Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Xiaofeng Tian, Walter D. Mooney, Xiaoguo Deng, Songlin Li, Baofeng Liu, Hanqi Liu. Crustal P- and S-Wave Velocity Structure of the North China Craton at 36°N from Active-Source Seismic Data and Its Tectonic Implications. Journal of Earth Science, 2022, 33(3): 642-663. doi: 10.1007/s12583-021-1530-z
Citation: Xiaofeng Tian, Walter D. Mooney, Xiaoguo Deng, Songlin Li, Baofeng Liu, Hanqi Liu. Crustal P- and S-Wave Velocity Structure of the North China Craton at 36°N from Active-Source Seismic Data and Its Tectonic Implications. Journal of Earth Science, 2022, 33(3): 642-663. doi: 10.1007/s12583-021-1530-z

Crustal P- and S-Wave Velocity Structure of the North China Craton at 36°N from Active-Source Seismic Data and Its Tectonic Implications

doi: 10.1007/s12583-021-1530-z
More Information
  • Corresponding author: Xiaofeng Tian, tianxf@gec.ac.cn
  • Received Date: 26 Mar 2021
  • Accepted Date: 14 Aug 2021
  • We present crustal models for seismic P-waves (Vp), S-waves (Vs) and the Vp/Vs ratio across the southern North China Craton along latitude 36°N. Our results are based on inverse and forward modeling of long-range wide-angle reflection/refraction data. The crust of the southern Ordos Block has high lower crustal velocity (7.0 km/s) and a Moho depth of ~42 km. In contrast, thick sediments and a lower average velocity (compared with the Ordos block) found underneath the Shanxi Graben are likely to be the products of rifting that has occurred since the Cenozoic. Steep Moho dips, exposed basement rock and higher average crustal velocity beneath the Lüliang Mountain and the Taihang Mountain are characteristic of an orogenic belt. The Tanlu fault and the Liaocheng-Lankao fault show sharp crustal velocity variations and a Moho offset. This seismic profile sampled the entire region of the Eastern North China Craton where the cratonic root has been destroyed and the unique crustal structure is correlated with the substantially modified lithosphere. Our crustal seismic velocity model shows a strong correspondence between surface geology, local tectonics and the deep crustal structure.

     

  • loading
  • Bao, X. W., Song, X. D., Li, J. T., 2015. High-Resolution Lithospheric Structure beneath Mainland China from Ambient Noise and Earthquake Surface-Wave Tomography. Earth and Planetary Science Letters, 417: 132-141 https://doi.org/10.1016/j.epsl.2015.02.024
    Brocher, T. M., 2005. Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust. Bulletin of the Seismological Society of America, 95(6): 2081-2092. https://doi.org/10.1785/0120050077
    Chen, L., 2009. Lithospheric Structure Variations between the Eastern and Central North China Craton from S- and P-Receiver Function Migration. Physics of the Earth and Planetary Interiors, 173(3/4): 216-227. https://doi.org/10.1016/j.pepi.2008.11.011
    Chen, L., 2010. Concordant Structural Variations from the Surface to the Base of the Upper Mantle in the North China Craton and Its Tectonic Impli-cations. Lithos, 120(1/2): 96-115. https://doi.org/10.1016/j.lithos.2009. 12.007
    Chen, L., Zheng, T. Y., Xu, W. W., 2006a. Receiver Function Migration Image of the Deep Structure in the Bohai Bay Basin, Eastern China. Geophysical Research Letters, 33(20): L20307. https://doi.org/10.1029/2006gl027593 doi: 10.1029/2006GL027593
