Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Ronghua Cai, Shan Xu, Dmitri A. Ionov, Jian Huang, Sheng-Ao Liu, Shuguang Li, Jingao Liu. Carbonated Big Mantle Wedge Extending to the NE Edge of the Stagnant Pacific Slab: Constraints from Late Mesozoic-Cenozoic Basalts from Far Eastern Russia. Journal of Earth Science, 2022, 33(1): 121-132. doi: 10.1007/s12583-021-1516-x
Citation: Ronghua Cai, Shan Xu, Dmitri A. Ionov, Jian Huang, Sheng-Ao Liu, Shuguang Li, Jingao Liu. Carbonated Big Mantle Wedge Extending to the NE Edge of the Stagnant Pacific Slab: Constraints from Late Mesozoic-Cenozoic Basalts from Far Eastern Russia. Journal of Earth Science, 2022, 33(1): 121-132. doi: 10.1007/s12583-021-1516-x

Carbonated Big Mantle Wedge Extending to the NE Edge of the Stagnant Pacific Slab: Constraints from Late Mesozoic-Cenozoic Basalts from Far Eastern Russia

doi: 10.1007/s12583-021-1516-x
More Information
  • Corresponding author: Jingao Liu, jingao@cugb.edu.cn
  • Received Date: 21 Apr 2021
  • Accepted Date: 13 Jul 2021
  • Publish Date: 28 Feb 2022
  • It has been suggested that the carbonated mantle reflected by Mg-Zn isotopic anomalies of Cenozoic intraplate basalts from East Asia coincides with the stagnant West Pacific slab in the mantle transition zone. However, the northern boundary of such carbonated domain beneath East Asia is uncertain. Late Mesozoic-Cenozoic intraplate basalts are widespread in far eastern Russia and thus provide an opportunity to examine this issue. Here we report major-trace element contents and Sr-Nd-Mg-Zn isotopic compositions for 9 Late Mesozoic-Cenozoic basaltic samples from the Khanka Block and Sikhote-Alin accretionary complex. They are characterized by large variations in SiO2 contents (41 wt.% to 50 wt.%) and CaO/Al2O3(0.50 to 0.97), enrichments of large-ion lithophile elements (LILE), positive Nb-Ta anomalies and strongly negative K, Pb, Zr, Hf, Ti, Y anomalies in primitive mantle-normalized trace element spider diagram. Furthermore, the rocks show good correlations of Ti/Ti* with Hf/Hf*, La/Yb, Fe/Mn and trace element contents (e.g., Nb). In addition, they have lighter Mg and heavier Zn isotope compositions than the BSE estimates, coupled with depleted Sr-Nd isotope compositions. These elemental and isotopic characteristics cannot be explained by alteration, magma differentiation or diffusion, but are consistent with the partial melting of carbonated peridotite. By and large, the Late Mesozoic-Cenozoic basalts from far eastern Russia bear very similar geochemical characteristics as those Na-series Cenozoic basalts from eastern China. The extended region of Mg-Zn isotopic anomalies is roughly coincident with the stagnant West Pacific slab beneath East Asia, and all of these alkali basalts can be generated from mantle sources hybridized by recycled Mg-carbonates from the Pacific slab stagnant in the mantle transition zone. We infer that (1) the carbonated big mantle wedge extends to the NE edge of the West Pacific slab and may have also appeared in the Late Mesozoic due to the effect of the Paleo-Pacific slab beneath this region, and (2) decarbonation of stagnant slabs in the mantle transition zone is a key mechanism for carbon outgassing from deep mantle to surface via intraplate alkali melts.

     

  • Electronic Supplementary Material: Supplementary material (Table S1) is available in the online version of this article at https://doi.org/10.1007/s12583-021-1516-x.
