Citation: | Ruilin Hao, Wenhui Huang, Jiu Bo, Li Yuan. Fractal Characteristics and Main Controlling Factors of High-Quality Tight Sandstone Reservoirs in the Southeastern Ordos Basin. Journal of Earth Science, 2024, 35(2): 631-641. doi: 10.1007/s12583-021-1514-z |
Due to the complex conditions and strong heterogeneity of tight sandstone reservoirs, the reservoirs should be classified and the controlling factors of physical properties should be studied. Cast thin section observations, cathodoluminescence, scanning electron microscopy (SEM), X-ray diffraction (XRD), and high-pressure mercury injection (HPMI) were used to classify and optimize the reservoir. The Brooks-Corey model and stepwise regression were used to study the fractal dimension and main controlling factors of the physical properties of the high-quality reservoir. The results show that the reservoirs in the study area can be divided into four types, and the high-quality reservoir has the best physical properties and pore-throat characteristics. In the high-quality reservoir, the homogeneity of transitional pores was the best, followed by that of micropores, and the worst was mesopores. The porosity was controlled by depth and kaolinite. The model with standardized coefficients is
Akhtar, S., Yang, X. Y., Pirajno, F., 2017. Sandstone Type Uranium Deposits in the Ordos Basin, Northwest China: A Case Study and an Overview. Journal of Asian Earth Sciences, 146: 367–382. https://doi.org/10.1016/j.jseaes.2017.05.028 |
Aliyev, E., Saidian, M., Prasad, M., et al., 2016. Rock Typing of Tight Gas Sands: A Case Study in Lance and Mesaverde Formations from Jonah Field. Journal of Natural Gas Science and Engineering, 33: 1260–1270. https://doi.org/10.1016/j.jngse.2015.12.045 |
Baruch, E. T., Kennedy, M. J., Löhr, S. C., et al., 2015. Feldspar Dissolution-Enhanced Porosity in Paleoproterozoic Shale Reservoir Facies from the Barney Creek Formation (McArthur Basin, Australia). AAPG Bulletin, 99(9): 1745–1770. https://doi.org/10.1306/04061514181 |
Boles, J. R., Franks, S. G., 1978. Clay Diagenesis in Wilcox Sandstones of Southwest Texas: Implications of Smectite-Illite Reaction for Sandstone Cementation. Journal of Sedimentary Research, 49(1): 55–70 |
Brooks, R. H., Corey, A. T., 1964. Hydraulic Properties of Porous Media. Colorado State University, Fort Collins |
Busch, B., Becker, I., Koehrer, B., et al., 2019. Porosity Evolution of Two Upper Carboniferous Tight-Gas-Fluvial Sandstone Reservoirs: Impact of Fractures and Total Cement Volumes on Reservoir Quality. Marine and Petroleum Geology, 100: 376–390. https://doi.org/10.1016/j.marpetgeo.2018.10.051 |
Chen, Y. L., Qin, Y., Wei, C. T., et al., 2018. Porosity Changes in Progressively Pulverized Anthracite Subsamples: Implications for the Study of Closed Pore Distribution in Coals. Fuel, 225: 612–622. https://doi.org/10.1016/j.fuel.2018.03.164. |
Dai, J. X., Li, J., Luo, X., et al., 2005. Stable Carbon Isotope Compositions and Source Rock Geochemistry of the Giant Gas Accumulations in the Ordos Basin, China. Organic Geochemistry, 36(12): 1617–1635. https://doi.org/10.1016/j.orggeochem.2005.08.017 |
de Boever, W., Diaz, A., Derluyn, H., et al., 2015. Characterization of Composition and Structure of Clay Minerals in Sandstone with Ptychographic X-Ray Nanotomography. Applied Clay Science, 118: 258–264. https://doi.org/10.1016/j.clay.2015.09.020 |
Dong, Z., Zhang, J. C., Tang, X., et al., 2020. Origin and Diffusion of the Over-Mature Transitional Natural Gas in Multiple Lithologic Reservoirs: A Case Study of Carboniferous–Permian Strata in the Southeastern Margin of Ordos Basin. International Journal of Coal Geology, 219: 103380. https://doi.org/10.1016/j.coal.2019.103380 |
