Citation: | Rizwan Sarwar Awan, Chenglin Liu, Ashar Khan, Khawaja Hasnain Iltaf, Qibiao Zang, Yuping Wu, Sajjad Ali, Muhammad Amar Gul. Geochemical Characterization of Organic Rich Black Rocks of the Niutitang Formation to Reconstruct the Paleoenvironmental Settings during Early Cambrian Period from Xiangxi Area, Western Hunan, China. Journal of Earth Science, 2023, 34(6): 1827-1850. doi: 10.1007/s12583-021-1524-x |
The Niutitang Formation in the South China Block might be a source of hydrocarbon as it contains an enormous quantity of organic matter. Black rock of the Early Cambrian Niutitang Formation is widely distributed in the Yangtze region, but detailed geochemical understanding of it is still emerging. This research discusses the detailed geochemical characteristics of the Niutitang Formation to reconstruct the paleoenvironmental conditions, employing total organic carbon (TOC) content, major, trace, and rare earth element data. For this purpose, black rock specimens of the Niutitang Formation from two outcrop sections were utilized for geochemical characterization, and the results compared with another eight sections from the South China Block. The average total organic carbon in these sediments is significantly higher (5.80 wt.%). In the platform region, lower quantities of TOC indicate a poor potential to produce hydrocarbons. At the same time, significantly higher TOC is observed in the deep shelf and slope sediments, indicating a significant potential to produce hydrocarbons. The average Ce, Eu and Y anomalies from both Longbizui and Sancha sections studied are 0.74, 0.86, 1.77, 1.07, and 1.19, 1.30, respectively. The chemical index of alteration (CAI) throughout the Yangtze block is higher (averaging 71.32) than that of Post Archean Australian Shale (PAAS 69), indicating a moderately weathered source of the Niutitang Formation relative to PAAS. As the sediments are moderately weathered, this suggests these rocks might have been derived from felsic rocks, mainly granite-granodiorite. The normalization of REEs in the black rocks reveals a reduction of light REEs with increase in heavy REEs enrichment. Similarly, a positive Eu anomaly, negative Ce anomaly, and a moderate Y/Ho (34.61) are clues to a hybrid depositional mechanism associated with hydrothermal action and terrigenous input. These anomalies are also evidence of upwelling in the paleo-ocean and mixing of organic matter, which created anoxic bottom water during the deposition of the Niutitang Formation in the basin and upper oxic water conditions before deposition. The main controlling factors for the distribution of rare earth elements in these black rocks of the Niutitang Formation are pH, terrigenous input, source rock composition, tectonism, an upwelling mechanism, and hydrothermal activity.
Algeo, T. J., 2004. Can Marine Anoxic Events Draw down the Trace Element Inventory of Seawater? Geology, 32(12): 1057–1060. https://doi.org/10.1130/g20896.1 |
Algeo, T. J., Maynard, J. B., 2008. Trace-Metal Covariation as a Guide to Water-Mass Conditions in Ancient Anoxic Marine Environments. Geosphere, 4(5): 872–887. https://doi.org/10.1130/ges00174.1 |
Allegre, C.-J., Michard, G., 1974. Introduction to Geochemistry. D. Reidel Publishing Company, Dordrecht. 10. |
Amthor, J. E., Grotzinger, J. P., Schröder, S., et al., 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian Boundary in Oman. Geology, 31(5): 431–434. https://doi.org/10.1130/0091-7613(2003)0310431:eocana>2.0.co;2 doi: 10.1130/0091-7613(2003)0310431:eocana>2.0.co;2 |
