & Geosciences, 81: 1–11. https://doi.org/10.1016/j.cageo.2015.04.007
    González-Dı́ez, A., Remondo, J., Dı́az de Terán, J. R., et al., 1999. A Methodological Approach for the Analysis of the Temporal Occurrence and Triggering Factors of Landslides. Geomorphology, 30(1/2): 95–113. https://doi.org/10.1016/S0169-555X(99)00047-1
    Gou, X. H., Zhang, F., Deng, Y., et al., 2012. Patterns and Dynamics of Tree-Line Response to Climate Change in the Eastern Qilian Mountains, Northwestern China. Dendrochronologia, 30(2): 121–126. https://doi.org/10.1016/j.dendro.2011.05.002
    Griffiths, D. V., Lu, N., 2005. Unsaturated Slope Stability Analysis with Steady Infiltration or Evaporation Using Elasto-Plastic Finite Elements. International Journal for Numerical and Analytical Methods in Geomechanics, 29(3): 249–267. https://doi.org/10.1002/nag.413
    Guo, Z. Z., Yin, K. L., Gui, L., et al., 2019. Regional Rainfall Warning System for Landslides with Creep Deformation in Three Gorges Using a Statistical Black Box Model. Scientific Reports, 9: 8962. https://doi.org/10.1038/s41598-019-45403-9
    Guzzetti, F., Carrara, A., Cardinali, M., et al., 1999. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy. Geomorphology, 31(1/2/3/4): 181–216. https://doi.org/10.1016/S0169-555X(99)00078-1
    Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2007. Rainfall Thresholds for the Initiation of Landslides in Central and Southern Europe. Meteorology and Atmospheric Physics, 98(3/4): 239–267. https://doi.org/10.1007/s00703-007-0262-7
    Han, W. X., Liang, C., Jiang, B. F., et al., 2016. Major Natural Disasters in China, 1985–2014: Occurrence and Damages. International Journal of Environmental Research and Public Health, 13(11): 1118. https://doi.org/10.3390/ijerph13111118
    Haque, U., da Silva, P. F., Devoli, G., et al., 2019. The Human Cost of Global Warming: Deadly Landslides and Their Triggers (1995-2014). Science of the Total Environment, 682: 673–684. https://doi.org/10.1016/j.scitotenv.2019.03.415
    Henriques, C., Zêzere, J. L., Marques, F., 2015. The Role of the Lithological Setting on the Landslide Pattern and Distribution. Engineering Geology, 189: 17–31. https://doi.org/10.1016/j.enggeo.2015.01.025
    Howell, K. L., Holt, R., Endrino, I. P., et al., 2011. When the Species is also a Habitat: Comparing the Predictively Modelled Distributions of Lophelia Pertusa and the Reef Habitat it Forms. Biological Conservation, 144(11): 2656–2665. https://doi.org/10.1016/j.biocon.2011.07.025
    Huang, R. Q., Li, W. L., 2011. Formation, Distribution and Risk Control of Landslides in China. Journal of Rock Mechanics and Geotechnical Engineering, 3(2): 97–116. https://doi.org/10.3724/SP.J.1235.2011.00097
    Huggel, C., Clague, J. J., Korup, O., 2012. Is Climate Change Responsible for Changing Landslide Activity in High Mountains? Earth Surface Processes and Landforms, 37(1): 77–91. https://doi.org/10.1002/esp.2223
    Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167–194. https://doi.org/10.1007/s10346-013-0436-y
    Iturbide, M., Gutiérrez, J. M., Alves, L. M., et al., 2020. An Update of IPCC Climate Reference Regions for Subcontinental Analysis of Climate Model Data: Definition and Aggregated Datasets. Earth System Science Data, 12(4): 2959–2970. https://doi.org/10.5194/essd-12-2959-2020
    Jamalinia, E., Vardon, P. J., Steele-Dunne, S. C., 2020. The Impact of Evaporation Induced Cracks and Precipitation on Temporal Slope Stability. Computers and Geotechnics, 122: 103506. https://doi.org/10.1016/j.compgeo.2020.103506
    Jenness, J., 2011. DEM Surface Tools v. 2.1. 292. Jenness Enterprises. http://www.jennessent.com/arcgis/surface_area.htm