    Chen, L., Zheng, T. Y., Xu, W. W., 2006b. A Thinned Lithospheric Image of the Tanlu Fault Zone, Eastern China: Constructed from Wave Equation Based Receiver Function Migration. Journal of Geophysical Research: Solid Earth, 111(B9): B09312. https://doi.org/10.1029/2005jb003974
    Chen, L., Tao, W., Zhao, L., et al., 2008. Distinct Lateral Variation of Lithos-pheric Thickness in the Northeastern North China Craton. Earth and Planetary Science Letters, 267(1/2): 56-68. https://doi.org/10.1016/j.epsl.2007.11.024
    Chen, L., Jiang, M., Yang, J., et al., 2014. Presence of an Intralithospheric Discontinuity in the Central and Western North China Craton: Implications for Destruction of the Craton. Geology, 42(3): 223-226. https://doi.org/10.1130/g35010.1 doi: 10.1130/G35010.1
    Cho, H. M., Baag, C. E., Lee, J. M., et al., 2013. P- and S-Wave Velocity Model along Crustal Scale Refraction and Wide-Angle Reflection Profile in the Southern Korean Peninsula. Tectonophysics, 582: 84-100. https://doi.org/10.1016/j.tecto.2012.09.025
    Christensen, N. I., Mooney, W. D., 1995. Seismic Velocity Structure and Composition of the Continental Crust: A Global View. Journal of Geophysical Research: Solid Earth, 100(B6): 9761-9788. https://doi.org/10.1029/95jb00259 doi: 10.1029/95JB00259
    Duan, Y. H., Wang, F. Y., Zhang, X. K., et al., 2016. Three-Dimensional Crustal Velocity Structure Model of the Middle-Eastern North China Craton (HBCrust1.0). Science China Earth Sciences, 59(7): 1477-1488. https://doi.org/10.1007/s11430-016-5301-0
    Fan, W. M., Guo, F., Wang, Y. J., et al., 2001. Post-Orogenic Bimodal Volcanism along the Sulu Orogenic Belt in Eastern China. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9/10): 733-746. https://doi.org/10.1016/s1464-1895(01)00123-5
    Faure, M., Lin, W., Le Breton, N., 2001. Where is the North China-South China Block Boundary in Eastern China? Geology, 29(2): 119-122. https://doi.org/10.1130/0091-7613(2001)0290119:witncs>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0119:WITNCS>2.0.CO;2
    Fuchs, K., Müller, G., 1971. Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations. Geophysical Journal of the Royal Astronomical Society, 23(4): 417-433. https://doi.org/10.1111/j.1365-246x.1971.tb01834.x doi: 10.1111/j.1365-246X.1971.tb01834.x
    Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
    Gao, S., Zhang, B. R., Jin, Z. M., et al., 1998. How Mafic is the Lower Continental Crust? Earth and Planetary Science Letters, 161(1/2/3/4): 101-117. https://doi.org/10.1016/s0012-821x(98)00140-x
    Guo, F., Fan, W. M., Wang, Y. J., et al., 2004. Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China: Implications for Enrichment Processes beneath Continental Collisional Belt. Lithos, 78(3): 291-305. https://doi.org/10.1016/j.lithos.2004.05.001
    Grad, M., Guterch, A., Keller, G. R., et al., 2006. Lithospheric Structure beneath Trans-Carpathian Transect from Precambrian Platform to Pan-nonian Basin: CELEBRATION 2000 Seismic Profile CEL05. Journal of Geophysical Research: Solid Earth, 111(B3): B03301. https://doi.org/10.1029/2005jb003647
    Grad, M., Jensen, S. L., Keller, G. R., et al., 2003. Crustal Structure of the Trans-European Suture Zone Region along POLONAISE'97 Seismic Profile P4. Journal of Geophysical Research: Solid Earth, 108(B11): 2541. https://doi.org/10.1029/2003jb002426 doi: 10.1029/2003JB002426