Arthur, M. A., Sageman, B. B., 2005. Sea-Level Control on Source-Rock Development: Perspectives from the Holocene Black Sea, the Mid-Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin. In: Harris, N. B., ed., The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. SEPM (Society for Sedimentary Geology). 35–59. |
Awan, R. S., Liu, C. L., Aadil, N., et al., 2021a. Organic Geochemical Evaluation of Cretaceous Talhar Shale for Shale Oil and Gas Potential from Lower Indus Basin, Pakistan. Journal of Petroleum Science and Engineering, 200: 108404. https://doi.org/10.1016/j.petrol.2021.108404 |
Awan, R. S., Liu, C. L., Yang, S. F., et al., 2021b. The Occurrence of Vanadium in Nature: Its Biogeochemical Cycling and Relationship with Organic Matter—A Case Study of the Early Cambrian Black Rocks of the Niutitang Formation, Western Hunan, China. Acta Geochimica, 40(6): 973–997. https://doi.org/10.1007/s11631-021-00482-2 |
Awan, R. S., Liu, C. L., Gong, H. W., et al., 2020. Paleo-Sedimentary Environment in Relation to Enrichment of Organic Matter of Early Cambrian Black Rocks of Niutitang Formation from Xiangxi Area China. Marine and Petroleum Geology, 112: 104057. https://doi.org/10.1016/j.marpetgeo.2019.104057 |
Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1/2): 37–55. https://doi.org/10.1016/0301-9268(95)00087-9 |
Bock, B., McLennan, S.M., Hanson, G.N., 1998. Geochemistry and Provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology, 45(4): 635–655. https://doi.org/10.1046/j.1365-3091.1998.00168.x |
Brumsack, H.-J., 2006. The Trace Metal Content of Recent Organic Carbon-Rich Sediments: Implications for Cretaceous Black Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2/3/4): 344–361. https://doi.org/10.1016/j.palaeo.2005.05.011 |
Brumsack, H. J., 1989. Geochemistry of Recent TOC-Rich Sediments from the Gulf of California and the Black Sea. Geologische Rundschau, 78(3): 851–882. https://doi.org/10.1007/bf01829327 |
Cai, L. G., Liu, H. F., 1996. Evolution and Structural Styles of the Sichuan Foreland Basin: In: Global Tectonic Zones Supercontinent Formation and Disposal: Proceedings of the 30th International Geological Congress, Aug. 4–14, 1996, Beijing. 87 |
Chatziapostolou, A., Kalaitzidis, S., Papazisimou, S., et al., 2006. Mode of Occurrence of Trace Elements in the Pellana Lignite (SE Peloponnese, Greece). International Journal of Coal Geology, 65(1/2): 3–16. https://doi.org/10.1016/j.coal.2005.04.005 |
Choi, J. H., Hariya, Y., 1992. Geochemistry and Depositional Environment of Mn Oxide Deposits in the Tokoro Belt, Northeastern Hokkaido, Japan. Economic Geology, 87(5): 1265–1274. https://doi.org/10.2113/gsecongeo.87.5.1265 |
Clark, S. H. B., Poole, F. G., Wang, Z. C., 2004. Comparison of some Sediment-Hosted, Stratiform Barite Deposits in China, the United States, and India. Ore Geology Reviews, 24(1/2): 85–101. https://doi.org/10.1016/j.oregeorev.2003.08.009 |
Condie, K. C., 1991. Another Look at Rare Earth Elements in Shales. Geochimica et Cosmochimica Acta, 55(9): 2527–2531. https://doi.org/10.1016/0016-7037(91)90370-k |
Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1/2/3/4): 1–37. https://doi.org/10.1016/0009-2541(93)90140-e |
Cox, R., Lowe, D. R., 1995. Controls on Sediment Composition on a Regional Scale: A Conceptual Review. Journal of Sedimentary Research, 65(1a): 1–12. https://doi.org/10.1306/d4268009-2b26-11d7-8648000102c1865d |