    Jiang, Z. H., Song, J., Li, L., et al., 2012. Extreme Climate Events in China: IPCC-AR4 Model Evaluation and Projection. Climatic Change, 110(1/2): 385–401. https://doi.org/10.1007/s10584-011-0090-0
    Jibson, R. W., Harp, E. L., Michael, J. A., 2000. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps. Engineering Geology, 58(3/4): 271–289. https://doi.org/10.1016/S0013-7952(00)00039-9
    Kanungo, D. P., Arora, M. K., Sarkar, S., et al., 2006. A Comparative Study of Conventional, ANN Black Box, Fuzzy and Combined Neural and Fuzzy Weighting Procedures for Landslide Susceptibility Zonation in Darjeeling Himalayas. Engineering Geology, 85(3/4): 347–366. https://doi.org/10.1016/j.enggeo.2006.03.004
    Kim, B. S., Kim, B. K., Kwon, H. H., 2011. Assessment of the Impact of Climate Change on the Flow Regime of the Han River Basin Using Indicators of Hydrologic Alteration. Hydrological Processes, 25(5): 691–704. https://doi.org/10.1002/hyp.7856
    Kim, H., Lee, D. K., Mo, Y., et al., 2013. Prediction of Landslides Occurrence Probability under Climate Change Using MaxEnt Model. Journal of Environmental Impact Assessment, 22(1): 39–50. https://doi.org/10.14249/eia.2013.22.1.039
    Kong, W. B., Yao, Y. F., Zhao, Z. N., et al., 2019. Effects of Vegetation and Slope Aspect on Soil Nitrogen Mineralization during the Growing Season in Sloping Lands of the Loess Plateau. Catena, 172: 753–763. https://doi.org/10.1016/j.catena.2018.09.037
    Kornejady, A., Heidari, K., Nakhavali, M., 2015. Assessment of Landslide Susceptibility, Semi-Quantitative Risk and Management in the Ilam Dam Basin, Ilam, Iran. Environmental Resources Research, 3(1): 85–109
    Kornejady, A., Ownegh, M., Bahremand, A., 2017. Landslide Susceptibility Assessment Using Maximum Entropy Model with Two Different Data Sampling Methods. Catena, 152: 144–162. https://doi.org/10.1016/j.catena.2017.01.010
    Korup, O., Densmore, A. L., Schlunegger, F., 2010. The Role of Landslides in Mountain Range Evolution. Geomorphology, 120(1/2): 77–90. https://doi.org/10.1016/j.geomorph.2009.09.017
    Korup, O., Stolle, A., 2014. Landslide Prediction from Machine Learning. Geology Today, 30(1): 26–33. https://doi.org/10.1111/gto.12034
    Kutiel, P., Lavee, H., 1999. Effect of Slope Aspect on Soil and Vegetation Properties along an Aridity Transect. Israel Journal of Plant Sciences, 47(3): 169–178. https://doi.org/10.1080/07929978.1999.10676770
    Lazzari, M., Piccarreta, M., 2018. Landslide Disasters Triggered by Extreme Rainfall Events: The Case of Montescaglioso (Basilicata, Southern Italy). Geosciences, 8(10): 377. https://doi.org/10.3390/geosciences8100377
    Lee, L. M., Gofar, N., Rahardjo, H., 2009. A Simple Model for Preliminary Evaluation of Rainfall-Induced Slope Instability. Engineering Geology, 108(3/4): 272–285. https://doi.org/10.1016/j.enggeo.2009.06.011
    Lee, S., Ryu, J. H., Kim, I. S., 2007. Landslide Susceptibility Analysis and Its Verification Using Likelihood Ratio, Logistic Regression, and Artificial Neural Network Models: Case Study of Youngin, Korea. Landslides, 4(4): 327–338. https://doi.org/10.1007/s10346-007-0088-x
    Li, C. D., Fu, Z. Y., Wang, Y., et al., 2019. Susceptibility of Reservoir-Induced Landslides and Strategies for Increasing the Slope Stability in the Three Gorges Reservoir Area: Zigui Basin as an Example. Engineering Geology, 261: 105279. https://doi.org/10.1016/j.enggeo.2019.105279
    Li, C. J., Ma, T. H., Zhu, X. S., et al., 2011. The Power-Law Relationship between Landslide Occurrence and Rainfall Level. Geomorphology, 130(3/4): 221–229. https://doi.org/10.1016/j.geomorph.2011.03.018
