Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Ying-Yu Xue, Haiyang Liu, Zhiyi Wang, Weidong Sun, Fukun Chen. Reworking of the Juvenile Crust in the Late Mesozoic in North Qinling, Central China. Journal of Earth Science, 2022, 33(3): 623-641. doi: 10.1007/s12583-021-1521-0
Citation: Ying-Yu Xue, Haiyang Liu, Zhiyi Wang, Weidong Sun, Fukun Chen. Reworking of the Juvenile Crust in the Late Mesozoic in North Qinling, Central China. Journal of Earth Science, 2022, 33(3): 623-641. doi: 10.1007/s12583-021-1521-0

Reworking of the Juvenile Crust in the Late Mesozoic in North Qinling, Central China

doi: 10.1007/s12583-021-1521-0
More Information
  • Corresponding author: Haiyang Liu, hyliu@qdio.ac.cn
  • Received Date: 31 Mar 2021
  • Accepted Date: 26 Jul 2021
  • The Qinling Orogen resulted from the collision between the North and South China blocks in the Triassic. Mesozoic granitoids, ranging from the Triassic to the Cretaceous, are widely distributed in this orogen, and they provide excellent clues for understanding the crustal evolution and geodynamic evolution of the orogenic belt. The Triassic belt is mostly located in the South Qinling, whereas the Cretaceous belt is located mostly in the North Qinling. The Taibai complex pluton is located at the conjunction of the two belts. Here we present a data set comprising zircon U-Pb dating and elemental and Sr-Nd isotopic geochemistry for Late Mesozoic granite and microgranular enclaves (MME) exposed in the Taibai complex pluton. The granite and MME yield concordant U-Pb zircon ages of 124 to 118 Ma, indicating that they were products of roughly simultaneous magmatism in the Late Mesozoic. The granite rocks are high-K, calc-alkaline, and weakly peraluminous in compositions, and they are characterized by enrichment in large ion lithophile elements (e.g., Rb, Ba), depletion in high field strength elements (e.g., Nb, Ta, Zr, Ti), and variable Sr/Y ratios of 7.64 to 63.6. Low MgO, Cr, and Ni contents imply that the magma(s) were essentially crust-derived. Both the granite and the MME show relative depletion in Sr-Nd isotopic composition (initial 87Sr/86Sr of 0.704 4 to 0.706 7, initial εNd values of -3.4 to -2.6), suggesting that the magma(s) originated from juvenile crustal rocks. These Sr-Nd isotopic characteristics are significantly different from those of other Late Mesozoic granitoids exposed elsewhere in the Qinling orogenic belt, which formed from much older and enriched sources and with negligible contributions from mantle or juvenile crust. We propose a reworking event of the juvenile crust during the Late Mesozoic that was triggered by the tectonic extension and subsequent asthenospheric upwelling that occurred in eastern China.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1-S4) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1521-0.