Cullers, R. L., Podkovyrov, V. N., 2000. Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia: Implications for Mineralogical and Provenance Control, and Recycling. Precambrian Research, 104(1/2): 77–93. https://doi.org/10.1016/s0301-9268(00)00090-5 |
Dai, S. F., Li, D., Chou, C. L., et al., 2008. Mineralogy and Geochemistry of Boehmite-Rich Coals: New Insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74(3/4): 185–202. https://doi.org/10.1016/j.coal.2008.01.001 |
Ding, J. H., Zhang, J. C., Tang, X., et al., 2018. Elemental Geochemical Evidence for Depositional Conditions and Organic Matter Enrichment of Black Rock Series Strata in an Inter-Platform Basin: The Lower Carboniferous Datang Formation, Southern Guizhou, Southwest China. Minerals, 8(11): 509. https://doi.org/10.3390/min8110509 |
Dubinin, A. V., 2004. Geochemistry of Rare Earth Elements in the Ocean. Lithology and Mineral Resources, 39(4): 289–307. https://doi.org/10.1023/b:limi.0000033816.14825.a2 |
Dulski, P., 1994. Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Fresenius Journal of Analytical Chemistry, 350(4): 194–203. https://doi.org/10.1007/bf00322470 |
Elderfield, H., Greaves, M. J., 1982. The Rare Earth Elements in Seawater. Nature, 296(5854): 214–219. https://doi.org/10.1038/296214a0 |
Fedo, C. M., Wayne Nesbitt, H., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921–924. https://doi.org/10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2 |
Fedo, C. M., Young, G. M., Nesbitt, H. W., 1997. Paleoclimatic Control on the Composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: A Greenhouse to Icehouse Transition. Precambrian Research, 86(3/4): 201–223. https://doi.org/10.1016/s0301-9268(97)00049-1 |
Finkelman, R. B., 1982. The Origin, Occurrence, and Distribution of the Inorganic Constituents in Low-Rank Coals. In: Proceedings of the Basic Coal Science Workshop. US Department of Energy, Houston, TX. 69–90 |
Gao, P., He, Z. L., Li, S. J., et al., 2018. Volcanic and Hydrothermal Activities Recorded in Phosphate Nodules from the Lower Cambrian Niutitang Formation Black Shales in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 505: 381–397. https://doi.org/10.1016/j.palaeo.2018.06.019 |
German, C. R., Elderfield, H., 1990. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 5(5): 823–833. https://doi.org/10.1029/pa005i005p00823 |
Grandjean, P., Cappetta, H., Albarède, F., 1988. The Ree and εNd of 40–70 Ma Old Fish Debris from the West-African Platform. Geophysical Research Letters, 15(4): 389–392. https://doi.org/10.1029/gl015i004p00389 |
Gromet, L. P., Haskin, L. A., Korotev, R. L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469–2482. https://doi.org/10.1016/0016-7037(84)90298-9 |
Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeo-climatology, Palaeoecology, 254(1/2): 194–216. https://doi.org/10.1016/j.palaeo.2007.03.016 |
Hall, P. A., 2012. Elemental, Isotopic and Molecular Signatures of Early Cambrian Marine Sediments and a Phantom Petroleum System in South Australia: [Dissertation]. Geology and Geophysics School of Earth and Environmental, Science Faculty of Science, University of Adelaide, Adelaide |
Han, T., Zhu, X. Q., Li, K., et al., 2015. Metal Sources for the Polymetallic Ni-Mo-PGE Mineralization in the Black Shales of the Lower Cambrian Niutitang Formation, South China. Ore Geology Reviews, 67: 158–169. https://doi.org/10.1016/j.oregeorev.2014.11.020 |