    Li, C., Jia, Z. H., Yuan, Y. D., et al., 2020. Effects of Mineral-Solubilizing Microbial Strains on the Mechanical Responses of Roots and Root-Reinforced Soil in External-Soil Spray Seeding Substrate. Science of the Total Environment, 723: 138079. https://doi.org/10.1016/j.scitotenv.2020.138079
    Li, Y. C., Li, M. Y., Li, C., et al., 2020. Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of Cunninghamia Lanceolata in China. Forests, 11(3): 302–325. https://doi.org/10.3390/f11030302
    Lin, Q. G., Wang, Y., Glade, T., et al., 2020. Assessing the Spatiotemporal Impact of Climate Change on Event Rainfall Characteristics Influencing Landslide Occurrences Based on Multiple GCM Projections in China. Climatic Change, 162(2): 761–779. https://doi.org/10.1007/s10584-020-02750-1
    Lin, Y. M., Cui, P., Ge, Y. G., et al., 2014. The Succession Characteristics of Soil Erosion during Different Vegetation Succession Stages in Dry-Hot River Valley of Jinsha River, Upper Reaches of Yangtze River. Ecological Engineering, 62: 13–26. https://doi.org/10.1016/j.ecoleng.2013.10.020
    Liu, H. B., Xu, B. T., Wang, B., 2020. Analysis of the Influence of Precipitation on the Stability of Fangshan Slope in Nanjing. Soil Engineering and Foundation, 34(4): 418–426 (in Chinese with English Abstract)
    Liu, Z. Q., Gilbert, G., Cepeda, J. M., et al., 2021. Modelling of Shallow Landslides with Machine Learning Algorithms. Geoscience Frontiers, 12(1): 385–393. https://doi.org/10.1016/j.gsf.2020.04.014
    López-Moreno, J. I., Revuelto, J., Gilaberte, M., et al., 2014. The Effect of Slope Aspect on the Response of Snowpack to Climate Warming in the Pyrenees. Theoretical and Applied Climatology, 117(1/2): 207–219. https://doi.org/10.1007/s00704-013-0991-0
    Low, B. W., Zeng, Y. W., Tan, H. H., et al., 2021. Predictor Complexity and Feature Selection Affect Maxent Model Transferability: Evidence from Global Freshwater Invasive Species. Diversity and Distributions, 27(3): 497–511. doi: 10.1111/ddi.13211
    Ma, B. B., Sun, J., 2018. Predicting the Distribution of Stipa Purpurea across the Tibetan Plateau via the MaxEnt Model. BMC Ecology, 18(1): 1–12. https://doi.org/10.1186/s12898-018-0165-0
    MacMillan, R. A., Shary, P. A., 2009. Chapter 9 Landforms and Landform Elements in Geomorphometry. Developments in Soil Science. Elsevier, Amsterdam. 227–254. https://doi.org/10.1016/s0166-2481(08)00009-3
    Malek, Ž., Boerboom, L., Glade, T., 2015. Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzau Subcarpathians, Romania. Environmental Management, 56(5): 1228–1243. https://doi.org/10.1007/s00267-015-0577-y
    Manzoor, S. A., Griffiths, G., Obiakara, M. C., et al., 2020. Evidence of Ecological Niche Shift in Rhododendron Ponticum (L. ) in Britain: Hybridization as a Possible Cause of Rapid Niche Expansion. Ecology and Evolution, 10(4): 2040–2050. https://doi.org/10.1002/ece3.6036[PubMed]
    Marjanović, M., Kovačević, M., Bajat, B., et al., 2011. Landslide Susceptibility Assessment Using SVM Machine Learning Algorithm. Engineering Geology, 123(3): 225–234. https://doi.org/10.1016/j.enggeo.2011.09.006
    Mas, J. F., Soares Filho, B., Pontius, R., et al., 2013. A Suite of Tools for ROC Analysis of Spatial Models. ISPRS International Journal of Geo-Information, 2(3): 869–887. https://doi.org/10.3390/ijgi2030869
    Meehl, G. A., Zwiers, F., Evans, J., et al., 2000. Trends in Extreme Weather and Climate Events: Issues Related to Modeling Extremes in Projections of Future Climate Change. Bulletin of the American Meteorological Society, 81(3): 427–436. https://doi.org/10.1175/1520-0477(2000)0810427:tiewac>2.3.co;2 doi: 10.1175/1520-0477(2000)0810427:tiewac>2.3.co;2