  • loading
  • Abdallsamed, M. I. M., Wu, Y. B., Zhang, W. X., et al., 2018. Paleozoic Peralkaline A-Type Magmatism of the Tongbai Orogen, Central China: Petrogenesis and Tectonic Implications. Lithos, 322: 268-280. https://doi.org/10.1016/j.lithos.2018.10.025
    Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Bao, Z. W., Wang, C. Y., Zhao, T. P., et al., 2014. Petrogenesis of the Mesozoic Granites and Mo Mineralization of the Luanchuan Ore Field in the East Qinling Mo Mineralization Belt, Central China. Ore Geology Reviews, 57: 132-153. https://doi.org/10.1016/j.oregeorev.2013.09.008
    Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/S0024-4937(98)00085-1
    Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1/2/3/4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
    Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3
    Chappell, B. W., White, A. J. R., 2011. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 1-26. https://doi.org/10.1017/s0263593300007720
    Chen, B., Chen, Z. C., Jahn, B. M., 2009. Origin of Mafic Enclaves from the Taihang Mesozoic Orogen, North China Craton. Lithos, 110(1/2/3/4): 343-358. https://doi.org/10.1016/j.lithos.2009.01.015
    Chen, F., Hegner, E., Todt, W., 2000. Zircon Ages and Nd Isotopic and Chemical Compositions of Orthogneisses from the Black Forest, Germany: Evidence for a Cambrian Magmatic Arc. International Journal of Earth Sciences, 88(4): 791-802. https://doi.org/10.1007/s005310050306
    Chen, F. K., Li, X. H., Wang, X. L., et al., 2007. Zircon Age and Nd-Hf Isotopic Composition of the Yunnan Tethyan Belt, Southwestern China. International Journal of Earth Sciences, 96(6): 1179-1194. https://doi.org/10.1007/s00531-006-0146-y
    Chen, Y. J., Li, C., Zhang, J., et al., 2000. Sr and O Isotopic Characteristics of Porphyries in the Qinling Molybdenum Deposit Belt and Their Implication to Genetic Mechanism and Type. Science in China Series D: Earth Sciences, 43(1): 82-94. https://doi.org/10.1007/bf02911935
    Clemens, J. D., Stevens, G., 2012. What Controls Chemical Variation in Granitic Magmas? Lithos, 134/135: 317-329. https://doi.org/10.1016/j.lithos.2012.01.001
    Clemens, J. D., Regmi, K., Nicholls, I. A., et al., 2016. The Tynong Pluton, Its Mafic Synplutonic Sheets and Igneous Microgranular Enclaves: The Nature of the Mantle Connection in I-Type Granitic Magmas. Contributions to Mineralogy and Petrology, 171(4): 1-17. https://doi.org/10.1007/s00410-016-1251-y
    Clemens, J. D., Elburg, M. A., Harris, C., 2017. Origins of Igneous Microgranular Enclaves in Granites: The Example of Central Victoria, Australia. Contributions to Mineralogy and Petrology, 172(10): 1-27. https://doi.org/10.1007/s00410-017-1409-2
    Collins, W. J., Wiebe, R. A., Healy, B., et al., 2006. Replenishment, Crystal Accumulation and Floor Aggradation in the Megacrystic Kameruka Suite, Australia. Journal of Petrology, 47(11): 2073-2104. https://doi.org/10.1093/petrology/egl037
    Donaire, T., Pascual, E., Pin, C., et al., 2005. Microgranular Enclaves as Evidence of Rapid Cooling in Granitoid Rocks: The Case of the Los Pedroches Granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. https://doi.org/10.1007/s00410-005-0652-0
    Dong, Y. P., Yang, Z., Liu, X. M., et al., 2016. Mesozoic Intracontinental Orogeny in the Qinling Mountains, Central China. Gondwana Research, 30: 144-158. https://doi.org/10.1016/j.gr.2015.05.004
    Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
    Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40. https://doi.org/10.1016/j.gr.2015.06.009