  • loading
  • Biellmann, C., Gillet, P., Guyot, F., et al., 1993. Experimental Evidence for Carbonate Stability in the Earth's Lower Mantle. Earth and Planetary Science Letters, 118(1/2/3/4): 31-41. https://doi.org/10.1016/0012-821x(93)90157-5
    Boulard, E., Gloter, A., Corgne, A., et al., 2011. New Host for Carbon in the Deep Earth. PNAS, 108(13): 5184-5187. https://doi.org/10.1073/pnas.1016934108
    Cai, R. H., Liu, J. G., Pearson, D. G., et al., 2021. Oxidation of the Deep Big Mantle Wedge by Recycled Carbonates: Constraints from Highly Siderophile Elements and Osmium Isotopes. Geochimica et Cosmochimica Acta, 295: 207-223. https://doi.org/10.1016/j.gca. 2020.12.019 doi: 10.1016/j.gca.2020.12.019
    Chen, H., Savage, P. S., Teng, F. Z., et al., 2013. Zinc Isotope Fractionation during Magmatic Differentiation and the Isotopic Composition of the Bulk Earth. Earth and Planetary Science Letters, 369/370: 34-42. https://doi.org/10.1016/j.epsl.2013.02.037
    Chen, S. S., Liu, J. Q., Chen, S. S., et al., 2015. Variations in the Geochemical Structure of the Mantle Wedge beneath the Northeast Asian Marginal Region from Pre- to Post-Opening of the Japan Sea. Lithos, 224/225: 324-341. https://doi.org/10.1016/j.lithos.2015.03.008
    Chu, Z. Y., Harvey, J., Liu, C. Z., et al., 2013. Source of Highly Potassic Basalts in Northeast China: Evidence from Re-Os, Sr-Nd-Hf Isotopes and PGE Geochemistry. Chemical Geology, 357: 52-66. https://doi.org/10.1016/j.chemgeo.2013.08.007
    Dasgupta, R., Hirschmann, M. M., McDonough, W. F., et al., 2009. Trace Element Partitioning between Garnet Lherzolite and Carbonatite at 6.6 and 8.6 GPa with Applications to the Geochemistry of the Mantle and of Mantle-Derived Melts. Chemical Geology, 262(1/2): 57-77. https://doi.org/10.1016/j.chemgeo.2009.02.004
    Dasgupta, R., Hirschmann, M. M., Smith, N. D., 2007. Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 48(11): 2093-2124. https://doi.org/10.1093/petrology/egm053
    Dasgupta, R., Hirschmann, M. M., Stalker, K., 2006. Immiscible Transition from Carbonate-Rich to Silicate-Rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silica-Undersaturated Ocean Island Lavas. Journal of Petrology, 47(4): 647-671. https://doi.org/10.1093/petrology/egi088
    Dasgupta, R., Mallik, A., Tsuno, K., et al., 2013. Carbon-Dioxide-Rich Silicate Melt in the Earth's Upper Mantle. Nature, 493(7431): 211-215. https://doi.org/10.1038/nature11731
    Davis, F. A., Hirschmann, M. M., Humayun, M., 2011. The Composition of the Incipient Partial Melt of Garnet Peridotite at 3 GPa and the Origin of OIB. Earth and Planetary Science Letters, 308(3/4): 380-390. https://doi.org/10.1016/j.epsl.2011.06.008
    Davis, F. A., Humayun, M., Hirschmann, M. M., et al., 2013. Experimentally Determined Mineral/Melt Partitioning of First-Row Transition Elements (FRTE) during Partial Melting of Peridotite at 3 GPa. Geochimica et Cosmochimica Acta, 104: 232-260. https://doi.org/10.1016/j.gca.2012.11.009
    Doucet, L. S., Mattielli, N., Ionov, D. A., et al., 2016. Zn Isotopic Heterogeneity in the Mantle: A Melting Control?. Earth and Planetary Science Letters, 451: 232-240. https://doi.org/10.1016/j.epsl.2016.06.040
    Foley, S. F., Yaxley, G. M., Rosenthal, A., et al., 2009. The Composition of Near-Solidus Melts of Peridotite in the Presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112: 274-283. https://doi.org/10.1016/j.lithos.2009.03.020