    Miller, D. K., Miniat, C. F., Wooten, R. M., et al., 2019. An Expanded Investigation of Atmospheric Rivers in the Southern Appalachian Mountains and Their Connection to Landslides. Atmosphere, 10(2): 71–93. https://doi.org/10.3390/atmos10020071
    Mokhtari, M., Abedian, S., 2019. Spatial Prediction of Landslide Susceptibility in Taleghan Basin, Iran. Stochastic Environmental Research and Risk Assessment, 33(7): 1297–1325. https://doi.org/10.1007/s00477-019-01696-w
    Montrasio, L., Valentino, R., 2008. A Model for Triggering Mechanisms of Shallow Landslides. Natural Hazards and Earth System Sciences, 8(5): 1149–1159. https://doi.org/10.5194/nhess-8-1149-2008
    Morley, P. J., Donoghue, D. N., Chen, J. C., et al., 2020. Montane Forest Expansion at High Elevations Drives Rapid Reduction in Non‐Forest Area, Despite no Change in Mean Forest Elevation. Journal of Biogeography, 47(11): 2405–2416 doi: 10.1111/jbi.13951
    Mugagga, F., Kakembo, V., Buyinza, M., 2012. Land Use Changes on the Slopes of Mount Elgon and the Implications for the Occurrence of Landslides. Catena, 90: 39–46. https://doi.org/10.1016/j.catena.2011.11.004
    Muscarella, R., Galante, P. J., Soley-Guardia, M., et al., 2014. ENM Eval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models. Methods in Ecology and Evolution, 5(11): 1198–1205 doi: 10.1111/2041-210X.12261
    Muttarak, R., Lutz, W., 2014. Is Education a Key to Reducing Vulnerability to Natural Disasters and hence Unavoidable Climate Change? Ecology and Society, 19: art42. https://doi.org/10.5751/es-06476-190142
    Niculiţă, M., 2020. Landslide Hazard Induced by Climate Changes in North-Eastern Romania. In: Leal Filho, W., Nagy, G., Borga, M., et al., eds., Climate Change, Hazards and Adaptation Options. Springer, Cham. 245–265. https://doi.org/10.1007/978-3-030-37425-9_13
    O'Gorman, P. A., 2015. Precipitation Extremes under Climate Change. Current Climate Change Reports, 1(2): 49–59. https://doi.org/10.1007/s40641-015-0009-3
    Ohlmacher, G. C., 2007. Plan Curvature and Landslide Probability in Regions Dominated by Earth Flows and Earth Slides. Engineering Geology, 91(2/3/4): 117–134. https://doi.org/10.1016/j.enggeo.2007.01.005
    Onda, Y., Tsujimura, M., Tabuchi, H., 2004. The Role of Subsurface Water Flow Paths on Hillslope Hydrological Processes, Landslides and Landform Development in Steep Mountains of Japan. Hydrological Processes, 18(4): 637–650. https://doi.org/10.1002/hyp.1362
    Padalia, H., Srivastava, V., Kushwaha, S. P. S., 2014. Modeling Potential Invasion Range of Alien Invasive Species, Hyptis Suaveolens (L. ) Poit. in India: Comparison of MaxEnt and GARP. Ecological Informatics, 22: 36–43. https://doi.org/10.1016/j.ecoinf.2014.04.002
    Pan, Q. J., Dias, D., 2018. Three Dimensional Face Stability of a Tunnel in Weak Rock Masses Subjected to Seepage Forces. Tunnelling and Underground Space Technology, 71: 555–566. https://doi.org/10.1016/j.tust.2017.11.003
    Park, N. W., 2015. Using Maximum Entropy Modeling for Landslide Susceptibility Mapping with Multiple Geoenvironmental Data Sets. Environmental Earth Sciences, 73(3): 937–949. https://doi.org/10.1007/s12665-014-3442-z
    Peng, D. L., Xu, Q., Dong, X. J., et al., 2017. Application of Unmanned Aerial Vehicles Low-Altitude Photogrammetry in Investigation and Evaluation of Loess Landslide. Advances in Earth Science, 32(3): 319–330 (in Chinese with English Abstract)
    Peng, J. B., Wang, S. K., Wang, Q. Y., et al., 2019. Distribution and Genetic Types of Loess Landslides in China. Journal of Asian Earth Sciences, 170: 329–350. https://doi.org/10.1016/j.jseaes.2018.11.015
    Perreault, L. M., Yager, E. M., Aalto, R., 2017. Effects of Gradient, Distance, Curvature and Aspect on Steep Burned and Unburned Hillslope Soil Erosion and Deposition. Earth Surface Processes and Landforms, 42(7): 1033–1048. https://doi.org/10.1002/esp.4067