    Flood, R. H., Shaw, S. E., 2014. Microgranitoid Enclaves in the Felsic Looanga Monzogranite, New England Batholith, Australia: Pressure Quench Cumulates. Lithos, 198/199: 92-102. https://doi.org/10.1016/j.lithos.2014.03.015
    Gao, X. Y., Zhao, T. P., Chen, W. T., 2014. Petrogenesis of the Early Cretaceous Funiushan Granites on the Southern Margin of the North China Craton: Implications for the Mesozoic Geological Evolution. Journal of Asian Earth Sciences, 94: 28-44. https://doi.org/10.1016/j.jseaes.2014.07.042
    Gao, X. Y., Zhao, T. P., 2017. Late Mesozoic Magmatism and Tectonic Evolution in the Southern Margin of the North China Craton. Science China Earth Sciences, 60(11): 1959-1975. https://doi.org/10.1007/s11430-016-9069-0
    Gong, L., 2016. Geochemical and Geological Significance of Taibai Granite in North Qinling Belt: [Dissertation]. Lanzhou University, Lanzhou (in Chinese with English Abstract)
    Hong, D., Niu, Y. L., Xiao, Y. Y., et al., 2018. Origin of the Jurassic-Cretaceous Intraplate Granitoids in Eastern China as a Consequence of Paleo-Pacific Plate Subduction. Lithos, 322: 405-419. https://doi.org/10.1016/j.lithos.2018.10.027
    Hou, Q. L., Liu, Q., Lin, W., et al., 2019. Mesozoic Tectonic Regime and Evolution of Eastern China: A Mini-Review Based on the Recent Development. Solid Earth Sciences, 4(4): 159-165. https://doi.org/10.1016/j.sesci.2019.11.003
    Jahn, B. M., Condie, K. C., 1995. Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites. Geochimica et Cosmochimica Acta, 59(11): 2239-2258. https://doi.org/10.1016/0016-7037(95)00103-7
    Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
    Karsli, O., Ketenci, M., Uysal, İ., et al., 2011. Adakite-Like Granitoid Porphyries in the Eastern Pontides, NE Turkey: Potential Parental Melts and Geodynamic Implications. Lithos, 127(1/2): 354-372. https://doi.org/10.1016/j.lithos.2011.08.014
    Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
    Lee, C. T. A., Morton, D. M., Kistler, R. W., et al., 2007. Petrology and Tectonics of Phanerozoic Continent Formation: From Island Arcs to Accretion and Continental Arc Magmatism. Earth and Planetary Science Letters, 263(3/4): 370-387. https://doi.org/10.1016/j.epsl.2007.09.025
    Li, C. Y., Sun, S. J., Guo, X., et al., 2020. Recent Progresses in Plate Subduction and Element Recycling. Solid Earth Sciences, 5(1): 1-7. https://doi.org/10.1016/j.sesci.2019.11.002
    Li, D., Zhang, S. T., Yan, C. H., et al., 2012. Late Mesozoic Time Constraints on Tectonic Changes of the Luanchuan Mo Belt, East Qinling Orogen, Central China. Journal of Geodynamics, 61: 94-104. https://doi.org/10.1016/j.jog.2012.02.005
    Li, J. W., Bi, S. J., Selby, D., et al., 2012. Giant Mesozoic Gold Provinces Related to the Destruction of the North China Craton. Earth and Planetary Science Letters, 349/350: 26-37. https://doi.org/10.1016/j.epsl.2012.06.058
    Li, N., Chen, Y. J., Pirajno, F., et al., 2012. LA-ICP-MS Zircon U-Pb Dating, Trace Element and Hf Isotope Geochemistry of the Heyu Granite Batholith, Eastern Qinling, Central China: Implications for Mesozoic Tectono-Magmatic Evolution. Lithos, 142/143: 34-47. https://doi.org/10.1016/j.lithos.2012.02.013
    Li, N., Chen, Y. J., Pirajno, F., et al., 2013. Timing of the Yuchiling Giant Porphyry Mo System, and Implications for Ore Genesis. Mineralium Deposita, 48(4): 505-524. https://doi.org/10.1007/s00126-012-0441-4
    Li, N., Chen, Y. J., Santosh, M., et al., 2018. Late Mesozoic Granitoids in the Qinling Orogen, Central China, and Tectonic Significance. Earth-Science Reviews, 182: 141-173. https://doi.org/10.1016/j.earscirev.2018.05.004