    Frezzotti, M. L., Selverstone, J., Sharp, Z. D., et al., 2011. Carbonate Dissolution during Subduction Revealed by Diamond-Bearing Rocks from the Alps. Nature Geoscience, 4(10): 703-706. https://doi.org/10.1038/ngeo1246
    Gao, T., Ke, S., Li, R. Y., et al., 2019. High-Precision Magnesium Isotope Analysis of Geological and Environmental Reference Materials by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry: RCM, 33(8): 767-777. https://doi.org/10.1002/rcm.8376
    George, A. M., Stebbins, J. F., 1998. Structure and Dynamics of Magnesium in Silicate Melts: A High-temperature 25Mg NMR Study. American Mineralogist, 83(9/10): 1022-1029. https://doi.org/10.2138/am-1998-9-1010
    Gudfinnsson, G. H., Presnall, D. C., 2005. Continuous Gradations among Primary Carbonatitic, Kimberlitic, Melilititic, Basaltic, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3-8 GPa. Journal of Petrology, 46(8): 1645-1659. https://doi.org/10.1093/petrology/egi029
    Guo, F., Li, H. X., Fan, W. M., et al., 2015. Early Jurassic Subduction of the Paleo-Pacific Ocean in NE China: Petrologic and Geochemical Evidence from the Tumen Mafic Intrusive Complex. Lithos, 224/225: 46-60. https://doi.org/10.1016/j.lithos.2015.02.014
    He, Y., Chen, L. H., Shi, J. H., et al., 2019. Light Mg Isotopic Composition in the Mantle beyond the Big Mantle Wedge beneath Eastern Asia. Journal of Geophysical Research: Solid Earth, 124(8): 8043-8056. https://doi.org/10.1029/2018jb016857
    Hu, Y., Teng, F. Z., Plank, T., et al., 2017. Magnesium Isotopic Composition of Subducting Marine Sediments. Chemical Geology, 466: 15-31. https://doi.org/10.1016/j.chemgeo.2017.06.010
    Hu, Y., Teng, F. Z., Zhang, H. F., et al., 2016. Metasomatism-Induced Mantle Magnesium Isotopic Heterogeneity: Evidence from Pyroxenites. Geochimica et Cosmochimica Acta, 185: 88-111. https://doi.org/10.1016/j.gca.2015.11.001
    Huang, F., Chakraborty, P., Lundstrom, C. C., et al., 2010. Isotope Fractionation in Silicate Melts by Thermal Diffusion. Nature, 464(7287): 396-400. https://doi.org/10.1038/nature08840
    Huang, F., Chen, L. J., Wu, Z. Q., et al., 2013. First-Principles Calculations of Equilibrium Mg Isotope Fractionations between Garnet, Clinopyroxene, Orthopyroxene, and Olivine: Implications for Mg Isotope Thermometry. Earth and Planetary Science Letters, 367: 61-70. https://doi.org/10.1016/j.epsl.2013.02.025
    Huang, J., Li, S. G., Xiao, Y. L., et al., 2015a. Origin of Low δ26Mg Cenozoic Basalts from South China Block and Their Geodynamic Implications. Geochimica et Cosmochimica Acta, 164: 298-317. https://doi.org/10.1016/j.gca.2015.04.054
    Huang, J., Ke, S., Gao, Y. J., et al., 2015b. Magnesium Isotopic Compositions of Altered Oceanic Basalts and Gabbros from IODP Site 1256 at the East Pacific Rise. Lithos, 231: 53-61. https://doi.org/10.1016/j.lithos.2015.06.009
    Huang, J., Liu, S.-A., Gao, Y. J., et al., 2016. Copper and Zinc Isotope Systematics of Altered Oceanic Crust at IODP Site 1256 in the Eastern Equatorial Pacific. Journal of Geophysical Research: Solid Earth, 121(10): 7086-7100. https://doi.org/10.1002/2016jb013095
    Huang, J., Xiao, Y. L., 2016. Mg-Sr Isotopes of Low-δ26Mg Basalts Tracing Recycled Carbonate Species: Implication for the Initial Melting Depth of the Carbonated Mantle in Eastern China. International Geology Review, 58(11): 1350-1362. https://doi.org/10.1080/00206814.2016.1157709