    Peruccacci, S., Brunetti, M. T., Luciani, S., et al., 2012. Lithological and Seasonal Control on Rainfall Thresholds for the Possible Initiation of Landslides in Central Italy. Geomorphology, 139/140: 79–90. https://doi.org/10.1016/j.geomorph.2011.10.005
    Phillips, S. J., 2005. A Brief Tutorial on Maxent. AT & T Research, 190(4): 231–259
    Phillips, S. J., Anderson, R. P., Schapire, R. E., 2006. Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling, 190(3/4): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
    Phillips, S. J., Dudík, M., 2008. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography, 31(2): 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
    Pistocchi, A., Luzi, L., Napolitano, P., 2002. The Use of Predictive Modeling Techniques for Optimal Exploitation of Spatial Databases: A Case Study in Landslide Hazard Mapping with Expert System-Like Methods. Environmental Geology, 41(7): 765–775. https://doi.org/10.1007/s002540100440
    Poggio, L., Simonetti, E., Gimona, A., 2018. Enhancing the WorldClim Data Set for National and Regional Applications. Science of the Total Environment, 625(1): 1628–1643. https://doi.org/10.1016/j.scitotenv.2017.12.258
    Pourghasemi, H. R., Kariminejad, N., Gayen, A., et al., 2020. Statistical Functions Used for Spatial Modelling Due to Assessment of Landslide Distribution and Landscape-Interaction Factors in Iran. Geoscience Frontiers, 11(4): 1257–1269. https://doi.org/10.1016/j.gsf.2019.11.005
    Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., et al., 2013. Application of Weights-of-Evidence and Certainty Factor Models and Their Comparison in Landslide Susceptibility Mapping at Haraz Watershed, Iran. Arabian Journal of Geosciences, 6(7): 2351–2365. https://doi.org/10.1007/s12517-012-0532-7
    Preti, F., 2013. Forest Protection and Protection Forest: Tree Root Degradation over Hydrological Shallow Landslides Triggering. Ecological Engineering, 61: 633–645. https://doi.org/10.1016/j.ecoleng.2012.11.009
    Promper, C., Puissant, A., Malet, J. P., et al., 2014. Analysis of Land Cover Changes in the Past and the Future as Contribution to Landslide Risk Scenarios. Applied Geography, 53: 11–19. https://doi.org/10.1016/j.apgeog.2014.05.020
    Putra, D. B. E., Choanji, T., 2016. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas. Journal of Geoscience, Engineering, Environment, and Technology, 1(1): 41–44. https://doi.org/10.24273/jgeet.2016.11.5
    Rahardjo, H., Lee, T. T., Leong, E. C., et al., 2005. Response of a Residual Soil Slope to Rainfall. Canadian Geotechnical Journal, 42(2): 340–351. https://doi.org/10.1139/t04-101
    Raso, E., Di Martire, D., Cevasco, A., et al., 2020. Evaluation of Prediction Capability of the MaxEnt and Frequency Ratio Methods for Landslide Susceptibility in the Vernazza Catchment (Cinque Terre, Italy). Applied Geology. Cham: Springer International Publishing: 299–316. https://doi.org/10.1007/978-3-030-43953-8_18
    Razavizadeh, S., Solaimani, K., Massironi, M., et al., 2017. Mapping Landslide Susceptibility with Frequency Ratio, Statistical Index, and Weights of Evidence Models: A Case Study in Northern Iran. Environmental Earth Sciences, 76(14): 1–16. https://doi.org/10.1007/s12665-017-6839-7
    Regmi, A. D., Devkota, K. C., Yoshida, K., et al., 2014. Application of Frequency Ratio, Statistical Index, and Weights-of-Evidence Models and Their Comparison in Landslide Susceptibility Mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2): 725–742. https://doi.org/10.1007/s12517-012-0807-z