Haskin, L. A., Wildeman, T. R., Haskin, M. A., 1968. An Accurate Procedure for the Determination of the Rare Earths by Neutron Activation. Journal of Radioanalytical Chemistry, 1(4): 337–348. https://doi.org/10.1007/bf02513689 |
Holser, W. T., 1997. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeo-ecology, 132(1/2/3/4): 309–323. https://doi.org/10.1016/s0031-0182(97)00069-2 |
Jia, Z. B., Hou, D. J., Sun, D. Q., et al., 2018. Geochemical Characteristics of Source Rocks in the Lower Cambrian Niutitang Formation in Guizhou Province, China. Journal of Natural Gas Geoscience, 3(5): 263–272. https://doi.org/10.1016/j.jnggs.2018.11.005 |
Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19(4): 831–849. https://doi.org/10.1016/j.gr.2011.01.006 |
Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459: E5–E6. https://doi.org/10.1038/nature08048 |
Jiang, Z. Z., Sun, Z. L., Liu, Z. Q., et al., 2019. Rare-Earth Element Geochemistry Reveals the Provenance of Sediments on the South-western Margin of the Challenger Deep. Journal of Oceanology and Limnology, 37(3): 998–1009. https://doi.org/10.1007/s00343-019-8046-8 |
Kamber, B. S., Webb, G. E., 2001. The Geochemistry of Late Archaean Microbial Carbonate: Implications for Ocean Chemistry and Conti-nental Erosion History. Geochimica et Cosmochimica Acta, 65(15): 2509–2525. https://doi.org/10.1016/s0016-7037(01)00613-5 |
Karadağ, M. M., Küpeli, Ş., Arýk, F., et al., 2009. Rare Earth Element (REE) Geochemistry and Genetic Implications of the Mortaş Bauxite Deposit (Seydişehir/Konya-Southern Turkey). Geochemistry, 69(2): 143–159. https://doi.org/10.1016/j.chemer.2008.04.005 |
Kasanzu, C., Maboko, M. A. H., Manya, S., 2008. Geochemistry of Fine-Grained Clastic Sedimentary Rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for Provenance and Source Rock Weathering. Precambrian Research, 164(3/4): 201–213. https://doi.org/10.1016/j.precamres.2008.04.007 |
Katz, B. J., 2005. Controlling Factors on Source Rock Development—A Review of Productivity, Preservation, and Sedimentation Rate. Deposition of Organic-Carbon-Rich Sediments: Models. SEPM (Society for Sedimentary Geology), 82: 7–16. https://doi.org/10.2110/pec.05.82.0007 |
Ketris, M. P., Yudovich, Y. E., 2009. Estimations of Clarkes for Carbonaceous Biolithes: World Averages for Trace Element Contents in Black Shales and Coals. International Journal of Coal Geology, 78(2): 135–148. https://doi.org/10.1016/j.coal.2009.01.002 |
Kidder, D. L., Krishnaswamy, R., Mapes, R. H., 2003. Elemental Mobility in Phosphatic Shales during Concretion Growth and Implications for Provenance Analysis. Chemical Geology, 198(3/4): 335–353. https://doi.org/10.1016/s0009-2541(03)00036-6 |
Lehmann, B., Nägler, T. F., Holland, H. D., et al., 2007. Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater. Geology, 35(5): 403–406. https://doi.org/10.1130/g23543a.1 |
Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80–83. https://doi.org/10.1126/science.1182369 |
Li, D. L., Li, R. X., Tan, C. Q., et al., 2019. Origin of Silica, Paleoenvironment, and Organic Matter Enrichment in the Lower Paleozoic Niutitang and Longmaxi Formations of the Northwestern Upper Yangtze Plate: Significance for Hydrocarbon Exploration. Marine and Petroleum Geology, 103: 404–421. https://doi.org/10.1016/j.marpetgeo.2019.02.025 |
Li, J., Yu, B. S., Guo, F., 2013. Depositional Setting and Tectonic Background Analysis on Lower Cambrian Black Shales in the North of Guizhou Province. Acta Sedimentologica Sinica, 31(1): 20–31. https://doi.org/10.14027/j.cnki.cjxb.2013.01.012 (in Chinese English Abstract) |
