Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Wenbo Fan, Neng Jiang, Mingguo Zhai, Jun Hu. Origin of the Low δ18O Signals in Zircons from the Early Cretaceous A-Type Granites in Eastern China: Evidence from the Kulongshan Pluton. Journal of Earth Science, 2021, 32(6): 1415-1427. doi: 10.1007/s12583-021-1515-y
Citation: Wenbo Fan, Neng Jiang, Mingguo Zhai, Jun Hu. Origin of the Low δ18O Signals in Zircons from the Early Cretaceous A-Type Granites in Eastern China: Evidence from the Kulongshan Pluton. Journal of Earth Science, 2021, 32(6): 1415-1427. doi: 10.1007/s12583-021-1515-y

Origin of the Low δ18O Signals in Zircons from the Early Cretaceous A-Type Granites in Eastern China: Evidence from the Kulongshan Pluton

doi: 10.1007/s12583-021-1515-y
More Information
  • Corresponding author: Wenbo Fan, fans07cugb@126.com
  • Received Date: 30 Apr 2021
  • Accepted Date: 12 Jul 2021
  • Publish Date: 30 Dec 2021
  • The origin of low δ18O signals in zircons from the Early Cretaceous A-type granites in eastern China has long been disputed. It is uncertain whether the 18O-depleted features were inherited from high-temperature hydrothermal altered source rock or resulted from water-rock interaction after emplacement. In this paper, zircon oxygen isotopes in the ~130 Ma Kulongshan A-type granites in the northern North China Craton are analyzed. The zircons could be subdivided into 5 types based on their luminescent intensity and internal structures in CL images. Their δ18O values also vary in different types and show negative correlation with U and Th contents and accompanying cumulative α-decay doses, implying that their δ18O values may have been modified to various degrees by meteoric water-rock interaction after the accumulation of radiation damage. The idea is further confirmed by oxygen isotopic equilibrium calculation between co-existing mineral pairs. It is inferred that only the least-influenced zircons, with slightly elevated δ18O values than normal mantle, have preserved the magmatic oxygen isotopes. In combination with other evidences, it is proposed that the A-type granites are lower-crustal-derived, unnecessarily invoking a high-temperature hydrothermal altered source. The proposition is applicable to many other Cretaceous A-type granites that have similar zircon behaviors.

     

  • loading
  • Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Singledetrital Zircons. Nature, 399: 1497-1503. https://doi.org/10.1038/20426 doi: 10.1038/20426
    Bibikova, Y. V., Ustinov, V. I., Gracheva, T. V., et al. 1982. Variations of Isotopic Composition of Oxygen in Accessory Zircons. Doklady Akademii Nauk SSR, 264(3): 698-700
    Bindeman, I., 2008. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Reviews in Mineralogy and Geochemistry, 69(1): 445-478. https://doi.org/10.2138/rmg.2008.69.12
    Bindeman, I. N., Schmitt, A. K., Lundstrom, C. C., et al., 2018. Stability of Zircon and Its Isotopic Ratios in High-Temperature Fluids: Long-Term (4 Months) Isotope Exchange Experiment at 850℃ and 50 MPa. Frontiers in Earth Science, 6: 59. https://doi.org/10.3389/feart.2018.00059
    Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007 doi: 10.1016/j.lithos.2006.12.007
    Booth, A. L., Kolodny, Y., Chamberlain, C. P., et al., 2005. Oxygen Isotopic Composition and U-Pb Discordance in Zircon. Geochimica et Cosmochimica Acta, 69(20): 4895-4905. https://doi.org/10.1016/j.gca.2005.05.013
