Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Chang'e Cai, Nansheng Qiu, Jian Chang, Cleber Jose Soares, Hong Chen. Thermal Annealing Characteristics of Detrital Zircon Fission Track Obtained from Natural Borehole Samples. Journal of Earth Science, 2022, 33(1): 45-56. doi: 10.1007/s12583-021-1512-1
Citation: Chang'e Cai, Nansheng Qiu, Jian Chang, Cleber Jose Soares, Hong Chen. Thermal Annealing Characteristics of Detrital Zircon Fission Track Obtained from Natural Borehole Samples. Journal of Earth Science, 2022, 33(1): 45-56. doi: 10.1007/s12583-021-1512-1

Thermal Annealing Characteristics of Detrital Zircon Fission Track Obtained from Natural Borehole Samples

doi: 10.1007/s12583-021-1512-1
More Information
  • Corresponding author: Nansheng Qiu, qiunsh@cup.edu.cn
  • Received Date: 30 Apr 2021
  • Accepted Date: 09 Jul 2021
  • Publish Date: 28 Feb 2022
  • Previous studies proposed thermal simulation experiment to investigate the annealing characteristics of fission tracks in igneous zircon samples. However, basic research about detrital zircon fission track was relatively weak. This study discussed the initial track length, annealing temperature and annealing model of zircon fission track by using the measured track lengths obtained from natural borehole samples in the sedimentary basins with different thermal background. The results show that the initial track length of zircon fission track is 12.97 μm. The total annealing temperature (Ttotal) of zircon fission track derived from the evolutionary curve of the mean track lengths is approximately 400 ℃. The temperature ranges of 120-230 ℃ corresponds to the partial annealing zone (PAZ), and is lower than the range obtained through thermal annealing experiments. The annealing model is modified based on the measured track lengths. In addition, a functional formula about the mean track length, annealing temperature, and geological time is proposed, and the fitted values of track lengths consist with the measured track lengths in this study. By properly understanding the initial track length and annealing behavior of zircon fission track can provide a significant guidance for the study of hydrocarbon accumulation in sedimentary basins.

     

  • loading
  • Bernet, M., Garver, J. I., 2005. Fission-Track Analysis of Detrital Zircon. Reviews in Mineralogy and Geochemistry, 58(1): 205-237. https://doi.org/10.2138/rmg.2005.58.8
    Bernet, M., 2009. A Field-Based Estimate of the Zircon Fission-Track Closure Temperature. Chemical Geology, 259(3/4): 181-189. https://doi.org/10.1016/j.chemgeo.2008.10.043
    Cai, C. E., Qiu, N. S., Li, H. L., et al., 2020. Study of the Closure Temperature of (U-Th)/He in Detrital Zircon Obtained from Natural Evolution Samples. Science China Earth Sciences, 63(3): 412-424. https://doi.org/10.1007/s11430-019-9450-0
    Chen, Z. Q., Shi, G. R., 2003. Late Paleozoic Depositional History of the Tarim Basin, Northwest China: An Integration of Biostratigraphic and Lithostratigraphic Constraints. AAPG Bulletin, 87(8): 1323-1354. https://doi.org/10.1306/0401032001115
    Craddock, W. H., Moore, T. E., O'Sullivan, P. B., et al., 2018. Late Cretaceous-Cenozoic Exhumation of the Western Brooks Range, Alaska, Revealed from Apatite and Zircon Fission Track Data. Tectonics, 37(12): 4714-4751. https://doi.org/10.1029/2018tc005282
    Feng, C. G., Liu, S. W., Wang, L. S., et al., 2009. Present-Day Geothermal Regime in Tarim Basin, Northwest China. Chinese Journal of Geophysics, 52(11): 2752-2762. https://doi.org/10.3969/j.issn.0001-5733.2009.11.010(in Chinese with English Abstract)
    Galbraith, R. F., Laslett, G. M., 1997. Statistical Modelling of Thermal Annealing of Fission Tracks in Zircon. Chemical Geology, 140(1/2): 123-135. https://doi.org/10.1016/s0009-2541(97)00016-8