    Hole, J. A., Zelt, B. C., 1995. 3-D Finite-Difference Reflection Travel Times. Geophysical Journal International, 121(2): 427-434. https://doi.org/10.1111/j.1365-246X.1995.tb05723.x
    Hu, S. B., He, L. J., Wang, J. Y., 2000. Heat Flow in the Continental Area of China: A New Data Set. Earth and Planetary Science Letters, 179(2): 407-419. https://doi.org/10.1016/s0012-821x(00)00126-6 doi: 10.1016/S0012-821X(00)00126-6
    Huang, Z. X., Li, H. Y., Zheng, Y. J., et al., 2009. The Lithosphere of North China Craton from Surface Wave Tomography. Earth and Planetary Science Letters, 288(1/2): 164-173. https://doi.org/10.1016/j.epsl.2009.09.019
    Janik, T., Kozlovskaya, E., Yliniemi, J., 2007. Crust-Mantle Boundary in the Central Fennoscandian Shield: Constraints from Wide-Angle P and S Wave Velocity Models and New Results of Reflection Profiling in Finland. Journal of Geophysical Research: Solid Earth, 112(B4): B04302. https://doi.org/10.1029/2006jb004681
    Janik, T., Kozlovskaya, E., Heikkinen, P., et al., 2009. Evidence for Preservation of Crustal Root beneath the Proterozoic Lapland-Kola Orogen (Northern Fennoscandian Shield) Derived from P and S Wave Velocity Models of POLAR and HUKKA Wide-Angle Reflection and Refraction Profiles and FIRE4 Reflection Transect. Journal of Geophysical Research: Solid Earth, 114(B6): B06308. https://doi.org/10.1029/2008jb005689
    Ji, S. C., Wang, Q., Salisbury, M. H., 2009. Composition and Tectonic Evolution of the Chinese Continental Crust Constrained by Poisson's Ratio. Tectonophysics, 463(1/2/3/4): 15-30. https://doi.org/10.1016/j.tecto.2008.09.007
    Jia, S. X., Wang, F. Y., Tian, X. F., et al., 2014. Crustal Structure and Tectonic Study of North China Craton from a Long Deep Seismic Sounding Profile. Tectonophysics, 627: 48-56. https://doi.org/10.1016/j.tecto.2014.04.013
    Kusky, T. M., Li, J. H., Tucker, R. D., 2001. The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle. Science, 292(5519): 1142-1145. https://doi.org/10.1126/science.1059426
    Kusky, T. M., Windley, B. F., Zhai, M. G., 2007. Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen. Geological Society, London, Special Publications, 280(1): 1-34. https://doi.org/10.1144/sp280.1 doi: 10.1144/SP280.1
    Kusky, T., Mooney, W. D., 2015. Is the Ordos Basin Floored by a Trapped Oceanic Plateau? Earth and Planetary Science Letters, 429: 197-204. https://doi.org/10.1016/j.epsl.2015.07.069
    Lai, X. L., Li, S. L., Song, Z. L., et al., 2009. Structure of Crust and Upper Mantle in Tianshui Wudu Strong Earthquake Region of North-South Tectonic Belt. Earth Science—Journal of China University of Geosciences, 34(4): 651-657 (in Chinese with English Abstract) doi: 10.3799/dqkx.2009.071
    Lei, J. S., 2012. Upper-Mantle Tomography and Dynamics beneath the North China Craton. Journal of Geophysical Research: Solid Earth, 117(B6): B06313. https://doi.org/10.1029/2012jb009212
    Li, L., Zhang, J. J., Zhong, D. L., et al., 2007. Main Characteristics of the Decollement Structures along the Cambrian/Archean Unconformity Surface in Western Shandong. Chinese Journal of Geology, 42(2): 335-352 (in Chinese with English Abstract)
    Li, P., Liao, L., Liu, P., et al., 2018. Numerical Simulation of Relationship between Stress Field Evolution and Historical Strong Earthquakes in the Shanxi Seismic Zone. Bulletin of the Seismological Society of America, 108(5A): 2389-2407. https://doi.org/10.1785/0120170378
