Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Lauro Valentim Stoll Nardi, Maria de Fátima Bitencourt, Luana Moreira Florisbal, Dionatan Ferri Padilha. Shoshonitic Magmatic Series and the High Ba-Sr Granitoids: A Review with Emphasis on Examples from the Neoproterozoic Dom Feliciano Belt of Southern Brazil and Uruguay. Journal of Earth Science, 2021, 32(6): 1359-1373. doi: 10.1007/s12583-021-1534-8
Citation: Lauro Valentim Stoll Nardi, Maria de Fátima Bitencourt, Luana Moreira Florisbal, Dionatan Ferri Padilha. Shoshonitic Magmatic Series and the High Ba-Sr Granitoids: A Review with Emphasis on Examples from the Neoproterozoic Dom Feliciano Belt of Southern Brazil and Uruguay. Journal of Earth Science, 2021, 32(6): 1359-1373. doi: 10.1007/s12583-021-1534-8

Shoshonitic Magmatic Series and the High Ba-Sr Granitoids: A Review with Emphasis on Examples from the Neoproterozoic Dom Feliciano Belt of Southern Brazil and Uruguay

doi: 10.1007/s12583-021-1534-8
More Information
  • Corresponding author: Dionatan Ferri Padilha, dionatan25fp@gmail.com
  • Received Date: 30 Mar 2021
  • Accepted Date: 21 Aug 2021
  • Publish Date: 30 Dec 2021
  • Fractional crystallization of parental magmas of shoshonitic or silica-saturated, ultrapotassic affinity, with variable amount of concurrent crustal assimilation, may result in granitic and syenitic rocks. Typical plutonic members of the shoshonitic series are monzonites and quartz monzonites, whilst syenites and quartz syenites are the dominant plutonic products of the ultrapotassic series. Lamprophyric magmas are commonly found in association with both series and are frequently part of coeval mingling/mixing systems. Ultrapotassic and shoshonitic primary magmas, including lamprophyric ones, are derived from amphibole-phlogopite-bearing mantle sources produced by previous, subduction-related metasomatism. Acidic and intermediate rocks can be derived from such parental magmas, generally through AFC processes. Shoshonitic-like granitoids, which have not clear relation with intermediate or basic shoshonitic rocks, or are produced dominantly by crustal melting, should be named high-Ba-Sr granitoids. This study focuses mainly on Neoproterozoic shoshonitic and silica-saturated ultrapotassic rock associations formed in post-collisional settings from southern Brazil and Uruguay. The source of magmas, their evolution, the role played by crustal contamination in modifying pristine geochemical signatures and their tectonic control are discussed based on elemental and Sr-Nd isotope geochemistry. The main features of plutonic rocks related to the shoshonitic series are their potassic, silica-saturated alkaline character, predominance of monzonitic to syenitic compositions, high Sr and Ba contents, monotonous, light REE-enriched patterns, and moderate HFSE contents. Syntectonic shoshonitic and high Ba-Sr granitoids within shear zones show lower alkali, LREE, HFSE, and Sr contents than those formed away from the main deformation sites. Plutonic rocks related to the extended silica-saturated ultrapotassic series are mostly syenites, alkali-feldspar granites and lamprophyres with K2O/Na2O ratios above 2. The typical values of 87Sr/86Sri for shoshonitic plutonic rocks are 0.706-0.708, ranging from 0.704 to 0.710. The εNd(t) values are negative and vary from 0 to -24. Crustal contribution tends to increase 87Sr/86Sri and decrease εNd(t) values, depending on protolith isotope signature, melting conditions and volume of assimilated material. Ultrapotassic rocks, on the other hand, show higher 87Sr/86Sri ratios, from 0.709-0.711 up to 0.720. Geochemical evidence, including Sr-Nd isotope data, indicates that the shoshonitic and ultrapotassic rocks discussed in this study were formed from OIB-like sources with strong influence of previous subduction, probably a phlogopite, K-amphibole bearing veined mantle. Lithological variability in ultrapotassic-shoshonitic associations is interpreted to result from (ⅰ) variation of source composition, (ⅱ) different melt fractions from similar sources, (ⅲ) mixing-mingling, fractional crystallization, and assimilation processes.