    Butera, K. M., Williams, I. S., Blevin, P. L., et al., 2001. Zircon U-Pb Dating of Early Palaeozoic Monzonitic Intrusives from the Goonumbla Area, New South Wales. Australian Journal of Earth Sciences, 48(3): 457-464. https://doi.org/10.1046/j.1440-0952.2001.00870.x
    Chakoumakos, B. C., Murakami, T., Lumpkin, G. R., et al., 1987. Alpha-Decay-Induced Fracturing in Zircon: The Transition from the Crystalline to the Metamict State. Science, 236(4808), 1556-1559. https://doi.org/10.1126/science.236.4808.1556
    Charoy, B., Raimbault, L., 1994. Zr-, Th-and REE-Rich Biotite Differentiates in the A-Type Granite Pluton of Suzhou (Eastern China): The Key Role of Fluorine. Journal of Petrology, 35(4): 919-962. https://doi.org/10.1093/petrology/35.4.919
    Clemens, J. D., Holloway, J. R., White, A. J. R., 1986. Origin of an A-Type Granite: Experimental Constraints. American Mineralogist, 71(3/4): 317-324 http://rruff.info/doclib/am/vol71/AM71_317.pdf
    Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80: 189-200. https://doi.org/10.1007/bf00374895 doi: 10.1007/BF00374895
    Collins, W. J., Huang, H. Q., Bowden, P., et al., 2019. Repeated S-I-A-Type Granite Trilogy in the Lachlan Orogen and Geochemical Contrasts with A-Type Granites in Nigeria: Implications for Petrogenesis and Tectonic Discrimination. Geological Society, London, Special Publications, 491(1). https://doi.org/10.1144/sp491-2018-159 doi: 10.1144/sp491-2018-159
    Deng, X. Q., Peng, T. P., Zhou, Y. Y., et al., 2020. Origin of the Late Paleoproterozoic Low-δ18O A-Type Granites on the Southern Margin of the North China Craton and Their Geodynamic Mechanism. Precambrian Research, 351: 105960. https://doi.org/10.1016/j.precamres.2020.105960
    Erdmann, S., Wodicka, N., Jackson, S. E., et al., 2013. Zircon Textures and Composition: Refractory Recorders of Magmatic Volatile Evolution? Contributions to Mineralogy and Petrology, 165: 45-71. https://doi.org/10.1007/s00410-012-0791-z
    Ewing, R. C., Meldrum, A., Wang, L. M., et al., 2003. Radiation Effects in Zircon. Reviews in Mineralogy & Geochemistry, 53(1): 387-425. https://doi.org/10.2113/0530387 doi: 10.2113/0530387
    Fan, W. B., Jiang, N., Xu, X. Y., et al., 2017. Petrogenesis of the Middle Jurassic Appinite And Coeval Granitoids in the Eastern Hebei Area of North China Craton. Lithos, 278-281: 331-346. https://doi.org/10.1016/j.lithos.2017.01.030
    Fan, W. B., Jiang, N., Zhai, M. G., et al., 2020. Zircon Constraints on Granite Provenance in the Northern North China Craton. Lithos, 356/357: 105370. https://doi.org/10.1016/j.lithos.2020.105370
    Farnan, I., Salje, E. K. H., 2001. The Degree and Nature of Radiation Damage in Zircon Observed by 29Si Nuclear Magnetic Resonance. Journal of Applied Physics, 89(4): 2084-2090. https://doi.org/10.1063/1.1343523
    Geisler, T., Schaltegger, U., Tomaschek, F., 2007. Re-equilibration of Zircon in Aqueous Fluids and Melts. Elements, 3(1): 43-50. https://doi.org/10.2113/gselements.3.1.43
    Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing: SE China: in-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61: 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/S0024-4937(02)00082-8
    Gao, Y. Y., Li, X. H., Griffin, W. L., et al., 2014. Screening Criteria for Reliable U-Pb Geochronology and Oxygen Isotope Analysis in Uranium-Rich Zircons: A Case Study from the Suzhou A-Type Granites, SE China. Lithos, 192-195: 180-191. https://doi.org/10.1016/j.lithos.2014.02.002