    Li, S. Z., Kusky, T. M., Wang, L., et al., 2007. Collision Leading to Multiple-Stage Large-Scale Extrusion in the Qinling Orogen: Insights from the Mianlue Suture. Gondwana Research, 12(1/2): 121-143. https://doi.org/10.1016/j.gr.2006.11.011
    Li, X. -H., Li, Z. -X., Ge, W. C., et al., 2003. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma?. Precambrian Research, 122(1/2/3/4): 45-83. https://doi.org/10.1016/s0301-9268(02)00207-3
    Liew, T. C., Hofmann, A. W., 1988. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study. Contributions to Mineralogy and Petrology, 98(2): 129-138. https://doi.org/10.1007/bf00402106
    Liu, B. X., 2014. Magmatism and Crustal Evolution in the Eastern North Qinling Terrain: [Dissertation]. University of Science and Technology of China, Hefei (in Chinese with English Abstract)
    Liu, H., Liao, R. Q., Zhang, L. P., et al., 2020. Plate Subduction, Oxygen Fugacity, and Mineralization. Journal of Oceanology and Limnology, 38(1): 64-74. https://doi.org/10.1007/s00343-019-8339-y
    Liu, H. Y., Sun, H., Xiao, Y. L., et al., 2019a. Lithium Isotope Systematics of the Sumdo Eclogite, Tibet: Tracing Fluid/Rock Interaction of Subducted Low-T Altered Oceanic Crust. Geochimica et Cosmochimica Acta, 246: 385-405. https://doi.org/10.1016/j.gca.2018.12.002
    Liu, H. Y., Xiao, Y. L., van den Kerkhof, A., et al., 2019b. Metamorphism and Fluid Evolution of the Sumdo Eclogite, Tibet: Constraints from Mineral Chemistry, Fluid Inclusions and Oxygen Isotopes. Journal of Asian Earth Sciences, 172: 292-307. https://doi.org/10.1016/j.jseaes.2018.09.013
    Liu, H. Y., Wang, K., Sun, W. -D., et al., 2020. Extremely Light K in Subducted Low-T Altered Oceanic Crust: Implications for K Recycling in Subduction Zone. Geochimica et Cosmochimica Acta, 277: 206-223. https://doi.org/10.1016/j.gca.2020.03.025
    Liu, H. Y., Xue, Y. -Y., Wang, K., et al., 2021. Contributions of Slab-Derived Fluids to Ultrapotassic Rocks Indicated by K Isotopes. Lithos, 396/397: 106202. https://doi.org/10.1016/j.lithos.2021.106202
    Liu, X. C., Jahn, B. M., Li, S. Z., et al., 2013. U-Pb Zircon Age and Geochemical Constraints on Tectonic Evolution of the Paleozoic Accretionary Orogenic System in the Tongbai Orogen, Central China. Tectonophysics, 599: 67-88. https://doi.org/10.1016/j.tecto.2013.04.003
    Liu, X. M., Gao, S., Diwu, C. R., et al., 2007. Simultaneous in-situ Determination of U-Pb Age and Trace Elements in Zircon by LA-ICP-MS in 20 μm Spot Size. Chinese Science Bulletin, 52(9): 1257-1264. https://doi.org/10.1007/s11434-007-0160-x
    Lü, X. Q., 2015. Chronology and Genesis of the Taibai Granitoid Pluton from the North Qinling: [Dissertation]. China University of Geosciences (Wuhan), Wuhan (in Chinese with English Abstract)
    Lü, X. Q., Wang, X. X., Ke, C. H., et al., 2014. LA-ICP-MS Zircon U-Pb Dating of Taibai Pluton in North Qinling Mountains and Its Geological Significance. Mineral Deposits, 33: 37-52 (in Chinese with English Abstract)
    Ludwig, K. R., 2009. Isoplot 3.70: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 1-76
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
    Mao, J. W., Xie, G. Q., Zhang, Z. H., et al., 2005. Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English Abstract)
    Mao, J. W., Xie, G. Q., Bierlein, F., et al., 2008. Tectonic Implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt. Geochimica et Cosmochimica Acta, 72(18): 4607-4626. https://doi.org/10.1016/j.gca.2008.06.027