     

  • loading
  • Arndt, N. T., 2013. Formation and Evolution of the Continental Crust. Geochemical Perspectives, 2(3): 405-533. https://doi.org/10.7185/geochempersp.2.3
    Avanzinelli, R., Lustrino, M., Mattei, M., et al., 2009. Potassic and Ultrapotassic Magmatism in the Circum-Tyrrhenian Region: Significance of Carbonated Pelitic vs. Pelitic Sediment Recycling at Destructive Plate Margins. Lithos, 113(1/2): 213-227. https://doi.org/10.1016/j.lithos.2009.03.029
    Bachmann, O., Miller, C. F., Silva, S. L., 2007. The Volcanic-Plutonic Connection as a Stage for Understanding Crustal Magmatism. Journal of Volcanology and Geothermal Research, 167(1/2/3/4): 1-23. https://doi.org/10.1016/j.jvolgeores.2007.08.002
    Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1
    Barros, C. E., Nardi, L. V. S., 1994. O Maciço Granítico Santo Antônio, RS: Magmatismo Neoproterozóico de Afinidade Shoshonítica. Anais da Academia Brasileira de Ciências, 66(4): 441-465 (in Portguese)
    Bell, K., Lavecchia, G., Rosatelli, G., 2013. Cenozoic Italian Magmatism: Isotope Constraints for Possible Plume-Related Activity. Journal of South American Earth Sciences, 41: 22-40. https://doi.org/10.1016/j.jsames.2012.10.005
    Bitencourt, M. F., Nardi, L. V. S., 1993. Late- to Post-Collisional Brasiliano Magmatism in Southernmost Brazil. Anais da Academia Brasileira de Ciências, 65(Suppl. 1): 13-16 http://www.researchgate.net/profile/Lauro_Nardi/publication/272622772_Late-_to_Post-collisional_Brasiliano_Magmatism_in_Southernmost_Brazil/links/563d073d08aec6f17dd7e8fd.pdf
    Bitencourt, M. F., Nardi, L. V. S., 2004. The Role of Xenoliths and Flow Segregation in the Genesis and Evolution of the Paleoproterozoic Itapema Granite, a Crustally Derived Magma of Shoshonitic Affinity from Southern Brazil. Lithos, 73(1/2): 1-19. https://doi.org/10.1016/j.lithos.2003.08.004
    Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
    Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Elsevier, Amsterdam. 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
    Campos, T. F., Neiva, A. M., Nardi, L. V. S., 2002. Geochemistry of the Hybrid Complex and Their Minerals from Rio Espinharas Pluton, Northeastern Brazil. Lithos, 64(3/4): 131-153. https://doi.org/10.1016/s0024-4937(02)00199-8.