Duan, Y., Wu, Y. Z., 2020. Distribution and Formation of Mesozoic Low Permeability Underpressured Oil Reservoirs in the Ordos Basin, China. Journal of Petroleum Science and Engineering, 187: 106755. https://doi.org/10.1016/j.petrol.2019.106755 |
Ehrenberg, S. N., 1993. Preservation of Anomalously High Porosity in Deeply Buried Sandstones by Grain-Coating Chlorite: Examples from the Norwegian Continental Shelf. AAPG Bulletin, 77: 1260–1286. https://doi.org/10.1306/bdff8e5c-1718-11d7-8645000102c1865d |
Esch, W. L., 2019. Multimineral Diagenetic Forward Modeling for Reservoir Quality Prediction in Complex Siliciclastic Reservoirs. AAPG Bulletin, 103(12): 2807–2834. https://doi.org/10.1306/03061918066 |
Gensterblum, Y., Ghanizadeh, A., Cuss, R. J., et al., 2015. Gas Transport and Storage Capacity in Shale Gas Reservoirs―A Review. Part A: Transport Processes. Journal of Unconventional Oil and Gas Resources, 12: 87–122. https://doi.org/10.1016/j.juogr.2015.08.001 |
Gier, S., Worden, R. H., Johns, W. D., et al., 2008. Diagenesis and Reservoir Quality of Miocene Sandstones in the Vienna Basin, Austria. Marine and Petroleum Geology, 25(8): 681–695. https://doi.org/10.1016/j.marpetgeo.2008.06.001 |
Han, W. X., Tao, S. Z., Ma, W. J., et al., 2021. Reasons for Carbon Isotope Rollover in the Yan'an Gas Field of the Southern Ordos Basin, China: Evidence from the Geochemical Comparison of Gas from Fluid Inclusions with Wells. International Journal of Coal Geology, 234: 103651. https://doi.org/10.1016/j.coal.2020.103651 |
Hu, Y. B., Guo, Y. H., Shangguan, J. W., et al., 2020. Fractal Characteristics and Model Applicability for Pores in Tight Gas Sandstone Reservoirs: A Case Study of the Upper Paleozoic in Ordos Basin. Energy & Fuels, 34(12): 16059–16072. https://doi.org/10.1021/acs.energyfuels.0c03073 |
Huang, H. X., Chen, L., Sun, W., et al., 2018. pore-Throat Structure and Fractal Characteristics of Shihezi Formation Tight Gas Sandstone in the Ordos Basin, China. Fractals, 26(2): 1840005. https://doi.org/10.1142/s0218348x18400054 |
Huang, W. B., Lu, S. F., Hersi, O. S., et al., 2017. Reservoir Spaces in Tight Sandstones: Classification, Fractal Characters, and Heterogeneity. Journal of Natural Gas Science and Engineering, 46: 80–92. https://doi.org/10.1016/j.jngse.2017.07.006 |
Jia, C. Z., Zou, C. N., Yang, Z., et al., 2018. Significant Progress of Continental Petroleum Geological Theory in Basins of Central and Western China. Petroleum Exploration and Development, 45(4): 573–588. https://doi.org/10.1016/S1876-3804(18)30064-8 |
Jiu, B., Huang, W. H., Li, Y., 2020. An Approach for Quantitative Analysis of Cementation in Sandstone Based on Cathodoluminescence and MATLAB Algorithms. Journal of Petroleum Science and Engineering, 186: 106724. https://doi.org/10.1016/j.petrol.2019.106724 |
Jiu, B., Huang, W. H., Li, Y., et al., 2021. Influence of Clay Minerals and Cementation on Pore Throat of Tight Sandstone Gas Reservoir in the Eastern Ordos Basin, China. Journal of Natural Gas Science and Engineering, 87: 103762. https://doi.org/10.1016/j.jngse.2020.103762 |
Lai, J., Wang, G. W., Ran, Y., et al., 2015. Predictive Distribution of High-Quality Reservoirs of Tight Gas Sandstones by Linking Diagenesis to Depositional Facies: Evidence from Xu-2 Sandstones in the Penglai Area of the Central Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 23: 97–111. https://doi.org/10.1016/j.jngse.2015.01.026 |
Li, K. W., 2010. Analytical Derivation of Brooks-Corey Type Capillary Pressure Models Using Fractal Geometry and Evaluation of Rock Heterogeneity. Journal of Petroleum Science and Engineering, 73(1/2): 20–26. https://doi.org/10.1016/j.petrol.2010.05.002 |