    Mao, J. W., Xie, G. Q., Pirajno, F., et al., 2010. Late Jurassic-Early Cretaceous Granitoid Magmatism in Eastern Qinling, Central-Eastern China: SHRIMP Zircon U-Pb Ages and Tectonic Implications. Australian Journal of Earth Sciences, 57(1): 51-78. https://doi.org/10.1080/08120090903416203
    Mao, J. W., Pirajno, F., Xiang, J. F., et al., 2011. Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt: Characteristics and Tectonic Settings. Ore Geology Reviews, 43(1): 264-293. https://doi.org/10.1016/j.oregeorev.2011.07.009
    Mattauer, M., Matte, P., Malavieille, J., et al., 1985. Tectonics of the Qinling Belt: Build-up and Evolution of Eastern Asia. Nature, 317(6037): 496-500. https://doi.org/10.1038/317496a0
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
    Meng, F., Mao, J. W., Ye, H. S., et al., 2012. Zircon SHRIMP U-Pb Dating and Geochemistry of the Laojunshan Intrusion, Western Henan Province. Geology in China, 39(6): 1501-1524 (in Chinese with English Abstract)
    Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183-196. https://doi.org/10.1016/s0040-1951(00)00106-2
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
    Moyen, J. F., Laurent, O., Chelle-Michou, C., et al., 2017. Collision vs. Subduction-Related Magmatism: Two Contrasting Ways of Granite Formation and Implications for Crustal Growth. Lithos, 277: 154-177. https://doi.org/10.1016/j.lithos.2016.09.018
    Nandedkar, R. H., Ulmer, P., Müntener, O., 2014. Fractional Crystallization of Primitive, Hydrous Arc Magmas: an Experimental Study at 0.7 GPa. Contributions to Mineralogy and Petrology, 167(6): 1-27. https://doi.org/10.1007/s00410-014-1015-5
    Nédélec, A., Bouchez, J. -L., 2015. Granites: Petrology, Structure, Geological Setting, and Metallogeny. OUP, Oxford
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
    Qi, Y., 2014. Petrogenesis of Laojunshan and Taishanmiao Granite Plutons in Eastern Qinling, Central China: [Dissertation]. University of Science and Technology of China, Hefei (in Chinese with English Abstract)
    Qin, Z. -W., 2016. Early Paleozoic Magmatism in the North Qinling Orogenic Belt and Its Implications for Continental Crust Evolution: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1-53. https://doi.org/10.1016/s0040-1951(03)00053-2
    Ren, L., Liang, H. Y., Bao, Z. W., et al., 2018. The Petrogenesis of Early Paleozoic High-Ba-Sr Intrusions in the North Qinling Terrane, China, and Tectonic Implications. Lithos, 314/315: 534-550. https://doi.org/10.1016/j.lithos.2018.06.027
    Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Oxford. 1-51
    Shaw, S. E., Flood, R. H., 2009. Zircon Hf Isotopic Evidence for Mixing of Crustal and Silicic Mantle-Derived Magmas in a Zoned Granite Pluton, Eastern Australia. Journal of Petrology, 50(1): 147-168. https://doi.org/10.1093/petrology/egn078
    Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. https://doi.org/10.1007/s00410-004-0632-9
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sun, W. -D., Li, S. G., Chen, Y. D., et al., 2002a. Timing of Synorogenic Granitoids in the South Qinling, Central China: Constraints on the Evolution of the Qinling-Dabie Orogenic Belt. The Journal of Geology, 110(4): 457-468. https://doi.org/10.1086/340632
    Sun, W. -D., Li, S. G., Sun, Y., et al., 2002b. Mid-Paleozoic Collision in the North Qinling: Sm-Nd, Rb-Sr and 40Ar/39Ar Ages and Their Tectonic Implications. Journal of Asian Earth Sciences, 21(1): 69-76. https://doi.org/10.1016/s1367-9120(02)00010-x
    Sun, W. -D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4): 533-542. https://doi.org/10.1016/j.epsl.2007.08.021