    Saez, J. L., Corona, C., Stoffel, M., et al., 2013. Climate Change Increases Frequency of Shallow Spring Landslides in the French Alps. Geology, 41(5): 619–622. https://doi.org/10.1130/g34098.1
    Saito, H., Nakayama, D., Matsuyama, H., 2009. Comparison of Landslide Susceptibility Based on a Decision-Tree Model and Actual Landslide Occurrence: The Akaishi Mountains, Japan. Geomorphology, 109(3/4): 108–121. https://doi.org/10.1016/j.geomorph.2009.02.026
    Saito, H., Nakayama, D., Matsuyama, H., 2010. Relationship between the Initiation of a Shallow Landslide and Rainfall Intensity—Duration Thresholds in Japan. Geomorphology, 118(1/2): 167–175. https://doi.org/10.1016/j.geomorph.2009.12.016
    Sassa, K., Wang, G. H., Fukuoka, H., et al., 2004. Landslide Risk Evaluation and Hazard Zoning for Rapid and Long-Travel Landslides in Urban Development Areas. Landslides, 1(3): 221–235. https://doi.org/10.1007/s10346-004-0028-y
    Savenije, H. H. G., 2010. HESS Opinions "Topography Driven Conceptual Modelling (FLEX-Topo)". Hydrology and Earth System Sciences, 14(12): 2681–2692. https://doi.org/10.5194/hess-14-2681-2010
    Shao, X. Y., Xu, C., Ma, S. Y., et al., 2019. Effects of Seismogenic Faults on the Predictive Mapping of Probability to Earthquake-Triggered Landslides. ISPRS International Journal of Geo-Information, 8(8): 328–345. https://doi.org/10.3390/ijgi8080328
    Sidle, R. C., Bogaard, T. A., 2016. Dynamic Earth System and Ecological Controls of Rainfall-Initiated Landslides. Earth-Science Reviews, 159: 275–291. https://doi.org/10.1016/j.earscirev.2016.05.013
    Sidle, R. C., Furuichi, T., Kono, Y., 2011. Unprecedented Rates of Landslide and Surface Erosion along a Newly Constructed Road in Yunnan, China. Natural Hazards, 57(2): 313–326. https://doi.org/10.1007/s11069-010-9614-6
    Sidle, R. C., Ghestem, M., Stokes, A., 2014. Epic Landslide Erosion from Mountain Roads in Yunnan, China—Challenges for Sustainable Development. Natural Hazards and Earth System Sciences, 14(11): 3093–3104. https://doi.org/10.5194/nhess-14-3093-2014
    Skilodimou, H., Bathrellos, G., Koskeridou, E., et al., 2018. Physical and Anthropogenic Factors Related to Landslide Activity in the Northern Peloponnese, Greece. Land, 7(3): 85–97. https://doi.org/10.3390/land7030085
    Stanley, T., Kirschbaum, D. B., Pascale, S., et al., 2020. Extreme Precipitation in the Himalayan Landslide Hotspot. Advances in Global Change Research. Springer International Publishing, Cham. 1087–1111. https://doi.org/10.1007/978-3-030-35798-6_31
    Stark, C. P., Hovius, N., 2001. The Characterization of Landslide Size Distributions. Geophysical Research Letters, 28(6): 1091–1094. https://doi.org/10.1029/2000gl008527
    Stäubli, A., Nussbaumer, S. U., Allen, S. K., et al., 2018. Analysis of Weather- and Climate-Related Disasters in Mountain Regions Using Different Disaster Databases. Climate Change, Extreme Events and Disaster Risk Reduction. Springer, Cham. 17–41. https://doi.org/10.1007/978-3-319-56469-2_2
    Su, M. B., Chen, I. H., Liao, C. H., 2009. Using TDR Cables and GPS for Landslide Monitoring in High Mountain Area. Journal of Geotechnical and Geoenvironmental Engineering, 135(8): 1113–1121. https://doi.org/10.1061/(asce)gt.1943-5606.0000074
    Swanson, F. J., Dyrness, C. T., 1975. Impact of Clear-Cutting and Road Construction on Soil Erosion by Landslides in the Western Cascade Range, Oregon. Geology, 3(7): 393–396. https://doi.org/10.1130/0091-7613(1975)3393:iocarc>2.0.co;2 doi: 10.1130/0091-7613(1975)3393:iocarc>2.0.co;2
    Tangestani, M. H., 2004. Landslide Susceptibility Mapping Using the Fuzzy Gamma Approach in a GIS, Kakan Catchment Area, Southwest Iran. Australian Journal of Earth Sciences, 51(3): 439–450. https://doi.org/10.1111/j.1400-0952.2004.01068.x