Liaghat, S., Hosseini, M., Zarasvandi, A., 2003. Determination of the Origin and Mass Change Geochemistry during Bauxitization Process at the Hangam Deposit, SW Iran. Geochemical Journal, 37(5): 627–637. https://doi.org/10.2343/geochemj.37.627 |
Liu, B. J., Xu, X. S., 1994. Atlas of Paleogeography and Lithofacies of South China: (Sinian-Trias). Science Press, Beijing. 1–188 (in Chinese) |
Liu, J., Yao, Y. B., Elsworth, D., et al., 2016. Sedimentary Characteristics of the Lower Cambrian Niutitang Shale in the Southeast Margin of Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 36: 1140–1150. https://doi.org/10.1016/j.jngse.2016.03.085 |
Liu, Z. H., Zhuang, X. G., Teng, G. E., et al., 2015. The Lower Cambrian Niutitang Formation at Yangtiao (Guizhou, Sw China): Organic Matter Enrichment, Source Rock Potential, and Hydrothermal Influences. Journal of Petroleum Geology, 38(4): 411–432. https://doi.org/10.1111/jpg.12619 |
Luo, C., 2014. Geological Characteristics of Gas Shale in the Lower Cambrian Niutitang Formation of the Upper Yangtze Platform. Chengdu University of Technology, Chengdu. 115–132 (in Chinese with English Abstract) |
Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579–601. https://doi.org/10.1306/11020606059 |
Ma, K., Hu, S. Y., Wang, T. S., et al., 2017. Sedimentary Environments and Mechanisms of Organic Matter Enrichment in the Mesoproterozoic Hongshuizhuang Formation of Northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 475: 176–187. https://doi.org/10.1016/j.palaeo.2017.02.038 |
Marchig, V., Gundlach, H., Möller, P., et al., 1982. Some Geochemical Indicators for Discrimination between Diagenetic and Hydrothermal Metalliferous Sediments. Marine Geology, 50(3): 241–256. https://doi.org/10.1016/0025-3227(82)90141-4 |
McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 1021–1041. https://doi.org/10.1029/2000gc000109 |
McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Processes Controlling the Composition of Clastic Sediments. Geological Society of America. 21–40. |
Moffett, J. W., 1990. Microbially Mediated Cerium Oxidation in Sea Water. Nature, 345(6274): 421–423. https://doi.org/10.1038/345421a0 |
Morad, S., Felitsyn, S., 2001. Identification of Primary Ce-Anomaly Signatures in Fossil Biogenic Apatite: Implication for the Cambrian Oceanic Anoxia and Phosphogenesis. Sedimentary Geology, 143(3/4): 259–264. https://doi.org/10.1016/s0037-0738(01)00093-8 |
Munksgaard, N. C., Lim, K., Parry, D. L., 2003. Rare Earth Elements as Provenance Indicators in North Australian Estuarine and Coastal Marine Sediments. Estuarine, Coastal and Shelf Science, 57(3): 399–409. https://doi.org/10.1016/s0272-7714(02)00368-2 |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715–717. https://doi.org/10.1038/299715a0 |
Nowrouzi, Z., Moussavi-Harami, R., Mahboubi, A., et al., 2014. Petrography and Geochemistry of Silurian Niur Sandstones, Derenjal Mountains, East Central Iran: Implications for Tectonic Setting, Provenance and Weathering. Arabian Journal of Geosciences, 7(7): 2793–2813. https://doi.org/10.1007/s12517-013-0912-7 |
Och, L. M., Shields-Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166–189. https://doi.org/10.1016/j.precamres.2011.10.005 |
Ogihara, S., 1999. Geochemical Characteristics of Phosphorite and Carbonate Nodules from the Miocene Funakawa Formation, Western Margin of the Yokote Basin, Northeast Japan. Sedimentary Geology, 125(1/2): 69–82. https://doi.org/10.1016/s0037-0738(98)00136-5 |