    Guo, J. L., Wu, J. H., Niu, Z. L., et al., 2019. Petrogenesis of the Kulongshan Complex Pluton in Northern Hebei: Chronologic and Geochemical Constraints. Acta Metallurgica Sinica, 25(1): 33-50. https://doi.org/10.16108/j.issn1006-7493.2018048 (in Chinese with English Abstract) doi: 10.16108/j.issn1006-7493.2018048
    Hiess, J., Bennett, V. C., Nutman, A. P., et al., 2011. Archaean Fluid-Assisted Crustal Cannibalism Recorded by Low δ18O and Negative εHf(t) Isotopic Signatures of West Greenland Granite Zircon. Contributions to Mineralogy and Petrology, 161: 1027-1050. https://doi.org/10.1007/s00410-010-0578-z
    Holland, H. D., Gottfried, D., 1955. The Effect of Nuclear Radiation on the Structure of Zircon. Acta Crystallographica, 8(6): 291-300 doi: 10.1107/S0365110X55000947
    Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006
    Jahn, B. M., Condie, K. C., 1995. Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites. Geochimica et Cosmochirnica Acta, 59: 2239-2258. https://doi.org/10.1016/0016-7037(95)00103-7
    Jahn, B. M., Wu, F. Y., Hong, D., 2000. Important Crustal Growth in the Phanerozoic: Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109: 5-20. https://doi.org/10.1007/bf02719146 doi: 10.1007/BF02719146
    Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/s0024-4937(01)00066-4 doi: 10.1016/S0024-4937(01)00066-4
    Javoy, M., Weis, D., 1987. Oxygen Isotopic Composition of Alkaline Anorogenic Granites as a Clue to Their Origin: The Problem of Crustal Oxygen. Earth and Planetary Science Letters, 84(4): 415-422. https://doi.org/10.1016/0012-821x(87)90006-9 doi: 10.1016/0012-821X(87)90006-9
    Jiang, N., Guo, J. H., Zhai, M. G., et al., 2010. ~2.7 Ga Continental Crust Growth in the North China craton. Precambrian Research, 179(1-4): 27-49. https://doi.org/10.1016/j.precamres.2010.02.010 doi: 10.1016/j.precamres.2010.02.010
    Jiang, N., Guo, J. H., Chang, G. H., 2013. Nature and Evolution of the Lower Crust in the Eastern North China Craton: A Review. Earth-Science Reviews, 122: 1-9. https://doi.org/10.1016/j.earscirev.2013.03.006
    Li, X. H., Liu, Y., Li, Q. L., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multi-Collector SIMS without External Standardization. Geochemistry Geophysical Geosystem, 10: Q04010. https://doi.org/10.1029/2009gc002607 doi: 10.1029/2009gc002607
    Li, X. H., Long, W. G., Li, Q. L., et al., 2010. Penglai Zircon Megacrysts: A Potential Newworking Reference Material for Micro Beam Determination of Hf-O Isotopes and U-Pb Age. Geostandards and Geoanalytical Research, 34: 117-134. https://doi.org/10.1111/j.1751-908x.2010.00036.x doi: 10.1111/j.1751-908X.2010.00036.x
    Li, S. L., Hao, J. J., 2017. REE Ore Mineralization of the Kulongshan A-Type Granites in Eastern Hebei. Huabei Land and Resources, 77: 53-62 (in Chinese)
    Liebmann, J., Spencer, C. J., Kirkland, C. L., et al., 2021. Effect of Water on δ18O in Zircon. Chemical Geology, 574: 120243. https://doi.org/10.1016/j.chemgeo.2021.120243
    Liu, J. X., 1990. Preparation of Reference Materials for Oxygen Isotope Determination in Silicates. Rock and Mineral Analysis, 9(4): 276-282 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS199004008.htm