    Li, S. G., Xiao, Y. L., Liou, D. L., et al., 1993. Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites: Timing and Processes. Chemical Geology, 109(1/2/3/4): 89-111. https://doi.org/10.1016/0009-2541(93)90063-o
    Li, S. L., Lai, X. L., Liu, B. F., et al., 2011. Differences in Lithospheric Structures between Two Sides of Taihang Mountain Obtained from the Zhucheng-Yichuan Deep Seismic Sounding Profile. Science China Earth Sciences, 54(6): 871-880. https://doi.org/10.1007/s11430-011-4191-4
    Li, S. L., Lai, X. L., Sun, Y., et al., 2012. Calculation of Ground Rotational Motions Using Seismic Array Data. Journal of Earth Science, 23(2): 173-179. https://doi.org/10.1007/s12583-012-0242-9
    Ling, Y., Chen, L., Wei, Z. G., et al., 2017. Crustal S-Velocity Structure and Radial Anisotropy beneath the Southern Part of Central and Western North China Craton and the Adjacent Qilian Orogenic Belt from Ambient Noise Tomography. Science China Earth Sciences, 60(10): 1752-1768. https://doi.org/10.1007/s11430-017-9092-8
    Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339-342. https://doi.org/10.1130/0091-7613(1992)0200339:romcit>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
    Liu, S. W., Pan, Y. M., Xie, Q. L., et al., 2004. Archean Geodynamics in the Central Zone, North China Craton: Constraints from Geochemistry of Two Contrasting Series of Granitoids in the Fuping and Wutai Complexes. Precambrian Research, 130(1/2/3/4): 229-249. https://doi.org/10.1016/j.precamres.2003.12.001
    Liu, S. W., Zhao, G. C., Wilde, S. A., et al., 2006. Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 148(3/4): 205-224. https://doi.org/10.1016/j.precamres.2006.04.003
    Luo, S., Yao, H. J., Li, Q. S., et al., 2019. High-Resolution 3D Crustal S-Wave Velocity Structure of the Middle-Lower Yangtze River Metallogenic Belt and Implications for Its Deep Geodynamic Setting. Science China Earth Sciences, 62(9): 1361-1378. https://doi.org/10.1007/s11430-018-9352-9
    Ma, X. Y., Liu, C. Q., Liu, G. D., 1991. Xiangshui (Jiangsu Province) to Mandal (Nei Monggol) Geoscience Transect. Acta Geologica Sinica, 65(3): 199-215 (in Chinese with English Abstract)
    Magnani, M. B., Zelt, C. A., Levander, A., et al., 2009. Crustal Structure of the South American-Caribbean Plate Boundary at 67°W from Controlled Source Seismic Data. Journal of Geophysical Research: Solid Earth, 114(B2): B02312. https://doi.org/10.1029/2008jb005817
    Menzies, M. A., Fan, W. M., Zhang, M., 1993. Palaeozoic and Cenozoic Lithoprobes and the Loss of > 120 km of Archaean Lithosphere, Sino-Korean Craton, China. Geological Society, London, Special Publi-cations, 76(1): 71-81. https://doi.org/10.1144/gsl.sp.1993.076.01.04 doi: 10.1144/GSL.SP.1993.076.01.04
    Menzies, M., Xu, Y. G., Zhang, H. F., et al., 2007. Integration of Geology, Geophysics and Geochemistry: A Key to Understanding the North China Craton. Lithos, 96(1/2): 1-21. https://doi.org/10.1016/j.lithos. 2006.09.008
    Murphy, J. M., Fuis, G. S., Ryberg, T., et al., 2010. Detailed P- and S-Wave Velocity Models along the LARSE Ⅱ Transect, Southern California. Bulletin of the Seismological Society of America, 100(6): 3194-3212. https://doi.org/10.1785/0120090004
    Musacchio, G., Mooney, W. D., Luetgert, J. H., et al., 1997. Composition of the Crust in the Grenville and Appalachian Provinces of North America Inferred from Vp/Vs Ratios. Journal of Geophysical Research: Solid Earth, 102(B7): 15225-15241. https://doi.org/10.1029/96jb03737 doi: 10.1029/96JB03737