Orberger, B., Vymazalova, A., Wagner, C., et al., 2007. Biogenic Origin of Intergrown Mo-Sulphide- and Carbonaceous Matter in Lower Cambrian Black Shales (Zunyi Formation, Southern China). Chemical Geology, 238(3/4): 213–231. https://doi.org/10.1016/j.chemgeo.2006.11.010 |
Pan, J. Y., Ma, D. S., Cao, S. L., 2004. Trace Element Geochemistry of the Lower Cambrian Black Rock Series from Northwestern Hunan, South China. Progress in Natural Science, 14(1): 64–70. https://doi.org/10.1080/10020070412331343161 |
Peters, K., Cassa, M. R., 1994. Applied Source Rock Geochemistry: Chapter 5: Part Ⅱ. In: Magoon, L. B., Dow, W. G., eds., The Petroleum System. From Source to Trap. American Association of Petroleum Geologists, Tulsa. 93–120 |
Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218–229. https://doi.org/10.1016/j.precamres.2011.07.004 |
Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325–394. https://doi.org/10.1016/s0009-2541(97)00150-2 |
Roddaz, M., Viers, J., Brusset, S., et al., 2006. Controls on Weathering and Provenance in the Amazonian Foreland Basin: Insights from Major and Trace Element Geochemistry of Neogene Amazonian Sediments. Chemical Geology, 226(1/2): 31–65. https://doi.org/10.1016/j.chemgeo. 2005.08.010 doi: 10.1016/j.chemgeo.2005.08.010 |
Rona, P. A., 1978. Criteria for Recognition of Hydrothermal Mineral Deposits in Oceanic Crust. Economic Geology, 73(2): 135–160. https://doi.org/10.2113/gsecongeo.73.2.135 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4 |
Schijf, J., de Baar, H. J. W., Wijbrans, J. R., et al., 1991. Dissolved Rare Earth Elements in the Black Sea. Deep Sea Research Part A Oceanographic Research Papers, 38: S805–S823. https://doi.org/10.1016/s0198-0149(10)80010-x |
Sharma, A., Rajamani, V., 2000a. Weathering of Gneissic Rocks in the Upper Reaches of Cauvery River, South India: Implications to Neotectonics of the Region. Chemical Geology, 166(3/4): 203–223. https://doi.org/10.1016/s0009-2541(99)00222-3 |
Sharma, A., Rajamani, V., 2000b. Major Element, REE, and other Trace Element Behavior in Amphibolite Weathering under Semiarid Conditions in Southern India. The Journal of Geology, 108(4): 487–496. https://doi.org/10.1086/314409 |
Shen, Y. N., Schidlowski, M., Chu, X. L., 2000. Biogeochemical Approach to Understanding Phosphogenic Events of the Terminal Proterozoic to Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 158(1/2): 99–108. https://doi.org/10.1016/s0031-0182(00)00033-x |
Shields, G., Stille, P., 2001. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies: An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 175(1/2): 29–48. https://doi.org/10.1016/s0009-2541(00)00362-4 |
Sholkovitz, E. R., Landing, W. M., Lewis, B. L., 1994. Ocean Particle Chemistry: The Fractionation of Rare Earth Elements between Suspended Particles and Seawater. Geochimica et Cosmochimica Acta, 58(6): 1567–1579. https://doi.org/10.1016/0016-7037(94)90559-2 |
Singh, P., 2009. Major, Trace and REE Geochemistry of the Ganga River Sediments: Influence of Provenance and Sedimentary Processes. Chemical Geology, 266(3/4): 242–255. https://doi.org/10.1016/j.chemgeo.2009.06.013 |
Singh, P., Rajamani, V., 2001. REE Geochemistry of Recent Clastic Sediments from the Kaveri Floodplains, Southern India: Implication to Source Area Weathering and Sedimentary Processes. Geochimica et Cosmochimica Acta, 65(18): 3093–3108. https://doi.org/10.1016/s0016-7037(01)00636-6 |