    Vernon, R. H., 1983. Restite, Xenoliths and Microgranitoid Enclaves in Granites. Journal and Proceedings, Royal Society of New South Wales, 116(3): 77-103
    Wang, H. L., He, S. P., Chen, J. L., et al., 2006. LA-ICPMS Dating of Zircon U-Pb and Significance of Gongjiangou Deformation Intrusions of Taibai Rock Mass, Shaanxi Province—The Primary Study on the Response in North Qinling Orogenic Belt to Lüliang Movement. Acta Geologica Sinica, 80(11): 1660-1667 (in Chinese with English Abstract)
    Wang, T., Zhang, Z. Q., Wang, X. X., et al., 2005. Neoproterozoic Collisional Deformation in the Core of the Qinling Orogen and Its Age: Constrained by Zircon SHRIMP Dating of Strongly Deformed Syn-Collisional Granites and Weakly Deformed Granitic Veins. Acta Geologica Sinica, 79(2): 220-231 (in Chinese with English Abstract)
    Wang, X. X., Wang, T., Qi, Q. J., et al., 2011. Temporal-Spatial Variations, Origin and Their Tectonic Significance of the Late Mesozoic Granites in the Qinling, Central China. Acta Petrologica Sinica, 27(6): 1573-1593 (in Chinese with English Abstract)
    Wang, X. X., Wang, T., Zhang, C. L., 2013. Neoproterozoic, Paleozoic, and Mesozoic Granitoid Magmatism in the Qinling Orogen, China: Constraints on Orogenic Process. Journal of Asian Earth Sciences, 72: 129-151. https://doi.org/10.1016/j.jseaes.2012.11.037
    Wang, X. X., Wang, T., Ke, C. H., et al., 2015a. Nd-Hf Isotopic Mapping of Late Mesozoic Granitoids in the East Qinling Orogen, Central China: Constraint on the Basements of Terranes and Distribution of Mo Mineralization. Journal of Asian Earth Sciences, 103: 169-183. https://doi.org/10.1016/j.jseaes.2014.07.002
    Wang, X. X., Wang, T., Zhang, C. L., 2015b. Granitoid Magmatism in the Qinling Orogen, Central China and Its Bearing on Orogenic Evolution. Science China Earth Sciences, 58(9): 1497-1512. https://doi.org/10.1007/s11430-015-5150-2
    Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q08006. https://doi.org/10.1029/2006gc001283
    White, A. J. R., Chappell, B. W., Wyborn, D., 1999. Application of the Restite Model to the Deddick Granodiorite and Its Enclaves—A Reinterpretation of the Observations and Data of Maas et al. (1997). Journal of Petrology, 40(3): 413-421. https://doi.org/10.1093/petroj/40.3.413
    Wolf, M. B., London, D., 1994. Apatite Dissolution into Peraluminous Haplogranitic Melts: An Experimental Study of Solubilities and Mechanisms. Geochimica et Cosmochimica Acta, 58(19): 4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0
    Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003a. Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 66(3/4): 241-273. https://doi.org/10.1016/s0024-4937(02)00222-0
    Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003b. Highly Fractionated I-Type Granites in NE China (II): Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic. Lithos, 67(3/4): 191-204. https://doi.org/10.1016/s0024-4937(03)00015-x
    Xiao, P. X., Zhang, J. Y., Wang, H. L., et al., 2000. Subdivision of Rock Series Units and Determination of Intrusion Age of Taibai Rock Mass in North Qinling. Northwest Geoscience, 21: 37-48 (in Chinese with English Abstract)
    Xie, G. Q., Mao, J. W., Wang, R. T., et al., 2015. Origin of Late Mesozoic Granitoids in the Newly Discovered Zha-Shan Porphyry Cu District, South Qinling, Central China, and Implications for Regional Metallogeny. Journal of Asian Earth Sciences, 103: 184-197. https://doi.org/10.1016/j.jseaes.2014.09.018