    Panza, G. F., Raykova, R. B., 2008. Structure and Rheology of Lithosphere in Italy and Surrounding. Terra Nova, 20(3): 194-199. https://doi.org/10.1111/j.1365-3121.2008.00805.x
    Sandmeier, K. J., Wenzel, F., 1986. Synthetic Seismograms for a Complex Crustal Model. Geophysical Research Letters, 13(1): 22-25. https://doi.org/10.1029/gl013i001p00022 doi: 10.1029/GL013i001p00022
    Środa, P., Czuba, W., Grad, M., et al., 2006. Crustal and Upper Mantle Structure of the Western Carpathians from CELEBRATION 2000 Profiles CEL01 and CEL04: Seismic Models and Geological Implications. Geophysical Journal International, 167(2): 737-760. https://doi.org/10.1111/j.1365-246x.2006.03104.x doi: 10.1111/j.1365-246X.2006.03104.x
    Starostenko, V., Janik, T., Kolomiyets, K., et al., 2013. Seismic Velocity Model of the Crust and Upper Mantle along Profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 608: 1049-1072. https://doi.org/10.1016/j.tecto.2013.07.008
    Stern, R. J., Li, S. M., Keller, G. R., 2018. Continental Crust of China: A Brief Guide for the Perplexed. Earth-Science Reviews, 179: 72-94. https://doi.org/10.1016/j.earscirev.2018.01.020
    Sun, W. C., Xu, J., Yang, Z. E., et al., 1992. Geoscience Transect from Shanghai Fengxian to Alashan Left Banner in the Inner Mongolia. Seismological Press, Beijing (in Chinese)
    Tang, Y. C., Chen, Y. J., Zhou, S. Y., et al., 2013. Lithosphere Structure and Thickness beneath the North China Craton from Joint Inversion of Ambient Noise and Surface Wave Tomography. Journal of Geophysical Research: Solid Earth, 118(5): 2333-2346. https://doi.org/10.1002/jgrb.50191
    Tian, X. B., Teng, J. W., Zhang, H. S., et al., 2011. Structure of Crust and Upper Mantle beneath the Ordos Block and the Yinshan Mountains Revealed by Receiver Function Analysis. Physics of the Earth and Planetary Interiors, 184(3/4): 186-193. https://doi.org/10.1016/j.pepi.2010.11.007
    Tian, X. F., Zelt, C. A., Wang, F. Y., et al., 2014. Crust Structure of the North China Craton from a Long-Range Seismic Wide-Angle-Reflection/Refraction Data. Tectonophysics, 634: 237-245. https://doi.org/10.1016/j.tecto.2014.07.008
    Tian, Y., Zhao, D. P., Sun, R. M., et al., 2009. Seismic Imaging of the Crust and Upper Mantle beneath the North China Craton. Physics of the Earth and Planetary Interiors, 172(3/4): 169-182. https://doi.org/10.1016/j.pepi.2008.09.002
    Vidale, J., 1988. Finite-Difference Calculation Of Travel-Times. Bulletin of the Seismological Society of America, 78(6): 2062-2076
    Wang, P., Xu, M. J., Wang, L. S., et al., 2013. Seismic Evidence for the Stratified Lithosphere in the South of the North China Craton. Journal of Geophysical Research: Solid Earth, 118(2): 570-582. https://doi.org/10.1029/2011jb008946 doi: 10.1029/2011JB008946
    Wei, Z. G., Chen, L., Xu, W. W., 2011. Crustal Thickness and Vp/Vs Ratio of the Central and Western North China Craton and Its Tectonic Implications. Geophysical Journal International, 186(2): 385-389. https://doi.org/10.1111/j.1365-246x.2011.05089.x doi: 10.1111/j.1365-246X.2011.05089.x
    Wei, Z. G., Chen, L., Jiang, M. M., et al., 2015. Lithospheric Structure beneath the Central and Western North China Craton and the Adjacent Qilian Orogenic Belt from Rayleigh Wave Dispersion Analysis. Tectono-physics, 646: 130-140. https://doi.org/10.1016/j.tecto.2015.02.008
