Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Laifeng Li, Laura F. Robinson, Tianyu Chen, Zhewen Xu, Jun Chen, Gaojun Li. Limited Contribution of Preferential Dissolution to Radiogenic Uranium Isotope Disequilibrium Observed in Weathered Moraines. Journal of Earth Science, 2022, 33(1): 57-66. doi: 10.1007/s12583-021-1523-y
Citation: Laifeng Li, Laura F. Robinson, Tianyu Chen, Zhewen Xu, Jun Chen, Gaojun Li. Limited Contribution of Preferential Dissolution to Radiogenic Uranium Isotope Disequilibrium Observed in Weathered Moraines. Journal of Earth Science, 2022, 33(1): 57-66. doi: 10.1007/s12583-021-1523-y

Limited Contribution of Preferential Dissolution to Radiogenic Uranium Isotope Disequilibrium Observed in Weathered Moraines

doi: 10.1007/s12583-021-1523-y
More Information
  • Corresponding author: Gaojun Li, ligaojun@nju.edu.cn
  • Received Date: 29 Apr 2021
  • Accepted Date: 27 Jul 2021
  • Publish Date: 28 Feb 2022
  • Radiogenic uranium isotope disequilibrium (234U/238U) has been used to trace a variety of Earth surface processes, and is usually attributed to direct recoil of 234Th and preferential dissolution of radioactively damaged lattices at the mineral surface. However, the relative contribution of these two mechanisms in the natural environment remains unresolved, making it hard to use the extent of disequilibrium to quantify processes such as weathering. This study tests the contribution of preferential dissolution using well-characterized weathered moraines and river sediments from the southeastern Tibetan Plateau. The observations show that weathering of recent moraines where the contribution from direct recoil is negligible and is not associated with depletion of 234U at the mineral surface. It suggests a limited role for preferential dissolution in this setting. We attribute this lack of preferential dissolution to a near-to-equilibrium dissolution at the weathering interfaces, with little development of etch pits associated with radioactively damaged energetic sites.

     

  • loading
  • Andersen, M. B., Erel, Y., Bourdon, B., 2009. Experimental Evidence for 234U-238U Fractionation during Granite Weathering with Implications for 234U/238U in Natural Waters. Geochimica et Cosmochimica Acta, 73(14): 4124-4141. https://doi.org/10.1016/j.gca.2009.04.020
    Bonotto, D. M., Andrews, J. N., 1993. The Mechanism of 234U/238U Activity Ratio Enhancement in Karstic Limestone Groundwater. Chemical Geology, 103(1/2/3/4): 193-206. https://doi.org/10.1016/0009-2541(93)90301-x
    Bonotto, D. M., Andrews, J. N., Darbyshire, D. P. F., 2001. A Laboratory Study of the Transfer of 234U and 238U during Water-Rock Interactions in the Carnmenellis Granite (Cornwall, England) and Implications for the Interpretation of Field Data. Applied Radiation and Isotopes, 54(6): 977-994. https://doi.org/10.1016/s0969-8043(00)00338-9
    Bosia, C., Chabaux, F., Pelt, E., et al., 2018. U-Series Disequilibria in Minerals from Gandak River Sediments (Himalaya). Chemical Geology, 477: 22-34. https://doi.org/10.1016/j.chemgeo.2017.11.026
    Bourdon, B., Bureau, S., Andersen, M. B., et al., 2009. Weathering Rates from Top to Bottom in a Carbonate Environment. Chemical Geology, 258(3/4): 275-287. https://doi.org/10.1016/j.chemgeo.2008.10.026