    Liu, Y., Hou, Z. Q., Zhang, R. Q., et al., 2019. Zircon Alteration as a Proxy for Rare Earth Element Mineralization Processes in Carbonatite-Nordmarkite Complexes of the Mianning-Dechang Rare Earth Element Belt, China. Economic Geology, 114(4): 719-744. https://doi.org/10.5382/econgeo.4660
    Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America, Abstracts, 11: 468 http://ci.nii.ac.jp/naid/10019593683
    Ludwig, K. R., 2012. User's Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Special Publication No. 5. Berkeley Geochronology Center, Berkeley
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120: 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
    Monani, S., Valley, J. W., 2001. Oxygen Isotope Ratios of Zircon: Magma Genesis of Low δ18O Granites from the British Tertiary Igneous Province, Western Scotland. Earth and Planetary Science Letters, 184(2): 377-392. https://doi.org/10.1016/s0012-821x(00)00328-9 doi: 10.1016/S0012-821X(00)00328-9
    Murakami, T., Chakoumakos, B. C., Ewing, R. C., et al., 1991. Alpha-Decay Event Damage in Zircon. American Mineralogist, 76(9/10): 1510-1532 http://ammin.geoscienceworld.org/content/76/9-10/1510
    Nasdala, L., Wenzel, M., Vavra, G., et al., 2001. Metamictisation of Natural Zircon: Accumulation versus Thermal Annealing of Radioactivity-Induced Damage. Contributions to Mineralogy and Petrology, 141(2): 125-144. https://doi.org/10.1007/s004100000235
    Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
    Peck, W. H., Valley, J. W., Graham, C. M., 2003. Slow Oxygen Diffusion Rates in Igneous Zircons from Metamorphic Rocks. American Mineralogist, 88(7): 1003-1014. https://doi.org/10.2138/am-2003-0708
    Pidgeon, R. T., Nemchin, A. A., Cliff, J., 2013. Interaction of Weathering Solutions with Oxygen and U-Pb Isotopic Systems of Radiation-Damaged Zircon from an Archean Granite, Darling Range Batholith, Western Australia. Contributions to Mineralogy and Petrology, 166(2): 511-523. https://doi.org/10.1007/s00410-013-0888-z
    Qiu, K. F., Yu, H. C., Wu, M. Q., et al., 2019. Discrete Zr and REE Mineralization of the Baerzhe Rare-Metal Deposit, China. American Mineralogist, 104(10): 1487-1502. https://doi.org/10.2138/am-2019-6890
    Silver, L. T., Deutsch, S., 1963. Uranium-Lead Isotopic Variations in Zircons: A Case Study. The Journal of Geology, 71(6): 721-758 doi: 10.1086/626951
    Steiger, R. H., Jager, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo-and Cosmochronology. Earth and Planetary Science Letters, 36: 359-362. https://doi.org/10.1016/0012-821x(77)90060-7 doi: 10.1016/0012-821X(77)90060-7
    Sun, J. F., Yang, J. H., 2009. Early Cretaceous A-Type Granites in the Eastern North China Block with Relation to Destruction of the Craton. Earth Science, 34: 137-147 (in Chinese with English Abstract)
    Sun, J. F., 2011. Petrogenesis of Early Cretaceous A-Type Granites in the Northern Liaodong Peninsula: Implications for Decratonization of the North China Craton: [Dissertation]. University of Chinese Academy of Sciences, Beijing. 103-105 (in Chinese)
    Tang, J., Xu, W. L., Wang, F., et al., 2018. Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent: Mesozoic-Paleogene Magmatic Records in Northeast Asia. Science China Earth Sciences, 61: 527-559. https://doi.org/10.1007/s11430-017-9174-1
    Taylor, H. P., 1988. Oxygen, Hydrogen and Stronium Isotope Constaints on the Origin of Granite. Transactions of the Royal Society of Edinburg: Earth Science, 79: 317-338 doi: 10.1017/S0263593300014309