    Thomson, S., Morgenstern, N. R., 1977. Factors Affecting Distribution of Landslides along Rivers in Southern Alberta. Canadian Geotechnical Journal, 14(4): 508–523. https://doi.org/10.1139/t77-052
    Tibaldi, A., Ferrari, L., Pasquarè, G., 1995. Landslides Triggered by Earthquakes and Their Relations with Faults and Mountain Slope Geometry: An Example from Ecuador. Geomorphology, 11(3): 215–226. https://doi.org/10.1016/0169-555X(94)00060-5
    Townsend Peterson, A., Papeş, M., Eaton, M., 2007. Transferability and Model Evaluation in Ecological Niche Modeling: A Comparison of GARP and Maxent. Ecography, 30(4): 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x
    Trant, A., Higgs, E., Starzomski, B. M., 2020. A Century of High Elevation Ecosystem Change in the Canadian Rocky Mountains. Scientific Reports, 10: 9698. https://doi.org/10.1038/s41598-020-66277-2
    Trenberth, K. E., 2011. Changes in Precipitation with Climate Change. Climate Research, 47(1): 123–138. https://doi.org/10.3354/cr00953
    Trenberth, K. E., 2018. Climate Change Caused by Human Activities is Happening and it already Has Major Consequences. Journal of Energy & Natural Resources Law, 36(4): 463–481. https://doi.org/10.1080/02646811.2018.1450895
    Tsaparas, I., Rahardjo, H., Toll, D. G., et al., 2002. Controlling Parameters for Rainfall-Induced Landslides. Computers and Geotechnics, 29(1): 1–27. https://doi.org/10.1016/S0266-352X(01)00019-2
    van Aalst, M. K., 2006. The Impacts of Climate Change on the Risk of Natural Disasters. Disasters, 30(1): 5–18. https://doi.org/10.1111/j.1467-9523.2006.00303.x
    van Asch, T. W. J., Malet, J. P., Bogaard, T. A., 2009. The Effect of Groundwater Fluctuations on the Velocity Pattern of Slow-Moving Landslides. Natural Hazards and Earth System Sciences, 9(3): 739–749. https://doi.org/10.5194/nhess-9-739-2009
    van den Eeckhaut, M., Muys, B., Van Loy, K., et al., 2009. Evidence for Repeated re-Activation of Old Landslides under Forest. Earth Surface Processes and Landforms, 34(3): 352–365. https://doi.org/10.1002/esp.1727
    Varnes, D. J., 1978. Slope Movement Types and Processes. In: Schuster, R. L., Krizek, R. J., eds., Landslides, Analysis and Control, Special Report 176. Transportation Research Board, National Academy of Sciences, Washington, D. C. 11–33
    Wang, R. L., Yang, H., Wang, M. T., et al., 2020. Predictions of Potential Geographical Distribution of Diaphorina Citri (Kuwayama) in China under Climate Change Scenarios. Scientific Reports, 10: 9202. https://doi.org/10.1038/s41598-020-66274-5
    Wang, S. Y., Liu, J. S., Yang, C. J., 2008. Eco-Environmental Vulnerability Evaluation in the Yellow River Basin, China. Pedosphere, 18(2): 171–182. https://doi.org/10.1016/s1002-0160(08)60005-3
    Wei, H. B., Li, R., Yang, Q. K., 2002. Research Advances of Vegetation Effect on Soil and Water Conservation in China. Acta Phytoecologica Sinica, 26(4): 489–496 (in Chinese with English Abstract)
    Wen, X., Deng, X. Z., Zhang, F., 2019. Scale Effects of Vegetation Restoration on Soil and Water Conservation in a Semi-Arid Region in China: Resources Conservation and Sustainable Management. Resources, Conservation and Recycling, 151: 104474. https://doi.org/10.1016/j.resconrec.2019.104474
    Weng, M. C., Wu, M. H., Ning, S. K., et al., 2011. Evaluating Triggering and Causative Factors of Landslides in Lawnon River Basin, Taiwan. Engineering Geology, 123(1/2): 72–82. https://doi.org/10.1016/j.enggeo.2011.07.001
    West, A. M., Kumar, S., Brown, C. S., et al., 2016. Field Validation of an Invasive Species Maxent Model. Ecological Informatics, 36: 126–134. https://doi.org/10.1016/j.ecoinf.2016.11.001