    Bourdon, B., Turner, S., Henderson, G. M., et al., 2003. Introduction to U-Series Geochemistry. Reviews in Mineralogy & Geochemistry, 52(1): 1-21. https://doi.org/10.2113/0520001
    Bragagni, A., Avanzinelli, R., Freymuth, H., et al., 2014. Recycling of Crystal Mush-Derived Melts and Short Magma Residence Times Revealed by U-Series Disequilibria at Stromboli Volcano. Earth and Planetary Science Letters, 404: 206-219. https://doi.org/10.1016/j.epsl.2014.07.028
    Brantley, S. L., Crane, S. R., Crerar, D. A., et al., 1986. Dissolution at Dislocation Etch Pits in Quartz. Geochimica et Cosmochimica Acta, 50(10): 2349-2361. https://doi.org/10.1016/0016-7037(86)90087-6
    Brantley, S. L., Olsen, A. A., 2014. Reaction Kinetics of Primary Rock-Forming Minerals under Ambient Conditions. Treatise on Geochemistry (Second Edition), 7: 69-113. https://doi.org/10.1016/b978-0-08-095975-7.00503-9
    Brown, R. W., Summerfield, M. A., Gleadow, A. J. W., 2002. Denudational History along a Transect across the Drakensberg Escarpment of Southern Africa Derived from Apatite Fission Track Thermochronology. Journal of Geophysical Research: Solid Earth, 107(B12): ETG10-1-ETG10-18. https://doi.org/10.1029/2001jb000745
    Chabaux, F., Blaes, E., Stille, P., et al., 2013. Regolith Formation Rate from U-Series Nuclides: Implications from the Study of a Spheroidal Weathering Profile in the Rio Icacos Watershed (Puerto Rico). Geochimica et Cosmochimica Acta, 100: 73-95. https://doi.org/10.1016/j.gca.2012.09.037
    Chabaux, F., Bourdon, B., Riotte, J., 2008. Chapter 3 U-Series Geochemistry in Weathering Profiles, River Waters and Lakes. Radioactivity in the Environment, 13: 49-104. https://doi.org/10.1016/s1569-4860(07)00003-4
    Chabaux, F., Riotte, J., Dequincey, O., 2003. U-Th-Ra Fractionation during Weathering and River Transport. In: Bourdon, B., Henderson, G. M., Lundstrom, C. C., et al., eds., Uranium-Series Geochemistry. De Gruyter, Boston. 533-576. https://doi.org/10.1515/9781501509308-018
    Daval, D., Sissmann, O., Menguy, N., et al., 2011. Influence of Amorphous Silica Layer Formation on the Dissolution Rate of Olivine at 90 ℃ and Elevated pCO2. Chemical Geology, 284(1/2): 193-209. https://doi.org/10.1016/j.chemgeo.2011.02.021
    DePaolo, D. J., Lee, V. E., Christensen, J. N., et al., 2012. Uranium Comminution Ages: Sediment Transport and Deposition Time Scales. Comptes Rendus Geoscience, 344(11/12): 678687. https://doi.org/10.1016/j.crte.2012.10.014
    DePaolo, D. J., Maher, K., Christensen, J. N., et al., 2006. Sediment Transport Time Measured with U-Series Isotopes: Results from ODP North Atlantic Drift Site 984. Earth and Planetary Science Letters, 248(1/2): 394-410. https://doi.org/10.1016/j.epsl.2006.06.004
    Dosseto, A., 2014. Chemical Weathering (U-Series). In: Rink, J. W., Thompson, J. W., eds., Encyclopedia of Scientific Dating Methods. Springer Netherlands, Dordrecht. 152-169. https://doi.org/10.1007/978-94-007-6326-5_246-1
    Dosseto, A., Bourdon, B., Gaillardet, J., et al., 2006a. Time Scale and Conditions of Weathering under Tropical Climate: Study of the Amazon Basin with U-Series. Geochimica et Cosmochimica Acta, 70(1): 71-89. https://doi.org/10.1016/j.gca.2005.06.033