    Wu, F. Y., Walker, R. J., Ren, X. W., et al., 2003. Osmium Isotopic Constraints on the Age of Lithospheric Mantle beneath Northeastern China. Chemical Geology, 196(1/2/3/4): 107-129. https://doi.org/10.1016/S0009-2541(02)00409-6
    Wu, F. Y., Xu, Y. G., Zhu, R. X., et al., 2014. Thinning and Destruction of the Cratonic Lithosphere: A Global Perspective. Science China Earth Sciences, 57(12): 2878-2890. https://doi.org/10.1007/s11430-014-4995-0
    Xia, B., Thybo, H., Artemieva, I. M., 2017. Seismic Crustal Structure of the North China Craton and Surrounding Area: Synthesis and Analysis. Journal of Geophysical Research: Solid Earth, 122(7): 5181-5207. https://doi.org/10.1002/2016jb013848 doi: 10.1002/2016JB013848
    Xu, Y. G., 2001. Thermo-Tectonic Destruction of the Archaean Lithospheric Keel beneath the Sino-Korean Craton in China: Evidence, Timing and Mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9/10): 747-757. https://doi.org/10.1016/s1464-1895(01)00124-7
    Yin, A., Nie, S. Y., 1993. An Indentation Model for the North and South China Collision and the Development of the Tan-Lu and Honam Fault Systems, Eastern Asia. Tectonics, 12(4): 801-813. https://doi.org/10.1029/93tc00313 doi: 10.1029/93TC00313
    Yu, C. Q., Chen, W. P., Ning, J. Y., et al., 2012. Thick Crust beneath the Ordos Plateau: Implications for Instability of the North China Craton. Earth and Planetary Science Letters, 357/358: 366-375. https://doi.org/10.1016/j.epsl.2012.09.027
    Zelt, C. A., Smith, R. B., 1992. Seismic Traveltime Inversion for 2-D Crustal Velocity Structure. Geophysical Journal International, 108(1): 16-34. https://doi.org/10.1111/j.1365-246x.1992.tb00836.x doi: 10.1111/j.1365-246X.1992.tb00836.x
    Zelt, C. A., Forsyth, D. A., 1994. Modeling Wide-Angle Seismic Data for Crustal Structure: Southeastern Grenville Province. Journal of Geophysical Research: Solid Earth, 99(B6): 11687-11704. https://doi.org/10.1029/93jb02764 doi: 10.1029/93JB02764
    Zelt, C. A., Barton, P. J., 1998. Three-Dimensional Seismic Refraction Tomography: A Comparison of Two Methods Applied to Data from the Faeroe Basin. Journal of Geophysical Research: Solid Earth, 103(B4): 7187-7210. https://doi.org/10.1029/97jb03536 doi: 10.1029/97JB03536
    Zelt, C. A., 1999. Modelling Strategies and Model Assessment for Wide-Angle Seismic Traveltime Data. Geophysical Journal International, 139(1): 183-204. https://doi.org/10.1046/j.1365-246x.1999.00934.x doi: 10.1046/j.1365-246X.1999.00934.x
    Zelt, C. A., Sain, K., Naumenko, J. V., et al., 2003. Assessment of Crustal Velocity Models Using Seismic Refraction and Reflection Tomography. Geophysical Journal International, 153(3): 609-626. https://doi.org/10.1046/j.1365-246x.2003.01919.x doi: 10.1046/j.1365-246X.2003.01919.x
    Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1/2/3/4): 183-199. https://doi.org/10.1016/s0301-9268(02)00211-5
    Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
    Zhai, M. G., Windley, B. F., Kusky, T. M., et al., 2007. Mesozoic Subcontinental Lithospheric Thinning under Eastern Asia. Geological Society, London, Special Publications, 280, London. https://doi.org/10.1144/sp280
    Zhang, H. F., Sun, M., Zhou, X. H., et al., 2002. Mesozoic Lithosphere Destruction beneath the North China Craton: Evidence from Major-, Trace-Element and Sr-Nd-Pb Isotope Studies of Fangcheng Basalts. Contributions to Mineralogy and Petrology, 144(2): 241-254. https://doi.org/10.1007/s00410-002-0395-0