    Huang, J., Zhang, X. C., Chen, S., et al., 2018. Zinc Isotopic Systematics of Kamchatka-Aleutian Arc Magmas Controlled by Mantle Melting. Geochimica et Cosmochimica Acta, 238: 85-101. https://doi.org/10.1016/j.gca.2018.07.012
    Huang, K. J., Teng, F. Z., Plank, T., et al., 2018. Magnesium Isotopic Composition of Altered Oceanic Crust and the Global Mg Cycle. Geochimica et Cosmochimica Acta, 238: 357-373. https://doi.org/10.1016/j.gca.2018.07.011
    Inglis, E. C., Debret, B., Burton, K. W., et al., 2017. The Behavior of Iron and Zinc Stable Isotopes Accompanying the Subduction of Mafic Oceanic Crust: A Case Study from Western Alpine Ophiolites. Geochemistry, Geophysics, Geosystems, 18(7): 2562-2579. https://doi.org/10.1002/2016gc006735
    Ionov, D. A., Guo, P., Nelson, W. R., et al., 2020. Paleoproterozoic Melt-Depleted Lithospheric Mantle in the Khanka Block, far Eastern Russia: Inferences for Mobile Belts Bordering the North China and Siberian Cratons. Geochimica et Cosmochimica Acta, 270: 95-111. https://doi.org/10.1016/j.gca.2019.11.019
    Ionov, D. A., Shirey, S. B., Weis, D., et al., 2006. Os-Hf-Sr-Nd Isotope and PGE Systematics of Spinel Peridotite Xenoliths from Tok, SE Siberian Craton: Effects of Pervasive Metasomatism in Shallow Refractory Mantle. Earth and Planetary Science Letters, 241(1/2): 47-64. https://doi.org/10.1016/j.epsl.2005.10.038
    Isshiki, M., Irifune, T., Hirose, K., et al., 2004. Stability of Magnesite and Its High-Pressure Form in the Lowermost Mantle. Nature, 427(6969): 60-63. https://doi.org/10.1038/nature02181
    Kushiro, I., 1975. Carbonate-Silicate Reactions at High Presures and Possible Presence of Dolomite and Magnesite in the upper Mantle. Earth and Planetary Science Letters, 28(2): 116-120. https://doi.org/10.1016/0012-821x(75)90218-6
    Li, S. G., Yang, W., Ke, S., et al., 2017. Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4(1): 111-120. https://doi.org/ 10.1093/nsr/nww070
    Little, S. H., Vance, D., McManus, J., et al., 2016. Key Role of Continental Margin Sediments in the Oceanic Mass Balance of Zn and Zn Isotopes. Geology, 44(3): 207-210. https://doi.org/10.1130/g37493.1
    Liu, K., Zhang, J. J., Xiao, W. J., et al., 2020. A Review of Magmatism and Deformation History along the NE Asian Margin from ca. 95 to 30 Ma: Transition from the Izanagi to Pacific Plate Subduction in the Early Cenozoic. Earth-Science Reviews, 209: 103317. https://doi.org/10.1016/j.earscirev.2020.103317
    Liu, S. A., Li, S. G., 2019. Tracing the Deep Carbon Cycle Using Metal Stable Isotopes: Opportunities and Challenges. Engineering, 5(3): 448-457. https://doi.org/10.1016/j.eng.2019.03.007
    Liu, S. A., Liu, P. P., Lü, Y. W., et al., 2019. Cu and Zn Isotope Fractionation during Oceanic Alteration: Implications for Oceanic Cu and Zn Cycles. Geochimica et Cosmochimica Acta, 257: 191-205. https://doi.org/10.1016/j.gca.2019.04.026
    Liu, S. A., Teng, F. Z., Yang, W., et al., 2011. High-Temperature Inter-Mineral Magnesium Isotope Fractionation in Mantle Xenoliths from the North China Craton. Earth and Planetary Science Letters, 308(1/2): 131-140. https://doi.org/10.1016/j.epsl.2011.05.047
    Liu, S. A., Wang, Z. Z., Li, S. G., et al., 2016. Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China. Earth and Planetary Science Letters, 444: 169-178. https://doi.org/10.1016/j.epsl.2016.03.051