    Dosseto, A., Bourdon, B., Gaillardet, J., et al., 2006b. Weathering and Transport of Sediments in the Bolivian Andes: Time Constraints from Uranium-Series Isotopes. Earth and Planetary Science Letters, 248(3/4): 759-771. https://doi.org/10.1016/j.epsl.2006.06.027
    Dosseto, A., Turner, S. P., Douglas, G. B., 2006c. Uranium-Series Isotopes in Colloids and Suspended Sediments: Timescale for Sediment Production and Transport in the Murray-Darling River System. Earth and Planetary Science Letters, 246(3/4): 418-431. https://doi.org/10.1016/j.epsl.2006.04.019
    Dosseto, A., Bourdon, B., Turner, S. P., 2008. Uranium-Series Isotopes in River Materials: Insights into the Timescales of Erosion and Sediment Transport. Earth and Planetary Science Letters, 265(1/2): 1-17. https://doi.org/10.1016/j.epsl.2007.10.023
    Dosseto, A., Buss, H. L., Chabaux, F., 2014. Age and Weathering Rate of Sediments in Small Catchments: The Role of Hillslope Erosion. Geochimica et Cosmochimica Acta, 132: 238-258. https://doi.org/10.1016/j.gca.2014.02.010
    Dosseto, A., Menozzi, D., Kinsley, L. P. J., 2019. Age and Rate of Weathering Determined Using Uranium-Series Isotopes: Testing Various Approaches. Geochimica et Cosmochimica Acta, 246: 213-233. https://doi.org/10.1016/j.gca.2018.11.038
    Dunk, R. M., Mills, R. A., Jenkins, W. J., 2002. A Reevaluation of the Oceanic Uranium Budget for the Holocene. Chemical Geology, 190(1/2/3/4): 45-67. https://doi.org/10.1016/s0009-2541(02)00110-9
    Durand, S., Chabaux, F., Rihs, S., et al., 2005. U Isotope Ratios as Tracers of Groundwater Inputs into Surface Waters: Example of the Upper Rhine Hydrosystem. Chemical Geology, 220(1/2): 1-19. https://doi.org/10.1016/j.chemgeo.2005.02.016
    Eyal, Y., Olander, D. R., 1990. Leaching of Uranium and Thorium from Monazite: I. Initial Leaching. Geochimica et Cosmochimica Acta, 54(7): 1867-1877. https://doi.org/10.1016/0016-7037(90)90257-L
    Fleischer, R. L., 1980. Isotopic Disequilibrium of Uranium: Alpha-Recoil Damage and Preferential Solution Effects. Science, 207(4434): 979-981. https://doi.org/10.1126/science.207.4434.979
    Fleischer, R. L., 1982. Alpha-Recoil Damage and Solution Effects in Minerals: Uranium Isotopic Disequilibrium and Radon Release. Geochimica et Cosmochimica Acta, 46(11): 2191-2201. https://doi.org/10.1016/0016-7037(82)90194-6
    Fleischer, R. L., Raabe, O. G., 1978. Recoiling Alpha-Emitting Nuclei. Mechanisms for Uranium-Series Disequilibrium. Geochimica et Cosmochimica Acta, 42(7): 973-978. https://doi.org/10.1016/0016-7037(78)90286-7
    Fleming, A., Summerfield, M. A., Stone, J. O., et al., 1999. Denudation Rates for the Southern Drakensberg Escarpment, SE Africa, Derived from in-situ-Produced Cosmogenic 36Cl: Initial Results. Journal of the Geological Society, 156(2): 209-212. https://doi.org/10.1144/gsjgs.156.2.0209
    Granet, M., Chabaux, F., Stille, P., et al., 2010. U-Series Disequilibria in Suspended River Sediments and Implication for Sediment Transfer Time in Alluvial Plains: The Case of the Himalayan Rivers. Geochimica et Cosmochimica Acta, 74(10): 2851-2865. https://doi.org/10.1016/j.gca.2010.02.016
    Handley, H. K., Turner, S., Afonso, J. C., et al., 2013. Sediment Residence Times Constrained by Uranium-Series Isotopes: A Critical Appraisal of the Comminution Approach. Geochimica et Cosmochimica Acta, 103: 245-262. https://doi.org/10.1016/j.gca.2012.10.047