Li, M., Guo, Y. H., Li, Z. F., et al., 2020. The Diagenetic Controls of the Reservoir Heterogeneity in the Tight Sand Gas Reservoirs of the Zizhou Area in China's East Ordos Basin: Implications for Reservoir Quality Predictions. Marine and Petroleum Geology, 112: 104088. https://doi.org/10.1016/j.marpetgeo.2019.104088 |
Li, P., Zheng, M., Bi, H., et al., 2017. Pore Throat Structure and Fractal Characteristics of Tight Oil Sandstone: A Case Study in the Ordos Basin, China. Journal of Petroleum Science and Engineering, 149: 665–674. https://doi.org/10.1016/j.petrol.2016.11.015 |
Liu, G. D., Sun, M. L., Zhao, Z. Y., et al., 2013. Characteristics and Accumulation Mechanism of Tight Sandstone Gas Reservoirs in the Upper Paleozoic, Northern Ordos Basin, China. Petroleum Science, 10(4): 442–449. https://doi.org/10.1007/s12182-013-0294-1 |
Mandelbrot, B. B., Passoja, D. E., Paullay, A. J., 1984. Fractal Character of Fracture Surfaces of Metals. Nature, 308(5961): 721–722. https://doi.org/10.1038/308721a0 |
Nabawy, B. S., Géraud, Y., Rochette, P., et al., 2009. Pore-Throat Characterization in Highly Porous and Permeable Sandstones. AAPG Bulletin, 93(6): 719–739. https://doi.org/10.1306/03160908131 |
Nelson, P. H., 2009. Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales. AAPG Bulletin, 93(3): 329–340. https://doi.org/10.1306/10240808059 |
Pittman, E. D., Larese, R. E., 1991. Compaction of Lithic Sands: Experimental Results and Applications (1). AAPG Bulletin, 75(8): 1279–1299. https://doi.org/10.1306/0c9b292f-1710-11d7-8645000102c1865d |
Qiao, J. C., Zeng, J. H., Jiang, S., et al., 2019. Heterogeneity of Reservoir Quality and Gas Accumulation in Tight Sandstone Reservoirs Revealed by Pore Structure Characterization and Physical Simulation. Fuel, 253: 1300–1316. https://doi.org/10.1016/j.fuel.2019.05.112 |
Qiao, J. Q., Baniasad, A., Zieger, L., et al., 2021. Paleo-Depositional Environment, Origin and Characteristics of Organic Matter of the Triassic Chang 7 Member of the Yanchang Formation Throughout the Mid-Western Part of the Ordos Basin, China. International Journal of Coal Geology, 237: 103636. https://doi.org/10.1016/j.coal.2020.103636 |
Qiu, L. W., Yang, S. C., Qu, C. S., et al., 2017. A Comprehensive Porosity Prediction Model for the Upper Paleozoic Tight Sandstone Reservoir in the Daniudi Gas Field, Ordos Basin. Journal of Earth Science, 28(6): 1086–1096. https://doi.org/10.1007/s12583-016-0935-2 |
Qu, H. J., Yang, B., Tian, X. H., et al., 2019. The Primary Controlling Parameters of Porosity, Permeability, and Seepage Capability of Tight Gas Reservoirs: A Case Study on Upper Paleozoic Formation in the Eastern Ordos Basin, Northern China. Petroleum Science, 16(6): 1270–1284. https://doi.org/10.1007/s12182-019-00373-5 |
Ren, J. H., Zhang, L., Ezekiel, J., et al., 2014. Reservoir Characteristics and Productivity Analysis of Tight Sand Gas in Upper Paleozoic Ordos Basin China. Journal of Natural Gas Science and Engineering, 19: 244–250. https://doi.org/10.1016/j.jngse.2014.05.014 |
Rigby, S. P., 2005. Predicting Surface Diffusivities of Molecules from Equilibrium Adsorption Isotherms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262(1/2/3): 139–149. https://doi.org/10.1016/j.colsurfa.2005.04.021 |
Shao, X. H., Pang, X. Q., Jiang, F. J., et al., 2017. Reservoir Characterization of Tight Sandstones Using Nuclear Magnetic Resonance and Incremental Pressure Mercury Injection Experiments: Implication for Tight Sand Gas Reservoir Quality. Energy & Fuels, 31(10): 10420–10431. https://doi.org/10.1021/acs.energyfuels.7b01184 |
Sinan, S., Glover, P. W. J., Lorinczi, P., 2020. Modelling the Impact of Anisotropy on Hydrocarbon Production in Heterogeneous Reservoirs. Transport in Porous Media, 133(3): 413–436. https://doi.org/10.1007/s11242-020-01430-z |