    Garver, J. I., 2003. Etching Zircon Age Standards for Fission-Track Analysis. Radiation Measurements, 37(1): 47-53. https://doi.org/10.1016/s1350-4487(02)00127-0
    Gong, Y. L., Wang, L. S., Liu, S. W., et al., 2003. Distribution Characteristics of Geotemperature Feild in Jiyang Depression, Shandong, North China. Chinese Journal of Geophysics, 46(5): 652-658 (in Chinese with English Abstract)
    Green, P. F., Duddy, I. R., Gleadow, A. J. W., et al., 1986. Thermal Annealing of Fission Tracks in Apatite: 1. A Qualitative Description. Chemical Geology: Isotope Geoscience Section, 59: 237-253. https://doi.org/10.1016/0168-9622(86)90074-6
    Guedes, S., Moreira, P. A. F. P., Devanathan, R., et al., 2013. Improved Zircon Fission-Track Annealing Model Based on Reevaluation of Annealing Data. Physics and Chemistry of Minerals, 40: 93-106. https://doi.org/10.1007/s00269-012-0550-8
    Hasebe, N., Tagami, T., Nishimura, S., 1994. Towards Zircon Fission-Track Thermochronology: Reference Framework for Confined Track Length Measurements. Chemical Geology, 112(1/2): 169-178. https://doi.org/10.1016/0009-2541(94)90112-0
    Hu, D., Tian, Y. T., Hu, J., et al., 2020. Thermal Imprints of Late Permian Emeishan Basalt Effusion: Evidence from Zircon Fission-Track Thermochronology. Lithos, 352/353: 105224. https://doi.org/10.1016/j.lithos.2019.105224
    Ketcham, R. A., 2005. The Role of Crystallographic Angle in Characterizing and Modeling Apatite Fission-Track Length Data. Radiation Measurements, 39(6): 595-601. https://doi.org/10.1016/j.radmeas.2004.07.008
    Li, H. L., Qiu, N. S., Jin, Z. J., et al., 2005. Geothermal History in the Tarim Basin. West China Petroleum Geosciences, 1(1): 15-18 (in Chinese with English Abstract)
    Li, B., Chen, X. H., Zuza, A. V., et al., 2019. Cenozoic Cooling History of the North Qilian Shan, Northern Tibetan Plateau, and the Initiation of the Haiyuan Fault: Constraints from Apatite- and Zircon-Fission Track Thermochronology. Tectonophysics, 751: 109-124. https://doi.org/10.1016/j.tecto.2018.12.005
    Li, L., Qiu, N. S., 2017. The Initiation and Tectonic Regimes of the Cenozoic Extension in the Bohai Bay Basin, North China Revealed by Numerical Modelling. Journal of Asian Earth Sciences, 140: 92-107. https://doi.org/10.1016/j.jseaes.2017.03.039
    Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910. https://doi.org/10.6038/cjg20160815(in Chinese with English Abstract)
    Murakami, M., Yamada, R., Tagami, T., 2006. Short-Term Annealing Characteristics of Spontaneous Fission Tracks in Zircon: A Qualitative Description. Chemical Geology, 227(3/4): 214-222. https://doi.org/10.1016/j.chemgeo.2005.10.002
    Palissari, R., Guedes, S., Curvo, E. A. C., et al., 2013. Extrapolation of Zircon Fission-Track Annealing Models. Radiation Measurements, 50: 192-196. https://doi.org/10.1016/j.radmeas.2012.06.004
    Piedrahita, V. A., Bernet, M., Chadima, M., et al., 2017. Detrital Zircon Fission-Track Thermochronology and Magnetic Fabric of the Amagá Formation (Colombia): Intracontinental Deformation and Exhumation Events in the Northwestern Andes. Sedimentary Geology, 356: 26-42. https://doi.org/10.1016/j.sedgeo.2017.05.003
    Qiu, N. S., Zuo, Y. H., Zhou, X. H., et al., 2010. Geothermal Regime of the Bohai Offshore Area, Bohai Bay Basin, North China. Energy Exploration & Exploitation, 28(5): 327-350. https://doi.org/10.1260/0144-5987.28.5.327
    Qiu, N. S., Chang, J., Zuo, Y. H., et al., 2012. Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China. AAPG Bulletin, 96(5): 789-821. https://doi.org/10.1306/09071111029
    Rahn, M. K., Brandon, M. T., Batt, G. E., et al., 2004. A Zero-Damage Model for Fission-Track Annealing in Zircon. American Mineralogist, 89(4): 473-484. https://doi.org/10.2138/am-2004-0401