    He, L., Tang, Y., 2008. Soil Development along Primary Succession Sequences on Moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena, 72(2): 259-269. https://doi.org/10.1016/j.catena.2007.05.010
    Huckle, D., Ma, L., McIntosh, J., et al., 2016. U-Series Isotopic Signatures of Soils and Headwater Streams in a Semi-Arid Complex Volcanic Terrain. Chemical Geology, 445: 68-83. https://doi.org/10.1016/j.chemgeo.2016.04.003
    Hussain, N., Lal, D., 1986. Preferential Solution of 234U from Recoil Tracks and 234U/238U Radioactive Disequilibrium in Natural Waters. Proceedings of the Indian Academy of Sciences: Earth and Planetary Sciences, 95(2): 245. https://doi.org/10.1007/bf02871869
    Keech, A. R., West, A. J., Pett-Ridge, J. C., et al., 2013. Evaluating U-Series Tools for Weathering Rate and Duration on a Soil Sequence of Known Ages. Earth and Planetary Science Letters, 374: 24-35. https://doi.org/10.1016/j.epsl.2013.04.032
    Kigoshi, K., 1971. Alpha-Recoil Thorium-234: Dissolution into Water and the Uranium-234/Uranium-238 Disequilibrium in Nature. Science, 173(3991): 47-48. https://doi.org/10.1126/science.173.3991.47
    Lasaga, A. C., Blum, A. E., 1986. Surface Chemistry, Etch Pits and Mineral-Water Reactions. Geochimica et Cosmochimica Acta, 50(10): 2363-2379. https://doi.org/10.1016/0016-7037(86)90088-8
    Lee, V. E., DePaolo, D. J., Christensen, J. N., 2010. Uranium-Series Comminution Ages of Continental Sediments: Case Study of a Pleistocene Alluvial Fan. Earth and Planetary Science Letters, 296(3/4): 244-254. https://doi.org/10.1016/j.epsl.2010.05.005
    Li, C., Yang, S. Y., Lian, E. G., et al., 2015. A Review of Comminution Age Method and Its Potential Application in the East China Sea to Constrain the Time Scale of Sediment Source-to-Sink Process. Journal of Ocean University of China, 14(3): 399-406. https://doi.org/10.1007/s11802-015-2769-8
    Li, C., Yang, S. Y., Zhao, J. X., et al., 2016. The Time Scale of River Sediment Source-to-Sink Processes in East Asia. Chemical Geology, 446: 138-146. https://doi.org/10.1016/j.chemgeo.2016.06.012
    Li, L. F., Chen, J., Chen, T. Y., et al., 2018. Weathering Dynamics Reflected by the Response of Riverine Uranium Isotope Disequilibrium to Changes in Denudation Rate. Earth and Planetary Science Letters, 500: 136-144. https://doi.org/10.1016/j.epsl.2018.08.008
    Li, L., Chen, J., Chen, Y., et al., 2018. Uranium Isotopic Constraints on the Provenance of Dust on the Chinese Loess Plateau. Geology, 46(9): 747-750. https://doi.org/10.1130/g45130.1
    Li, L., Chen, J., Hedding, D. W., et al., 2020. Uranium Isotopic Constraints on the Nature of the Prehistoric Flood at the Lajia Site, China. Geology, 48(1): 15-18. https://doi.org/10.1130/g46306.1
    Li, L., Liu, X. J., Li, T., et al., 2017. Uranium Comminution Age Tested by the Eolian Deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 467: 64-71. https://doi.org/10.1016/j.epsl.2017.03.014
    Li, Z. X., He, Y. Q., Yang, X. M., et al., 2010. Changes of the Hailuogou Glacier, Mt. Gongga, China, Against the Background of Climate Change during the Holocene. Quaternary International, 218(1/2): 166-175. https://doi.org/10.1016/j.quaint.2008.09.005