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford
    Trail, D., Bindeman, I. N., Watson, E. B., et al., 2009. Experimental Calibration of Oxygen Isotope Fractionation between Quartz and Zircon. Geochimica et Cosmochimica Acta, 73(23): 7110-7126. https://doi.org/10.1016/j.gca.2009.08.024
    Troch, J., Ellis, B. S., Schmitt, A. K., et al., 2018. The Dark Side of Zircon: Textural, Age, Oxygen Isotopic and Trace Element Evidence of Fluid Saturation in the Subvolcanic Reservoir of the Island Park Mount Jackson Rhyolite, Yellowstone (USA). Contributions to Mineralogy and Petrology, 173(7): 54. https://doi.org/10.1007/s00410-018-1481-2
    Valley, J. W., Kinny, P. D., Schulze, D. J., et al., 1998. Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133: 1-11. https://doi.org/10.1007/s004100050432
    Valley, J. W., 2003. Oxygen Isotopes in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 343-385. https://doi.org/10.2113/0530343
    Wang, X. L., Coble, M. A., Valley, J. W., et al., 2014. Influence of Radiation Damage on Late Jurassic Zircon from Southern China: Evidence from in situ Measurements of Oxygen Isotopes, Laser Raman, U-Pb Ages, and Trace Elements. Chemical Geology, 389: 122-136. https://doi.org/10.1016/j.chemgeo.2014.09.013
    Wang, R. C., Zhao, G. T., Wang, D. Z., et al., 2000. The Aggregation of Fractionated Fluid in A-Type Granite: Evidences from Accessory Mineral. Chinese Science Bulletin, 45(7): 771-774 (in Chinese) doi: 10.1360/csb2000-45-7-771
    Watson, E. B., Cherniak, D. J., 1997. Oxygen Diffusion in Zircon. Earth and Planetary Science Letters, 148(3/4): 527-544. https://doi.org/10.1016/s0012-821x(97)00057-5 doi: 10.1016/s0012-821x(97)00057-5
    Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x doi: 10.1016/0012-821X(83)90211-X
    Wei, C. S., Zheng, Y. F., Zhao, Z. F., 2001a. Nd-Sr-O Isotopic Geochemistry Constraints on the Age and Origin of the A-Type Granites in Eastern China. Acta Petrologica Sinica, 17(1): 95-111 (in Chinese with English Abstract) http://www.researchgate.net/profile/Yong-Fei_Zheng/publication/279653468_Nd-Sr-O_isotopic_geochemistry_constraints_on_the_age_and_origin_of_the_A-type_granites_in_Eastern_China/links/55ceae5a08ae118c85bed286.pdf
    Wei, C. S., Zheng, Y. F., Zhao, Z. F., 2001b. Oxygen Isotopic Evidences for the Two Stages of Water-Rock Interaction in Nianzishan A-Type Granites. Chinese Science Bulletin, 46(1): 8-13 (in Chinese) doi: 10.1360/csb2001-46-1-8
    Wei, C. S., Zheng, Y. F., Zhao, Z. F., et al. 2002. Oxygen and Neodymium Isotope Evidence for Recycling of Juvenile Crust in Northeast China. Geology, 30(4): 375-378. https://doi.org/10.1130/0091-7613(2002)030<0375:oanief>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0375:OANIEF>2.0.CO;2
    Wei, C. S., Zhao, Z. F., Spicuzza, M. J., 2008. Zircon Oxygen Isotopic Constraint on the Sources of Late Mesozoic A-Type Granites in Eastern China. Chemical Geology, 250(1-4): 1-15. https://doi.org/10.1016/j.chemgeo.2008.01.004
    Wen, X., 2013. The Origin of the Houshihushan Alkaline Ring Complex in the Yanshan Orogenic Belt and Its Tectonic Implications: [Dissertation]. China University of Geosciences, Wuhan. 46-49 (in Chinese)
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419. https://doi.org/10.1007/bf00402202 doi: 10.1007/BF00402202