Steiner, M., Li, G. X., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 67–99. https://doi.org/10.1016/j.palaeo.2007.03.046 |
Steiner, M., Wallis, E., Erdtmann, B. D., et al., 2001. Submarine-Hydrothermal Exhalative Ore Layers in Black Shales from South China and Associated Fossils—Insights into a Lower Cambrian Facies and Bio-Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(3/4): 165–191. https://doi.org/10.1016/s0031-0182(01)00208-5 |
Sugisaki, R., Yamamoto, K., Adachi, M., 1982. Triassic Bedded Cherts in Central Japan are not Pelagic. Nature, 298(5875): 644–647. https://doi.org/10.1038/298644a0 |
Tang, H. S., Chen, Y. J., Wu, G., et al., 2009. Rare Earth Element Geochemistry of Carbonates of Dashiqiao Formation, Liaohe Group, Eastern Liaoning Province: Implications for Lomagundi Event. Acta Petrologica Sinica, 25(11): 3075–3093 (in Chinese with English Abstract) |
Tang, X. L., Jiang, Z. X., Li, Z., et al., 2017. Factors Controlling Organic Matter Enrichment in the Lower Cambrian Niutitang Formation Shale on the Eastern Shelf Margin of the Yangtze Block, China. Interpretation, 5(3): T399–T410. https://doi.org/10.1190/int-2017-0008.1 |
Tang, X., Zhang, J. C., Liu, Y., et al., 2018. Geochemistry of Organic Matter and Elements of Black Shale during Weathering in Northern Guizhou, Southwestern China: Their Mobilization and Inter-Connection. Geo-chemistry, 78(1): 140–151. https://doi.org/10.1016/j.chemer.2017.08.002 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Compo-sition and Evolution. Blackwell Scientific Publications, Palo Alto. 312 |
Tian, X. L., Luo, K. L., 2017. Selenium, Arsenic and Molybdenum Variation and Bio-Radiation in the Ediacaran-Cambrian Interval. Precambrian Research, 292: 378–385. https://doi.org/10.1016/j.precamres.2017.02.007 |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012 |
Tuo, J. C., Wu, C. J., Zhang, M. F., 2016. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 434–446. https://doi.org/10.1016/j.jngse.2015.12.003 |
Uysal, I. T., Zhao, J. X., Golding, S. D., et al., 2007. Sm-Nd Dating and Rare-Earth Element Tracing of Calcite: Implications for Fluid-Flow Events in the Bowen Basin, Australia. Chemical Geology, 238(1/2): 63–71. https://doi.org/10.1016/j.chemgeo.2006.10.014 |
Valkovic, V., 1983. Trace Elements in Coal. Florida CRC Press Inc., Coca Raton. Vol. 1. 210 |
Wang, J. G., Chen, D. Z., Wang, Q. C., et al., 2007. Platform Evolution and Marine Source Rock Deposition during the Terminal Sinian to Early Cambrian in the Middle Yangtze Region. Acta Geologica Sinica, 81(8): 1102–1109, 1162 (in Chinese with English Abstract) |
Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48: 1–8. https://doi.org/10.1016/j.jseaes.2011.12.023 |
Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557–1565. https://doi.org/10.1016/s0016-7037(99)00400-7 |
Weber, B., Steiner, M., Zhu, M. Y., 2007. Precambrian-Cambrian Trace Fossils from the Yangtze Platform (South China) and the Early Evolution of Bilaterian Lifestyles. Palaeogeography, Palaeoclimatology, Palaeo-ecology, 254(1/2): 328–349. https://doi.org/10.1016/j.palaeo.2007. 03.021 doi: 10.1016/j.palaeo.2007.03.021 |
Wilde, P., Quinby-Hunt, M. S., Erdtmann, B. D., 1996. The Whole-Rock Cerium Anomaly: A Potential Indicator of Eustatic Sea-Level Changes in Shales of the Anoxic Facies. Sedimentary Geology, 101(1/2): 43–53. https://doi.org/10.1016/0037-0738(95)00020-8 |