    Liang, Z. W., Tian, S. H., 2021. Uranium "Stable" Isotope Fractionation and Its Applications in Earth Science. Earth Science, 46(12): 4405-4426. https://doi.org/10.3799/dqkx.2021.091
    Lidman, F., Peralta-Tapia, A., Vesterlund, A., et al., 2016. 234U/238U in a Boreal Stream Network-Relationship to Hydrological Events, Groundwater and Scale. Chemical Geology, 420: 240-250. https://doi.org/10.1016/j.chemgeo.2015.11.014
    Liu, Q., Liu, S.Y., 2009. Seasonal Evolution of Englacial and Subglacial Drainage System of Temperate Glacier Revealed by Hydrological Analysis. Journal of Glaciology and Geocryology, 31(5): 857-865 (in Chinese with English Abstract)
    Liu, Q., Liu, S. Y., Zhang, Y., et al., 2010. Recent Shrinkage and Hydrological Response of Hailuogou Glacier, a Monsoon Temperate Glacier on the East Slope of Mount Gongga, China. Journal of Glaciology, 56(196): 215-224. https://doi.org/10.3189/002214310791968520
    Lü, X., Versteegh, G. J. M., Song, J. M., et al., 2016. Geochemistry of Middle Holocene Sediments from South Yellow Sea: Implications to Provenance and Climate Change. Journal of Earth Science, 27(5): 751-762. https://doi.org/10.1007/s12583-015-0577-0
    Ma, L., Chabaux, F., Pelt, E., et al., 2012. The Effect of Curvature on Weathering Rind Formation: Evidence from Uranium-Series Isotopes in Basaltic Andesite Weathering Clasts in Guadeloupe. Geochimica et Cosmochimica Acta, 80: 92-107. https://doi.org/10.1016/j.gca.2011.11.038
    Ma, L., Dosseto, A., Gaillardet, J., et al., 2019. Quantifying Weathering Rind Formation Rates Using in situ Measurements of U-Series Isotopes with Laser Ablation and Inductively Coupled Plasma-Mass Spectrometry. Geochimica et Cosmochimica Acta, 247: 1-26. https://doi.org/10.1016/j.gca.2018.12.020
    Maher, K., DePaolo, D. J., Christensen, J. N., 2006. U-Sr Isotopic Speedometer: Fluid Flow and Chemical Weathering Rates in Aquifers. Geochimica et Cosmochimica Acta, 70(17): 4417-4435. https://doi.org/10.1016/j.gca.2006.06.1559
    Maher, K., DePaolo, D. J., Lin, J. C. F., 2004. Rates of Silicate Dissolution in Deep-Sea Sediment: In situ Measurement Using 234U/238U of Pore Fluids. Geochimica et Cosmochimica Acta, 68(22): 4629-4648. https://doi.org/10.1016/j.gca.2004.04.024
    Moreira-Nordemann, L. M., 1980. Use of 234U/238U Disequilibrium in Measuring Chemical Weathering Rate of Rocks. Geochimica et Cosmochimica Acta, 44(1): 103-108. https://doi.org/10.1016/0016-7037(80)90180-5
    Nagy, K. L., Lasaga, A. C., 1992. Dissolution and Precipitation Kinetics of Gibbsite at 80 ℃ and pH3: The Dependence on Solution Saturation State. Geochimica et Cosmochimica Acta, 56(8): 3093-3111. https://doi.org/10.1016/0016-7037(92)90291-p
    Nasdala, L., Wenzel, M., Vavra, G., et al., 2001. Metamictisation of Natural Zircon: Accumulation versus Thermal Annealing of Radioactivity-Induced Damage. Contributions to Mineralogy and Petrology, 141(2): 125-144. https://doi.org/10.1007/s004100000235
    Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
    Owen, L. A., Finkel, R. C., Barnard, P. L., et al., 2005. Climatic and Topographic Controls on the Style and Timing of Late Quaternary Glaciation Throughout Tibet and the Himalaya Defined by 10Be Cosmogenic Radionuclide Surface Exposure Dating. Quaternary Science Reviews, 24(12/13): 1391-1411. https://doi.org/10.1016/j.quascirev.2004.10.014