    Liu, S. A., Wang, Z. Z., Yang, C., et al., 2020. Mg and Zn Isotope Evidence for Two Types of Mantle Metasomatism and Deep Recycling of Magnesium Carbonates. Journal of Geophysical Research: Solid Earth, 125(11). https://doi.org/10.1029/2020jb020684
    Liu, S. A., Wu, H. C., Shen, S. Z., et al., 2017. Zinc Isotope Evidence for Intensive Magmatism Immediately before the End-Permian Mass Extinction. Geology, 45(4): 343-346. https://doi.org/10.1130/g38644.1
    Lü, Y., Liu, S. A., Teng, F. Z., et al., 2020. Contrasting Zinc Isotopic Fractionation in Two Mafic-Rock Weathering Profiles Induced by Adsorption Onto Fe (Hydr)Oxides. Chemical Geology, 539: 119504. https://doi.org/10.1016/j.chemgeo.2020.119504
    Mazza, S. E., Gazel, E., Bizimis, M., et al., 2019. Sampling the Volatile-Rich Transition Zone beneath Bermuda. Nature, 569(7756): 398-403. https://doi.org/10.1038/s41586-019-1183-6
    McCoy-West, A. J., Fitton, J. G., Pons, M. L., et al., 2018. The Fe and Zn Isotope Composition of Deep Mantle Source Regions: Insights from Baffin Island Picrites. Geochimica et Cosmochimica Acta, 238: 542-562. https://doi.org/10.1016/j.gca.2018.07.021
    Merlini, M., Crichton, W. A., Hanfland, M., et al., 2012. Structures of Dolomite at Ultrahigh Pressure and Their Influence on the Deep Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 109(34): 13509-13514. https://doi.org/10.1073/pnas.1201336109
    Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
    Okamura, S., Arculus, R. J., Martynov, Y. A., 2005. Cenozoic Magmatism of the North-Eastern Eurasian Margin: The Role of Lithosphere Versus Asthenosphere. Journal of Petrology, 46(2): 221-253. https://doi.org/10.1093/petrology/egh065
    Okamura, S., Martynov, Y. A., Furuyama, K., et al., 1998. K-Ar Ages of the Basaltic Rocks from far East Russia: Constraints on the Tectono-Magmatism Associated with the Japan Sea Opening. The Island Arc, 7(1/2): 271-282. https://doi.org/10.1046/j.1440-1738.1998.00174.x
    Pan, D., Spanu, L., Harrison, B., et al., 2013. Dielectric Properties of Water under Extreme Conditions and Transport of Carbonates in the Deep Earth. Proceedings of the National Academy of Sciences of the United States of America, 110(17): 6646-6650. https://doi.org/10.1073/pnas. 1221581110 doi: 10.1073/pnas.1221581110
    Pertermann, M., Hirschmann, M. M., 2003. Anhydrous Partial Melting Experiments on MORB-Like Eclogite: Phase Relations, Phase Compositions and Mineral-Melt Partitioning of Major Elements at 2-3 GPa. Journal of Petrology, 44(12): 2173-2201. https://doi.org/10.1093/petrology/egg074
    Pichat, S., Douchet, C., Albarède, F., 2003. Zinc Isotope Variations in Deep-Sea Carbonates from the Eastern Equatorial Pacific over the Last 175 ka. Earth and Planetary Science Letters, 210(1/2): 167-178. https://doi.org/10.1016/s0012-821x(03)00106-7
    Pilet, S., Baker, M. B., Stolper, E. M., 2008. Metasomatized Lithosphere and the Origin of Alkaline Lavas. Science, 320(5878): 916-919. https://doi.org/10.1126/science.1156563
    Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343-352. https://doi.org/10.1038/s41586-019-1643-z
    Pogge von Strandmann, P. A. E., Elliott, T., Marschall, H. R., et al., 2011. Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247-5268. https://doi.org/10.1016/j.gca.2011.06.026
    Regier, M. E., Pearson, D. G., Stachel, T., et al., 2020. The Lithospheric-to-Lower-Mantle Carbon Cycle Recorded in Superdeep Diamonds. Nature, 585(7824): 234-238. https://doi.org/10.1038/s41586-020-2676-z