    Rahn, M., Wang, H. J., Dunkl, I., 2019. A Natural Long-Term Annealing Experiment for the Zircon Fission Track System in the Songpan-Garzê Flysch, China. Terra Nova, 31(3): 295-305. https://doi.org/10.1111/ter.12399
    Ren, J. Y., Tamaki, K., Li, S. T., et al., 2002. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3/4): 175-205. https://doi.org/10.1016/s0040-1951(01)00271-2
    Ren, J. P., Wang, J., Zhang, D. H., et al., 2018. Reactivation of Lufilian Arc in Zambia: Zircon and Apatite Fission Track Chronology. Earth Science, 43(6): 1850-1860. https://doi.org/10.3799/dqkx.2018.610(in Chinese with English Abstract)
    Shen, T. Y., Wang, G. C., 2020. Detrital Zircon Fission-Track Thermochronology of the Present-Day River Drainage System in the Mt. Kailas Area, Western Tibet: Implications for Multiple Cooling Stages of the Gangdese Magmatic Arc. Journal of Earth Science, 31(5): 896-904. https://doi.org/10.1007/s12583-020-1285-y
    Tagami, T., Ito, H., Nishimura, S., 1990. Thermal Annealing Characteristics of Spontaneous Fission Tracks in Zircon. Chemical Geology: Isotope Geoscience Section, 80(2): 159-169. https://doi.org/10.1016/0168-9622(90)90024-7
    Tagami, T., Carter, A., Hurford, A. J., 1996. Natural Long-Term Annealing of the Zircon Fission-Track System in Vienna Basin Deep Borehole Samples: Constraints upon the Partial Annealing Zone and Closure Temperature. Chemical Geology, 130(1/2): 147-157. https://doi.org/10.1016/0009-2541(96)00016-2
    Tagami, T., 2005. Zircon Fission-Track Thermochronology and Applications to Fault Studies. Reviews in Mineralogy and Geochemistry, 58(1): 95-122. https://doi.org/10.2138/rmg.2005.58.4
    Tagami, T., O'Sullivan, P. B., 2005. Fundamentals of Fission-Track Thermochronology. Reviews in Mineralogy and Geochemistry, 58(1): 19-47. https://doi.org/10.2138/rmg.2005.58.2
    Tagami, T., Matsu'ura, S., 2019. Thermal Annealing Characteristics of Fission Tracks in Natural Zircons of Different Ages. Terra Nova, 31(3): 257-262. https://doi.org/10.1111/ter.12394
    Wang, L. S., Li, C., Liu, S. W., et al., 2003. Geotemperature Gradient Distribution of Kuqa Foreland Basin, North of Tarim, China. Chinese Journal of Geophysics, 46(3): 403-407 (in Chinese with English Abstract)
    Xiao, H. Q., Liu, Z., Zhao, Y., et al., 2003. Characteristics of Geotemperature and Geopressure Fields in the Jiyang Depression and Their Significance of Petroleum Geology. Petroleum Exploration and Development, 30(3): 68-70 (in Chinese with English Abstract)
    Yamada, R., Tagami, T., Nishimura, S., et al., 1995a. Annealing Kinetics of Fission Tracks in Zircon: An Experimental Study. Chemical Geology, 122(1/2/3/4): 249-258. https://doi.org/10.1016/0009-2541(95)00006-8
    Yamada, R., Tagami, T., Nishimura, S., 1995b. Confined Fission-Track Length Measurement of Zircon: Assessment of Factors Affecting the Paleotemperature Estimate. Chemical Geology, 119(1/2/3/4): 293-306. https://doi.org/10.1016/0009-2541(94)00108-k
    Yamada, K., Tagami, T., Shimobayashi, N., 2003. Experimental Study on Hydrothermal Annealing of Fission Tracks in Zircon. Chemical Geology, 201(3/4): 351-357. https://doi.org/10.1016/j.chemgeo.2003.08.009
    Yamada, R., Murakami, M., Tagami, T., 2007. Statistical Modelling of Annealing Kinetics of Fission Tracks in Zircon; Reassessment of Laboratory Experiments. Chemical Geology, 236(1/2): 75-91. https://doi.org/10.1016/j.chemgeo.2006.09.002
    Zhu, X. Q., Guo, X. W., Zhang, X. H., et al., 2018. Thermochronological Constraints on Cenozoic Tectonic Evolution of South-Central Qinghai-Tibet Plateau. Earth Science, 43(6): 1903-1920. https://doi.org/10.3799/dqkx.2018.532 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(346) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return