    White, L. T., Ireland, T. R., 2012. High-Uranium Matrix Effect in Zircon and Its Implications for SHRIMP U-Pb Age Determinations. Chemical Geology, 306/307(19): 78-91. https://doi.org/10.1016/j.chemgeo.2012.02.025 doi: 10.1016/j.chemgeo.2012.02.025
    Wu, W. F., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143-173. https://doi.org/10.1016/s0009-2541(02)00018-9 doi: 10.1016/s0009-2541(02)00018-9
    Xu, B. L., Chen, Y. G., Huang, F. S., 1993. Two Types of Granites of the Fengning District, Hebei Province. Aeta Seientiarum Naturalium Universitatis Pekinensis, 29(2): 213-224 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ199302013.htm
    Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89: 89-106. https://doi.org/10.1016/j.lithos.2005.10.002
    Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2008. Petrogenesis of an Alkali Syenite-Granite-Rhyolite Suite in the Yanshan Fold and Thrust Belt, Eastern North China Craton: Geochronological, Geochemical and Nd-Sr-Hf Isotopic Evidence for Lithospheric Thinning. Journal of Petrology, 49: 315-351. https://doi.org/10.1093/petrology/egm083 doi: 10.1093/petrology/egm083
    Yang, W. B., Niu, H. C., Sun, W. D., et al., 2013. Isotopic Evidence for Continental Ice Sheet in Mid-Latitude Region in the Supergreenhouse Early Cretaceous. Scientific Reports, 3(39): 2732. https://doi.org/10.1038/srep02732 doi: 10.1038/srep02732
    Yang, W. B., Niu, H. C., Hollings, P., et al., 2017. The Role of Recycled Oceanic Crust in the Generation of Alkaline A-Type Granites. Journal of Geophysical Research-Solid Earth, 122(12): 9775-9783. https://doi.org/10.1002/2017jb014921 doi: 10.1002/2017JB014921
    Zeng, L. J., Niu, H. C., Bao, Z. W., et al., 2017. Chemical Lattice Expansion of Natural Zircon during the Magmatic-Hydrothermal Evolution of A-Type Granite. American Mineralogist, 102: 655-665. https://doi.org/10.2138/am-2017-5840
    Zhang, J. F., Liu, H. B., Shi, X., et al., 2019. Study on Influence Factors for Determination of Oxygen Isotopic Composition of Silicates and Oxide Minerals by BrF5 Method. Rock and Mineral Analysis, 38(1): 45-54. https://doi.org/10.15898/j.cnki.11-2131/td.201805170062 (in Chinese with English abstract) doi: 10.15898/j.cnki.11-2131/td.201805170062
    Zhang, S. B., Zheng, Y. F., 2011. On the Origin of Low δ18O Magmatic Rocks. Acta Petrologica Sinica, 27(2): 320-530 (in Chinese with English Abstract) http://www.researchgate.net/publication/279675937_On_the_origin_of_low_d_18O_magmatic_rocks
    Zhang, X. H., Yuan, L., Xue, F., et al., 2015. Early Permian A-Type Granites from Central Inner Mongolia, North China: Magmatic Tracer of Post-Collisional Tectonics and Oceanic Crustal Recycling. Gondwana Research, 28(1): 311-327. https://doi.org/10.1016/j.gr.2014.02.011
    Zhao, Z. F., Zheng, Y. F., Wei, C. S., 2001. Kinetics of Oxygen Isotope Exchange between Water and Minerals of Miarolitic Alkaline Granite from Nianzishan. Geochimica, 30(2): 177-185. https://doi.org/10.19700/j.0379-1726.2001.02.010 (in Chinese with English Abstract) doi: 10.19700/j.0379-1726.2001.02.010
    Zheng, Y. F., 1993. Calculation of Oxygen Isotope Fractionation in Anhydrous Silicate Minerals. Geochimica et Cosmochimica Acta, 57(13): 1079-1091. https://doi.org/10.1016/0016-7037(93)90042-u doi: 10.1016/0016-7037(93)90042-u
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(149) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return