    Richter, F. M., Dauphas, N., Teng, F. Z., 2009. Non-Traditional Fractionation of Non-Traditional Isotopes: Evaporation, Chemical Diffusion and Soret Diffusion. Chemical Geology, 258(1/2): 92-103. https://doi.org/10.1016/j.chemgeo.2008.06.011
    Richter, F. M., Watson, E. B., Mendybaev, R. A., et al., 2008. Magnesium Isotope Fractionation in Silicate Melts by Chemical and Thermal Diffusion. Geochimica et Cosmochimica Acta, 72(1): 206-220. https://doi.org/10.1016/j.gca.2007.10.016
    Shimoda, K., Tobu, Y., Hatakeyama, M., et al., 2007. Structural Investigation of Mg Local Environments in Silicate Glasses by Ultra-High Field 25Mg 3QMAS NMR Spectroscopy. American Mineralogist, 92(4): 695-698. https://doi.org/10.2138/am.2007.2535
    Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 316(5823): 412-417. https://doi.org/10.1126/science. 1138113 doi: 10.1126/science.1138113
    Sossi, P. A., Nebel, O., O'Neill, H. S. C., et al., 2018. Zinc Isotope Composition of the Earth and Its Behaviour during Planetary Accretion. Chemical Geology, 477: 73-84. https://doi.org/10.1016/j.chemgeo.2017.12.006
    Stracke, A., Tipper, E. T., Klemme, S., et al., 2018. Mg Isotope Systematics during Magmatic Processes: Inter-Mineral Fractionation in Mafic to Ultramafic Hawaiian Xenoliths. Geochimica et Cosmochimica Acta, 226: 192-205. https://doi.org/10.1016/j.gca.2018.02.002
    Su, B. X., Hu, Y., Teng, F. Z., et al., 2019. Light Mg Isotopes in Mantle-Derived Lavas Caused by Chromite Crystallization, Instead of Carbonatite Metasomatism. Earth and Planetary Science Letters, 522: 79-86. https://doi.org/10.1016/j.epsl.2019.06.016
    Sun, Y., Teng, F. Z., Pang, K. N., 2021. The Presence of Paleo-Pacific Slab beneath Northwest North China Craton Hinted by Low-δ26Mg Basalts at Wulanhada. Lithos, 386/387: 106009. https://doi.org/10.1016/j.lithos.2021.106009
    Tang, J., Xu, W. L., Wang, F., et al., 2018. Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent: Mesozoic-Paleogene Magmatic Records in Northeast Asia. Science China Earth Sciences, 61(5): 527-559. https://doi.org/ 10.1007/s11430-017-9174-1
    Teng, F. Z., 2017. Magnesium Isotope Geochemistry. In: Teng, F. Z., Watkins, J., Dauphas, N, eds., Non-Traditional Stable Isotopes. De Gruyter, Berlin, Boston. 209-287. https://doi.org/10.1515/9783110545630-008
    Teng, F. Z., Li, W. Y., Ke, S., et al., 2010. Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 74(14): 4150-4166. https://doi.org/10.1016/j.gca.2010.04.019
    Thomson, A. R., Walter, M. J., Kohn, S. C., et al., 2016. Slab Melting as a Barrier to Deep Carbon Subduction. Nature, 529(7584): 76-79. https://doi.org/10.1038/nature16174
    Walter, M. J., 1998. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. Journal of Petrology, 39(1): 29-60. https://doi.org/10.1093/petroj/39.1.29
    Wang, F., Xu, W. L., Xu, Y. G., et al., 2015. Late Triassic Bimodal Igneous Rocks in Eastern Heilongjiang Province, NE China: Implications for the Initiation of Subduction of the Paleo-Pacific Plate beneath Eurasia. Journal of Asian Earth Sciences, 97: 406-423. https://doi.org/10.1016/j.jseaes.2014.05.025
    Wang, S. J., Teng, F. Z., Li, S. G., et al., 2014. Magnesium Isotopic Systematics of Mafic Rocks during Continental Subduction. Geochimica et Cosmochimica Acta, 143: 34-48. https://doi.org/10.1016/j.gca.2014.03.029
    Wang, X.-C., Wilde, S. A., Li, Q. L., et al., 2015. Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone. Nature Communications, 6: 7700. https://doi.org/10.1038/ncomms8700