    Parruzot, B., Jollivet, P., Rébiscoul, D., et al., 2015. Long-Term Alteration of Basaltic Glass: Mechanisms and Rates. Geochimica et Cosmochimica Acta, 154: 28-48. https://doi.org/10.1016/j.gca.2014.12.011
    Pelt, E., Chabaux, F., Innocent, C., et al., 2008. Uranium-Thorium Chronometry of Weathering Rinds: Rock Alteration Rate and Paleo-Isotopic Record of Weathering Fluids. Earth and Planetary Science Letters, 276(1/2): 98-105. https://doi.org/10.1016/j.epsl.2008.09.010
    Pogge von Strandmann, P. A. E., Burton, K. W., James, R. H., et al., 2010. Assessing the Role of Climate on Uranium and Lithium Isotope Behaviour in Rivers Draining a Basaltic Terrain. Chemical Geology, 270(1/4): 227-239. https://doi.org/10.1016/j.chemgeo.2009.12.002
    Riebe, C. S., Hahm, W. J., Brantley, S. L., 2017. Controls on Deep Critical Zone Architecture: A Historical Review and Four Testable Hypotheses. Earth Surface Processes and Landforms, 42(1): 128-156. https://doi.org/10.1002/esp.4052
    Riebe, C. S., Kirchner, J. W., Granger, D. E., et al., 2001. Strong Tectonic and Weak Climatic Control of Long-Term Chemical Weathering Rates. Geology, 29(6): 511. https://doi.org/10.1130/0091-7613(2001)0290511:stawcc>2.0.co;2 doi: 10.1130/0091-7613(2001)0290511:stawcc>2.0.co;2
    Rihs, S., Gontier, A., Voinot, A., et al., 2020. Field Biotite Weathering Rate Determination Using U-Series Disequilibria. Geochimica et Cosmochimica Acta, 276: 404-420. https://doi.org/10.1016/j.gca.2020.01.023
    Riotte, J., Chabaux, F., 1999. (234U/238U) Activity Ratios in Freshwaters as Tracers of Hydrological Processes: The Strengbach Watershed (Vosges, France). Geochimica et Cosmochimica Acta, 63(9): 1263-1275. https://doi.org/10.1016/S0016-7037(99)00009-5
    Robinson, L. F., Adkins, J. F., Fernandez, D. P., et al., 2006. Primary U Distribution in Scleractinian Corals and Its Implications for U Series Dating. Geochemistry, Geophysics, Geosystems, 7(5). https://doi.org/10.1029/2005gc001138
    Robinson, L. F., Henderson, G. M., Hall, L., et al., 2004. Climatic Control of Riverine and Seawater Uranium-Isotope Ratios. Science, 305(5685): 851-854. https://doi.org/10.1126/science.1099673
    Ruiz-Agudo, E., Putnis, C. V., Rodriguez-Navarro, C., et al., 2012. Mechanism of Leached Layer Formation during Chemical Weathering of Silicate Minerals. Geology, 40(10): 947-950. https://doi.org/10.1130/g33339.1
    Smalley, I., 1995. Making the Material: The Formation of Silt Sized Primary Mineral Particles for Loess Deposits. Quaternary Science Reviews, 14(7/8): 645-651. https://doi.org/10.1016/0277-3791(95)00046-1
    Su, H., Dong, M., Hu, Z. B., 2019. Late Miocene Birth of the Middle Jinsha River Revealed by the Fluvial Incision Rate. Global and Planetary Change, 183: 103002. https://doi.org/10.1016/j.gloplacha.2019.103002
    Su, Z., Song, G. P., Cao, Z. T., 1996. Maritime Characteristics of Hailuogou Glacier in the Gongga Mountains. Journal of Glaciology and Geocryology, 18(S1): 51-59 (in Chinese with English Abstract)
    Sun, J. M., 2002. Provenance of Loess Material and Formation of Loess Deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 203(3/4): 845-859. https://doi.org/10.1016/S0012-821x(02)00921-4