    Carroll, M. R., Wyllie, P. J., 1990. The System Tonalite-H2O at 15 kbar and the Genesis of Calc-Alkaline Magmas. American Mineralogist, 75(3): 345-357
    Carvalho, B. B., Janasi, V. D. A., Henrique-Pinto, R., 2014. Geochemical and Sr-Nd-Pb Isotope Constraints on the Petrogenesis of the K-Rich Pedra Branca Syenite: Implications for the Neoproterozoic Post-Collisional Magmatism in SE Brazil. Lithos, 205: 39-59. https://doi.org/10.1016/j.lithos.2014.06.016
    Chemale, F. Jr., Mallmann, G., Bitencourt, M. D. F., et al., 2012. Time Constraints on Magmatism along the Major Gercino Shear Zone, Southern Brazil: Implications for West Gondwana Reconstruction. Gondwana Research, 22(1): 184-199. https://doi.org/10.1016/j.gr.2011.08.018
    Civetta, L., Innocenti, F., Manetti, P., et al., 1981. Geochemical Characteristics of Potassic Volcanics from Mts. Ernici (Southern Latium, Italy). Contributions to Mineralogy and Petrology, 78(1): 37-47. https://doi.org/10.1007/bf00371142
    Conceição, R. V., Green, D. H., 2004. Derivation of Potassic (Shoshonitic) Magmas by Decompression Melting of Phlogopite+Pargasite Lherzolite. Lithos, 72(3/4): 209-229. https://doi.org/10.1016/j.lithos.2003.09.003
    Conceição, R. V., Green, D. H., 2000. Behavior of the Cotectic Curve En-Ol in the System Leucite-Olivine-Quartz under Dry Conditions to 2.0 GPa. Geochemistry, Geophysics, Geosystems, 1(11): 200GC000071. https://doi.org/10.1029/2000gc000071
    Conceição, R. V., Nardi, L. V. S., Conceição, H., 2000. The Santanápolis Syenite: Genesis and Evolution of Paleoproterozoic Shoshonitic Syenites in Northeastern Brazil. International Geology Review, 42(10): 941-957. https://doi.org/10.1080/00206810009465119
    Condie, K. C., 2015. Changing Tectonic Settings through Time: Indiscriminate Use of Geochemical Discriminant Diagrams. Precambrian Research, 266: 587-591. https://doi.org/10.1016/j.precamres.2015.05.004
    Conticelli, S., Guarnieri, L., Farinelli, A., et al., 2009. Trace Elements and Sr-Nd-Pb Isotopes of K-Rich, Shoshonitic, and Calc-Alkaline Magmatism of the Western Mediterranean Region: Genesis of Ultrapotassic to Calc- Alkaline Magmatic Associations in a Post-Collisional Geodynamic Setting. Lithos, 107(1/2): 68-92. https://doi.org/10.1016/j.lithos.2008.07.016
    Cvetković, V., Prelević, D., Downes, H., et al., 2004. Origin and Geodynamic Significance of Tertiary Postcollisional Basaltic Magmatism in Serbia (Central Balkan Peninsula). Lithos, 73(3/4): 161-186. https://doi.org/10.1016/j.lithos.2003.12.004
    Duchesne, J. C., Berza, T., Liégeois, J. P., et al., 1998. Shoshonitic Liquid Line of Descent from Diorite to Granite: The Late Precambrian Post-Collisional Tismana Pluton (South Carpathians, Romania). Lithos, 45(1/2/3/4): 281-303. https://doi.org/10.1016/s0024-4937(98)00036-x
    Eklund, O., Konopelko, D., Rutanen, H., et al., 1998. 1.8 Ga Svecofennian Post-Collisional Shoshonitic Magmatism in the Fennoscandian Shield. Lithos, 45(1/2/3/4): 87-108. https://doi.org/10.1016/s0024-4937(98)00027-9
    Eklund, O., Shebanov, A., 2005. Prolonged Postcollisional Shoshonitic Magmatism in the Southern Svecofennian Domain-A Case Study of the Åva Granite-Lamprophyre Ring Complex. Lithos, 80(1/2/3/4): 229-247. https://doi.org/10.1016/j.lithos.2004.06.012
    Ferreira, V. P., Sial, A. N., 1993. Mica Pyroxenite as Probable Source of Ultrapotassic and Potassic Magmas in Northeastern Brazil. Anais da Academia Brasileira de Ciências, 65(1): 51-61