    Xue, Y. -Y., Siebel, W., He, J. F., et al., 2018. Granitoid Petrogenesis and Tectonic Implications of the Late Triassic Baoji Pluton, North Qinling Orogen, China: Zircon U-Pb Ages and Geochemical and Sr-Nd-Pb-Hf Isotopic Compositions. The Journal of Geology, 126(1): 119-139. https://doi.org/10.1086/694765
    Xue, Y. -Y., Zhang, H., Chen, F. K., 2019. Zircon U-Pb Age, Geochemistry, and Geological Significance of Granites from Lianghekou Pluton, Central Qinling Orogenic Belt. Geological Journal of China Universities, 25(1): 1-13 (in Chinese with English Abstract)
    Yang, F., Xue, F., Santosh, M., et al., 2019. Late Mesozoic Magmatism in the East Qinling Orogen, China and Its Tectonic Implications. Geoscience Frontiers, 10(5): 1803-1821. https://doi.org/10.1016/j.gsf.2019.03.003
    Yang, L., Chen, F. K., Liu, B. X., et al., 2013. Geochemistry and Sr-Nd-Pb-Hf Isotopic Composition of the Donggou Mo-Bearing Granite Porphyry, Qinling Orogenic Belt, Central China. International Geology Review, 55(10): 1261-1279. https://doi.org/10.1080/00206814.2013.773779
    Zhang, G. W., Zhang, B. R., Yuan, X. C., et al., 2001. Qinling Orogenic Belt and Continental Dynamics. Science Press, Beijing. 1-806 (in Chinese)
    Zhang, H. F., Zhang, B. R., Harris, N., et al., 2006. U-Pb Zircon SHRIMP Ages, Geochemical and Sr-Nd-Pb Isotopic Compositions of Intrusive Rocks from the Longshan-Tianshui Area in the Southeast Corner of the Qilian Orogenic Belt, China: Constraints on Petrogenesis and Tectonic Affinity. Journal of Asian Earth Sciences, 27(6): 751-764. https://doi.org/10.1016/j.jseaes.2005.07.008
    Zhang, Z. -K., Ling, M. -X., Lin, W., et al., 2020. "Yanshanian Movement" Induced by the Westward Subduction of the Paleo-Pacific Plate. Solid Earth Sciences, 5(2): 103-114. https://doi.org/10.1016/j.sesci.2020.04.002
    Zhang, Z. H., Lai, S. C., Qin, J. F., 2014. Petrogenesis and Its Geological Significance of the Late Mesozoic Syengranite from the Taibai Mountain, North Qinling. Acta Petrologica Sinica, 30(11): 3242-3254 (in Chinese with English Abstract)
    Zhang, Z. Q., Zhang, G. W., Liu, D. Y., et al., 2006. Isotopic Geochronology and Geochemistry of Ophiolites, Granites and Clastic Sedimentary Rocks in the Qinling Orogenic Belt, Beijing. 1-348 (in Chinese with English Abstract)
    Zhang, Z. W., Yang, X. Y., Dong, Y., et al., 2011. Molybdenum Deposits in the Eastern Qinling, Central China: Constraints on the Geodynamics. International Geology Review, 53(2): 261-290. https://doi.org/10.1080/00206810903053902
    Zhao, T. P., Meng, L., Gao, X. Y., et al., 2018. Late Mesozoic Felsic Magmatism and Mo-Au-Pb-Zn Mineralization in the Southern Margin of the North China Craton: A Review. Journal of Asian Earth Sciences, 161: 103-121. https://doi.org/10.1016/j.jseaes.2018.04.020
    Zhou, D. -W., Zhao, C. -Y., Li, Y. -D., et al., 1994. Geological Feature along the Southwestern Margin of the Erdos Basin and Its Relationship with the Qinling Orogenic Belt. Geological Publishing House, Beijing (in Chinese)
    Zhu, L. M., Zhang, G. W., Guo, B., et al., 2010. Geochemistry of the Jinduicheng Mo-Bearing Porphyry and Deposit, and Its Implications for the Geodynamic Setting in East Qinling, P. R. China. Geochemistry, 70(2): 159-174. https://doi.org/10.1016/j.chemer.2009.12.003
    Zhu, X. Y., Chen, F. K., Li, S. Q., et al., 2011. Crustal Evolution of the North Qinling Terrain of the Qinling Orogen, China: Evidence from Detrital Zircon U-Pb Ages and Hf Isotopic Composition. Gondwana Research, 20(1): 194-204. https://doi.org/10.1016/j.gr.2010.12.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(32) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return