Šliaupa, S., Lozovskis, S., Lazauskienė, J., et al., 2020. Petrophysical and Mechanical Properties of the Lower Silurian Perspective Oil/Gas Shales of Lithuania. Journal of Natural Gas Science and Engineering, 79: 103336. https://doi.org/10.1016/j.jngse.2020.103336 |
Sun, J. P., Dong, Y. P., 2019. Middle-Late Triassic Sedimentation in the Helanshan Tectonic Belt: Constrain on the Tectono-Sedimentary Evolution of the Ordos Basin, North China. Geoscience Frontiers, 10(1): 213–227. https://doi.org/10.1016/j.gsf.2018.05.017 |
Tang, X., Zhang, J. C., Wang, X. Z., et al., 2014. Shale Characteristics in the Southeastern Ordos Basin, China: Implications for Hydrocarbon Accumulation Conditions and the Potential of Continental Shales. International Journal of Coal Geology, 128/129: 32–46. https://doi.org/10.1016/j.coal.2014.03.005 |
Virolle, M., Brigaud, B., Luby, S., et al., 2019. Influence of Sedimentation and Detrital Clay Grain Coats on Chloritized Sandstone Reservoir Qualities: Insights from Comparisons between Ancient Tidal Heterolithic Sandstones and a Modern Estuarine System. Marine and Petroleum Geology, 107: 163–184. https://doi.org/10.1016/j.marpetgeo.2019.05.010 |
Wang, F. Y., Zeng, F. C., Wang, L., et al., 2021. Fractal Analysis of Tight Sandstone Petrophysical Properties in Unconventional Oil Reservoirs with NMR and Rate-Controlled Porosimetry. Energy & Fuels, 35(5): 3753–3765. https://doi.org/10.1021/acs.energyfuels.0c03394 |
Wang, J. Y., Jiang, F. J., Zhang, C. L., et al., 2021. Study on the Pore Structure and Fractal Dimension of Tight Sandstone in Coal Measures. Energy & Fuels, 35(5): 3887–3898. https://doi.org/10.1021/acs.energyfuels.0c03991 |
Wang, Q. T., Liu, W. H., Meng, P. L., et al., 2021. Assessment the Gas Potential of Coal-Bearing Mudstones from Upper Paleozoic in Ordos Basin via Gold-Tube Pyrolysis. Journal of Natural Gas Science and Engineering, 90: 103895. https://doi.org/10.1016/j.jngse.2021.103895 |
Wu, H., Zhang, C. L., Ji, Y. L., et al., 2018. An Improved Method of Characterizing the Pore Structure in Tight Oil Reservoirs: Integrated NMR and Constant-Rate-Controlled Porosimetry Data. Journal of Petroleum Science and Engineering, 166: 778–796. https://doi.org/10.1016/j.petrol.2018.03.065 |
Wüstefeld, P., Hilse, U., Koehrer, B., et al., 2017. Critical Evaluation of an Upper Carboniferous Tight Gas Sandstone Reservoir Analog: Diagenesis and Petrophysical Aspects. Marine and Petroleum Geology, 86: 689–710. https://doi.org/10.1016/j.marpetgeo.2017.05.034 |
Xiao, D. S., Jiang, S., Thul, D., et al., 2017. Combining Rate-Controlled Porosimetry and NMR to Probe Full-Range Pore Throat Structures and Their Evolution Features in Tight Sands: A Case Study in the Songliao Basin, China. Marine and Petroleum Geology, 83: 111–123. https://doi.org/10.1016/j.marpetgeo.2017.03.003 |
Xiao, D. S., Lu, Z. Y., Jiang, S., et al., 2016. Comparison and Integration of Experimental Methods to Characterize the Full-Range Pore Features of Tight Gas Sandstone—A Case Study in Songliao Basin of China. Journal of Natural Gas Science and Engineering, 34: 1412–1421. https://doi.org/10.1016/j.jngse.2016.08.029 |
Xu, H., Tang, D. Z., Zhang, J. F., et al., 2011. Factors Affecting the Development of the Pressure Differential in Upper Paleozoic Gas Reservoirs in the Sulige and Yulin Areas of the Ordos Basin, China. International Journal of Coal Geology, 85(1): 103–111. https://doi.org/10.1016/j.coal.2010.10.005 |
Xu, W. G., Deng, H. W., Wang, Y. T., 2021. The Sandstone Reservoir Characteristics and Controlling Factors of Shanxi Formation and Lower Shihezi Formation in Southeastern Ordos Basin. Geological Journal, 56(3): 1673–1698. https://doi.org/10.1002/gj.4019 |