    Wang, Y., He, Y. S., Ke, S., 2020. Mg Isotope Fractionation during Partial Melting of Garnet-Bearing Sources: an Adakite Perspective. Chemical Geology, 537: 119478. https://doi.org/10.1016/j.chemgeo.2020.119478
    Wang, Z. Z., Liu, S.-A., Chen, L. H., et al., 2018. Compositional Transition in Natural Alkaline Lavas through Silica-Undersaturated Melt-Lithosphere Interaction. Geology, 46(9): 771-774. https://doi.org/10.1130/g45145.1
    Wang, Z. Z., Liu, S.-A., Liu, J. G., et al., 2017. Zinc Isotope Fractionation during Mantle Melting and Constraints on the Zn Isotope Composition of Earth's upper Mantle. Geochimica et Cosmochimica Acta, 198: 151-167. https://doi.org/10.1016/j.gca.2016.11.014
    Wilde, S. A., 2015. Final Amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean Closure versus Paleo-Pacific Plate Subduction—A Review of the Evidence. Tectonophysics, 662: 345-362. https://doi.org/10.1016/j.tecto.2015.05.006
    Williams, H. M., Bizimis, M., 2014. Iron Isotope Tracing of Mantle Heterogeneity within the Source Regions of Oceanic Basalts. Earth and Planetary Science Letters, 404: 396-407. https://doi.org/10.1016/j.epsl.2014.07.033
    Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
    Wu, J. T., Wu, J., 2019. Izanagi-Pacific Ridge Subduction Revealed by a 56 to 46 Ma Magmatic Gap along the Northeast Asian Margin. Geology, 47(10): 953-957. https://doi.org/10.1130/g46778.1
    Xu, Y. G., Li, H. Y., Hong, L. B., et al., 2018. Generation of Cenozoic Intraplate Basalts in the Big Mantle Wedge under Eastern Asia. Science China Earth Sciences, 61(7): 869-886. https://doi.org/10.1007/s11430-017-9192-y
    Xu, Z., Zheng, Y. F., 2019. Crust-Mantle Interaction in the Paleo-Pacific Subduction Zone: Geochemical Evidence from Cenozoic Continental Basalts in Eastern China. Earth Science, 44(12): 4135-4143. https://doi.org/10.3799/dqkx.2019.273 (in Chinese with English Abstract)
    Yang, W., Teng, F. Z., Zhang, H. F., et al., 2012. Magnesium Isotopic Systematics of Continental Basalts from the North China Craton: Implications for Tracing Subducted Carbonate in the Mantle. Chemical Geology, 328: 185-194. https://doi.org/10.1016/j.chemgeo.2012.05.018
    Zeng, G., Chen, L. H., Xu, X. S., et al., 2010. Carbonated Mantle Sources for Cenozoic Intra-Plate Alkaline Basalts in Shandong, North China. Chemical Geology, 273(1/2): 35-45. https://doi.org/10.1016/j.chemgeo. 2010.02.009 doi: 10.1016/j.chemgeo.2010.02.009
    Zhao, P., Jahn, B. M., Xu, B., 2017. Elemental and Sr-Nd Isotopic Geochemistry of Cretaceous to Early Paleogene Granites and Volcanic Rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): Implications for the Regional Tectonic Evolution. Journal of Asian Earth Sciences, 146: 383-401. https://doi.org/10.1016/j.jseaes.2017.06.017
    Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983. d https://doi.org/10.3799/dqkx.2019.982 (in Chinese with English Abstract)
    Zhong, Y., Chen, L. H., Wang, X. J., et al., 2017. Magnesium Isotopic Variation of Oceanic Island Basalts Generated by Partial Melting and Crustal Recycling. Earth and Planetary Science Letters, 463: 127-135. https://doi.org/10.1016/j.epsl.2017.01.040
    Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76-93. https://doi.org/10.1016/j.earscirev.2017.01.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(261) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return