    Taylor, A., Blum, J. D., 1995. Relation between Soil Age and Silicate Weathering Rates Determined from the Chemical Evolution of a Glacial Chronosequence. Geology, 23(11): 979-982. https://doi.org/10.1130/0091-7613(1995)0230979:rbsaas>2.3.co;2 doi: 10.1130/0091-7613(1995)0230979:rbsaas>2.3.co;2
    Thollon, M., Bayon, G., Toucanne, S., et al., 2020. The Distribution of (234U/238U) Activity Ratios in River Sediments. Geochimica et Cosmochimica Acta, 290: 216-234. https://doi.org/10.1016/j.gca.2020.09.007
    Vigier, N., Bourdon, B., Turner, S., et al., 2001. Erosion Timescales Derived from U-Decay Series Measurements in Rivers. Earth and Planetary Science Letters, 193(3/4): 549-563. https://doi.org/10.1016/S0012-821x(01)00510-6
    Wang, J., Pan, B. T., Zhang, G. L., et al., 2013. Late Quaternary Glacial Chronology on the Eastern Slope of Gongga Mountain, Eastern Tibetan Plateau, China. Science China Earth Sciences, 56(3): 354-365. https://doi.org/10.1007/s11430-012-4514-0
    Wang, R. M., You, C. F., 2013a. Uranium and Strontium Isotopic Evidence for Strong Submarine Groundwater Discharge in an Estuary of a Mountainous Island: A Case Study in the Gaoping River Estuary, Southwestern Taiwan. Marine Chemistry, 157: 106-116. https://doi.org/10.1016/j.marchem.2013.09.004
    Wang, R. M., You, C. F., 2013b. Precise Determination of U Isotopic Compositions in Low Concentration Carbonate Samples by MC-ICP-MS. Talanta, 107: 67-73. https://doi.org/10.1016/j.talanta.2012.12.044
    White, A. F., Blum, A. E., Schulz, M. S., et al., 1996. Chemical Weathering Rates of a Soil Chronosequence on Granitic Alluvium: I. Quantification of Mineralogical and Surface Area Changes and Calculation of Primary Silicate Reaction Rates. Geochimica et Cosmochimica Acta, 60(14): 2533-2550. https://doi.org/10.1016/0016-7037(96)00106-8
    White, A. F., Brantley, S. L., 2003. The Effect of Time on the Weathering of Silicate Minerals: Why do Weathering Rates Differ in the Laboratory and Field?. Chemical Geology, 202(3/4): 479-506. https://doi.org/10.1016/j.chemgeo.2003.03.001
    White, A. F., Schulz, M. S., Stonestrom, D. A., et al., 2009. Chemical Weathering of a Marine Terrace Chronosequence, Santa Cruz, California. Part Ⅱ: Solute Profiles, Gradients and the Comparisons of Contemporary and Long-Term Weathering Rates. Geochimica et Cosmochimica Acta, 73(10): 2769-2803. https://doi.org/10.1016/j.gca.2009.01.029
    White, A. F., Schulz, M. S., Vivit, D. V., et al., 2008. Chemical Weathering of a Marine Terrace Chronosequence, Santa Cruz, California I: Interpreting Rates and Controls Based on Soil Concentration-Depth Profiles. Geochimica et Cosmochimica Acta, 72(1): 36-68. https://doi.org/10.1016/j.gca.2007.08.029
    Zhou, J., Bing, H. J., Wu, Y. H., et al., 2016. Rapid Weathering Processes of a 120-Year-Old Chronosequence in the Hailuogou Glacier Foreland, Mt. Gongga, SW China. Geoderma, 267: 78-91. https://doi.org/10.1016/j.geoderma.2015.12.024
    Zielinski, R. A., Peterman, Z. E., Stuckless, J. S., et al., 1982. The Chemical and Isotopic Record of Rock-Water Interaction in the Sherman Granite, Wyoming and Colorado. Contributions to Mineralogy and Petrology, 78(3): 209-219. https://doi.org/10.1007/bf00398915
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(309) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return