Wille, M., Nägler, T. F., Lehmann, B., et al., 2008. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. Nature, 453(7196): 767–769. https://doi.org/10.1038/nature07072 |
Wu, C. J., Zhang, L. F., Zhang, T. W., et al., 2020. Reconstruction of Paleoceanic Redox Conditions of the Lower Cambrian Niutitang Shales in Northern Guizhou, Upper Yangtze Region. Palaeogeography, Palaeo-climatology, Palaeoecology, 538: 109457. https://doi.org/10.1016/j.palaeo.019.109457 |
Wu, C. J., Tuo, J. C., Zhang, M. F., et al., 2016. Sedimentary and Residual Gas Geochemical Characteristics of the Lower Cambrian Organic-Rich Shales in Southeastern Chongqing, China. Marine and Petroleum Geology, 75: 140–150. https://doi.org/10.1016/j.marpetgeo.2016.04.013 |
Xu, L. G., Lehmann, B., Mao, J. W., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China: A Reassessment. Economic Geology, 106(3): 511–522. https://doi.org/10.2113/econgeo.106.3.511 |
Xu, L. G., Lehmann, B., Mao, J. W., et al., 2012. Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shales in South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 318/319: 45–59. https://doi.org/10.1016/j.chemgeo.2012.05.016 |
Yang, B. Y., Hu, B., Bao, Z. Y., et al., 2011. REE Geochemical Characteristics and Depositional Environment of the Black Shale-Hosted Baiguoyuan Ag-V Deposit in Xingshan, Hubei Province, China. Journal of Rare Earths, 29(5): 499–506. https://doi.org/10.1016/s1002-0721(10)60488-7 |
Yang, S. Y., Jung, H. S., Choi, M. S., et al., 2002. The Rare Earth Element Compositions of the Changjiang (Yangtze) and Huanghe (Yellow) River Sediments. Earth and Planetary Science Letters, 201(2): 407–419. https://doi.org/10.1016/s0012-821x(02)00715-x |
Yeasmin, R., Chen, D. Z., Fu, Y., et al., 2017. Climatic-Oceanic Forcing on the Organic Accumulation across the Shelf during the Early Cambrian (Age 2 through 3) in the Mid-Upper Yangtze Block, NE Guizhou, South China. Journal of Asian Earth Sciences, 134: 365–386. https://doi.org/10.1016/j.jseaes.2016.08.019 |
Zhang, K., Song, Y., Jiang, S., et al., 2019. Mechanism Analysis of Organic Matter Enrichment in Different Sedimentary Backgrounds: a Case Study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze Region. Marine and Petroleum Geology, 99: 488–497. https://doi.org/10.1016/j.marpetgeo.2018.10.044 |
Zhang, Y. Y., He, Z. L., Jiang, S., et al., 2018. Controls on the Organic Carbon Content of the Lower Cambrian Black Shale in the Southeastern Margin of Upper Yangtze. Petroleum Science, 15(4): 709–721. https://doi.org/10.1007/s12182-018-0262-x |
Zhou, L., Kang, Z. H., Wang, Z. X., et al., 2017. Sedimentary Geochemical Investigation for Paleoenvironment of the Lower Cambrian Niutitang Formation Shales in the Yangtze Platform. Journal of Petroleum Science and Engineering, 159: 376–386. https://doi.org/10.1016/j.petrol.2017.09.047 |
Zhu, B., Jiang, S. Y., Yang, J. H., et al., 2014. Rare Earth Element and SRND Isotope Geochemistry of Phosphate Nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 132–143. https://doi.org/10.1016/j.palaeo.2013.10.002 |
Zhu, M. Y., Zhang, J. M., Steiner, M., et al., 2003. Sinian-Cambrian Stra-tigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951–960. https://doi.org/10.1080/10020070312331344710 |
Zhuang, H. P., Lu, J. L., Fu, J. M., et al., 1998. Organic/Inorganic Occurrence of Metallic Elements of the Black Shale-Hosted Baiguo-yuan Silver-Vanadium Deposit in Xingshan, Hubei. Acta Geologica Sinica, 72(3): 299–307 doi: 10.1111/j.1755-6724.1998.tb00407.x |