    Westen, C. J., van Asch, T. W. J., Soeters, R., 2006. Landslide Hazard and Risk Zonation—Why is It Still so Difficult? Bulletin of Engineering Geology and the Environment, 65(2): 167–184. https://doi.org/10.1007/s10064-005-0023-0
    Whitford, B. R., 2019. Characterizing the Cultural Evolutionary Process from Eco-Cultural Niche Models: Niche Construction during the Neolithic of the Struma River Valley (C. 6200–4900 BC). Archaeological and Anthropological Sciences, 11(5): 2181–2200. https://doi.org/10.1007/s12520-018-0667-x
    Wisz, M. S., Hijmans, R. J., Li, J., et al., 2008. Effects of Sample Size on the Performance of Species Distribution Models. Diversity and Distributions, 14(5): 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x
    Wójcik, A., Mrozek, T., Granoszewski, W., 2006. Lithological Conditioning of Landslides and Climatic Changes with Examples from the Beskidy Mts., Western Carpathians, Poland. Geografia Fisica e Dinamica Quaternaria, 29: 197–200
    Xu, X. B., Yang, G. S., Tan, Y., 2019. Identifying Ecological Red Lines in China's Yangtze River Economic Belt: A Regional Approach. Ecological Indicators, 96: 635–646. https://doi.org/10.1016/j.ecolind.2018.09.052
    Yi, L. X., Ge, L. L., Zhao, D., et al., 2012. An Analysis on Disasters Management System in China. Natural Hazards, 60(2): 295–309. https://doi.org/10.1007/s11069-011-0011-6
    Yildiz, K., Karakaya, N., Kilic, S., et al., 2020. Interaction Effects of the Main Drivers of Global Climate Change on Spatiotemporal Dynamics of High Altitude Ecosystem Behaviors: Process-Based Modeling. Environmental Monitoring and Assessment, 192(7): 1–14. https://doi.org/10.1007/s10661-020-08430-y
    Yu, G. M., Zhang, S., Yu, Q. W., et al., 2014. Assessing Ecological Security at the Watershed Scale Based on RS/GIS: A Case Study from the Hanjiang River Basin. Stochastic Environmental Research and Risk Assessment, 28(2): 307–318. https://doi.org/10.1007/s00477-013-0750-x
    Yu, X. B., Yu, X. R., Li, C. L., et al., 2020. Information Diffusion-Based Risk Assessment of Natural Disasters along the Silk Road Economic Belt in China. Journal of Cleaner Production, 244: 118744. https://doi.org/10.1016/j.jclepro.2019.118744
    Yu, X. X., Bi, H. X., Zhu, J. Z., et al., 1997. Soil and Water Conservation by Forest Vegetation in Loess Area. Chinese Journal of Plant Ecology, 21(5): 433–453 (in Chinese with English Abstract)
    Zhang, J. J., Jiang, F., Li, G. Y., et al., 2019. Maxent Modeling for Predicting the Spatial Distribution of Three Raptors in the Sanjiangyuan National Park, China. Ecology and Evolution, 9(11): 6643–6654. https://doi.org/10.1002/ece3.5243
    Zhang, Q. F., Xu, Z. F., Shen, Z. H., et al., 2009. The Han River Watershed Management Initiative for the South-to-North Water Transfer Project (Middle Route) of China. Environmental Monitoring and Assessment, 148(1/2/3/4): 369–377. https://doi.org/10.1007/s10661-008-0167-z
    Zhou, Y., Li, N., Wu, W. X., et al., 2014. Assessment of Provincial Social Vulnerability to Natural Disasters in China. Natural Hazards, 71(3): 2165–2186. https://doi.org/10.1007/s11069-013-1003-5
    Zhu, G. P., Qiao, H. J., 2016. Effect of the Maxent Model's Complexity on the Prediction of Species Potential Distributions. Biodiversity Science, 24(10): 1189–1196. https://doi.org/10.17520/biods.2016265
    Zhuang, J. Q., Peng, J. B., Wang, G. H., et al., 2018. Distribution and Characteristics of Landslide in Loess Plateau: A Case Study in Shaanxi Province. Engineering Geology, 236: 89–96. https://doi.org/10.1016/j.enggeo.2017.03.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(99) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return