Yang, B., Qu, H. J., Pu, R. H., et al., 2020. Controlling Effects of Tight Reservoir Micropore Structures on Seepage Ability: A Case Study of the Upper Paleozoic of the Eastern Ordos Basin, China. Acta Geologica Sinica-English Edition, 94(2): 322–336. https://doi.org/10.1111/1755-6724.14301 |
Yang, Y. Q., Qiu, L. W., Cao, Y. C., et al., 2017. Reservoir Quality and Diagenesis of the Permian Lucaogou Formation Tight Carbonates in Jimsar Sag, Junggar Basin, West China. Journal of Earth Science, 28(6): 1032–1046. https://doi.org/10.1007/s12583-016-0931-6 |
Yang, Y. T., Li, W., Ma, L., 2005. Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos Basin: A Multicycle Cratonic Basin in Central China. AAPG Bulletin, 89(2): 255–269. https://doi.org/10.1306/10070404027 |
Yin, S., Wu, Z. H., 2020. Geomechanical Simulation of Low-Order Fracture of Tight Sandstone. Marine and Petroleum Geology, 117: 104359. https://doi.org/10.1016/j.marpetgeo.2020.104359 |
Yin, X. D., Jiang, S., Chen, S. J., et al., 2020. Impact of Rock Type on the Pore Structures and Physical Properties within a Tight Sandstone Reservoir in the Ordos Basin, NW China. Petroleum Science, 17(4): 896–911. https://doi.org/10.1007/s12182-020-00460-y |
Yu, S., Bo, J., Pei, S., Jiahao, W., 2018. Matrix Compression and Multifractal Characterization for Tectonically Deformed Coals by Hg Porosimetry. Fuel, 211: 661–675. https://doi.org/10.1016/j.fuel.2017.09.070 |
Yu, Y., Lin, L. B., Zhai, C. B., et al., 2019. Impacts of Lithologic Characteristics and Diagenesis on Reservoir Quality of the 4th Member of the Upper Triassic Xujiahe Formation Tight Gas Sandstones in the Western Sichuan Basin, Southwest China. Marine and Petroleum Geology, 107: 1–19. https://doi.org/10.1016/j.marpetgeo.2019.04.040 |
Zeng, Q. S., Wang, Z. M., Huang, T. H., 2021. Permeability Prediction Method for Dipping Coal Seams at Varying Depths and Production Stages in Northeastern Ordos Basin. Energy & Fuels, 35(3): 2016–2023. https://doi.org/10.1021/acs.energyfuels.0c03205 |
Zhang, C. L., Diwu, C. R., Kröner, A., et al., 2015. Archean-Paleoproterozoic Crustal Evolution of the Ordos Block in the North China Craton: Constraints from Zircon U-Pb Geochronology and Hf Isotopes for Gneissic Granitoids of the Basement. Precambrian Research, 267: 121–136. https://doi.org/10.1016/j.precamres.2015.06.001 |
Zhang, J. J., Hu, Y. B., 2020. Comparative Evaluation of Pore Structure Heterogeneity in Low-Permeability Tight Sandstones Using Different Fractal Models Based on NMR Technology: A Case Study of Benxi Formation in the Central Ordos Basin. Energy & Fuels, 34(11): 13924–13942. https://doi.org/10.1021/acs.energyfuels.0c02738 |
Zhang, Y. C., Zeng, J. H., Dai, Z. X., et al., 2018. Experimental Investigation on Oil Migration and Accumulation in Tight Sandstones. Journal of Petroleum Science and Engineering, 160: 267–275. https://doi.org/10.1016/j.petrol.2017.10.049 |
Zhao, C., Zhu, X., 2001. Sedimentary Petrology (Third Edition). Petroleum Industry Press, Beijing (in Chinese) |
Zheng, D. Y., Pang, X. Q., Jiang, F. J., et al., 2020. Characteristics and Controlling Factors of Tight Sandstone Gas Reservoirs in the Upper Paleozoic Strata of Linxing Area in the Ordos Basin, China. Journal of Natural Gas Science and Engineering, 75: 103135. https://doi.org/10.1016/j.jngse.2019.103135 |
Zou, C. N., Yang, Z., Tao, S. Z., et al., 2012a. Nano-Hydrocarbon and the Accumulation in Coexisting Source and Reservoir. Petroleum Exploration and Development, 39(1): 15–32. https://doi.org/10.1016/s1876-3804(12)60011-1 |
Zou, C. N., Zhu, R. K., Liu, K. Y., et al., 2012b. Tight Gas Sandstone Reservoirs in China: Characteristics and Recognition Criteria. Journal of Petroleum Science and Engineering, 88/89: 82–91. https://doi.org/10.1016/j.petrol.2012.02.001 |