    Zhang, Z. J., Wu, J., Deng, Y. F., et al., 2012. Lateral Variation of the Strength of Lithosphere across the Eastern North China Craton: New Constraints on Lithospheric Disruption. Gondwana Research, 22(3/4): 1047-1059. https://doi.org/10.1016/j.gr.2012.03.006
    Zhang, Z. J., Zhang, G. W., Deng, Y. F., et al., 2014. Geophysical Transect across the North China Craton: A Perspective on the Interaction between Tibetan Eastward Escape and Pacific Westward Flow. Gondwana Research, 26(1): 311-322. https://doi.org/10.1016/j.gr.2013.07.004
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45-73. https://doi.org/10.1016/s0301-9268(00)00154-6
    Zhao, G. C., Sun, M., Wilde, S. A., 2003. Major Tectonic Units of the North China Craton and Their Paleoproterozoic Assembly. Science in China Series D, 46(1): 23-38. https://doi.org/10.1360/03yd9003
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
    Zhao, L., Allen, R. M., Zheng, T. Y., et al., 2009. Reactivation of an Archean Craton: Constraints from P- and S-Wave Tomography in North China. Geophysical Research Letters, 36(17): L17306. https://doi.org/10.1029/2009gl039781 doi: 10.1029/2009GL039781
    Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2007. Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203-5225. https://doi.org/10.1016/j.gca.2007.07.028
    Zheng, T. Y., Zhao, L., Xu, W. W., et al., 2008. Insight into Modification of North China Craton from Seismological Study in the Shandong Province. Geophysical Research Letters, 35(22): L22305. https://doi.org/10.1029/2008gl035661 doi: 10.1029/2008GL035661
    Zheng, T. Y., Zhao, L., Zhu, R. X., 2009. New Evidence from Seismic Imaging for Subduction during Assembly of the North China Craton. Geology, 37(5): 395-398. https://doi.org/10.1130/g25600a.1 doi: 10.1130/G25600A.1
    Zheng, T. Y., Duan, Y. H., Xu, W. W., et al., 2017. A Seismic Model for Crustal Structure in North China Craton. Earth and Planetary Physics, 1(1): 26-34. https://doi.org/10.26464/epp2017004
    Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 53(20): 3081-3104. https://doi.org/10.1007/s11434-008-0388-0
    Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1/2): 105-161. https://doi.org/10.1016/S0012-8252(02)00133-2
    Zhu, R. X., Zheng, T. Y., 2009. Destruction Geodynamics of the North China Craton and Its Paleoproterozoic Plate Tectonics. Chinese Science Bulletin, 54(19): 3354-3366. https://doi.org/10.1007/s11434-009-0451-5
    Zhu, R. X., Chen, L., Wu, F. Y., et al., 2011. Timing, Scale and Mechanism of the Destruction of the North China Craton. Science China Earth Sciences, 54(6): 789-797. https://doi.org/10.1007/s11430-011-4203-4
    Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012a. Destruction of the North China Craton. Science China Earth Sciences, 55(10): 1565-1587. https://doi.org/10.1007/s11430-012-4516-y
    Zhu, R. X., Yang, J. H., Wu, F. Y., 2012b. Timing of Destruction of the North China Craton. Lithos, 149: 51-60. https://doi.org/10.1016/j.lithos.2012.05.013
    Zhu, R. X., Xu, Y. G., 2019. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Science China Earth Sciences, 62(9): 1340-1350. https://doi.org/10.1007/s11430-018-9356-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views(20) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return