    Ferreira, V. P., Sial, A. N., Long, L. E., et al., 1997. Isotopic Signatures of Neoproterozoic to Cambrian Ultrapotassic Syenitic Magmas, Northeastern Brazil: Evidence for an Enriched Mantle Source. International Geology Review, 39(7): 660-669. https://doi.org/10.1080/00206819709465294
    Ferreira, V. P., Sial, A. N., Pimentel, M. M., et al., 2015. Reworked Old Crust-Derived Shoshonitic Magma: The Guarany Pluton, Northeastern Brazil. Lithos, 232: 150-161. https://doi.org/10.1016/j.lithos.2015.06.030
    Fontana, E., Mexias, A. S., Renac, C., et al., 2017. Hydrothermal Alteration of Volcanic Rocks in Seival Mine Cu-Mineralization-Camaquã Basin-Brazil (Part I): Chloritization Process and Geochemical Dispersion in Alteration Halos. Journal of Geochemical Exploration, 177: 45-60. https://doi.org/10.1016/j.gexplo.2017.02.004
    Fontes, M. P., Conceição, H., Silva Rosa, M. L., et al., 2018. Minettes do Stock Monzonítico Glória Norte: Evidência de Magmatismo Ultrapotássico Pós-Orogênico, Com Assinatura de Subducção, no Sistema Orogênico Sergipano. Geologia USP Série Científica, 18(1): 51-66. https://doi.org/10.11606/issn.2316-9095.v18-133599 (in Portguese)
    Fowler, M. B., Kocks, H., Darbyshire, D. P. F., et al., 2008. Petrogenesis of High Ba-Sr Plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos, 105(1/2): 129-148. https://doi.org/10.1016/j.lithos.2008.03.003
    Gardien, V., Thompson, A. B., Ulmer, P., 2000. Melting of Biotite+Plagioclase+ Quartz Gneisses: The Role of H2O in the Stability of Amphibole. Journal of Petrology, 41(5): 651-666. https://doi.org/10.1093/petrology/41.5.651
    Gastal, M. C. P., Lafon, J. M., Hartmann, L. A., et al., 2005. Sm-Nd Isotopic Investigation of Neoproterozoic and Cretaceous Igneous Rocks from Southern Brazil: A Study of Magmatic Processes. Lithos, 82(3/4): 345-377. https://doi.org/10.1016/j.lithos.2004.09.025
    Gastal, M. C. P., Lafon, J. M., 2006. Reinterpretação do Complexo Intrusivo Lavras do Sul, Rs, de Acordo Com Os Sistemas vulcano-Plutônicos de Subsidênsia. Parte 2: Química Mineral, Geoquímica e Isótopos de Pb-Sr-Nd. Revista Brasileira de Geociências, 36(1): 125-146. https://doi.org/10.25249/0375-7536.2006361125146 (in Portguese)
    Gastal, M. C. P., Ferreira, F. J. F., Cunha, J. U. D., et al., 2015. Alojamento do Granito Lavras e a Mineralização Aurífera Durante Evolução de Centro Vulcano-Plutônico Pós-Colisional, Oeste do Escudo Sul-Riograndense: Dados Geofísicos e Estruturais. Brazilian Journal of Geology, 45(2): 217-241. https://doi.org/10.1590/23174889201500020004 (in Portguese)
    Gill, J. B., 1970. Geochemistry of Viti Levu, Fiji, and Its Evolution as an Island Arc. Contributions to Mineralogy and Petrology, 27(3): 179-203. https://doi.org/10.1007/bf00385777
    Goswami, B., Bhattacharyya, C., 2014. Petrogenesis of Shoshonitic Granitoids, Eastern India: Implications for the Late Grenvillian Post-Collisional Magmatism. Geoscience Frontiers, 5(6): 821-843. https://doi.org/10.1016/j.gsf.2013.09.003
    Guimarães, I. P., Silva Filho, A. F., 1992. Evolução Petrológica e Geoquímica do Complexo Bom Jardim, Pernambuco. Revista Brasileira de Geociências, 22(1): 29-42. https://doi.org/10.25249/0375-7536.19922942 (in Portguese)
    Guimarães, I. D. P., Silva Filho, A. F., 1998. Nd and Sr-Isotopic and U-Pb Geochronologic Constraints for Evolution of the Shoshonitic Brasiliano Bom Jardim and Toritama Complexes: Evidence for a Transamazonian Enriched Mantle under Borborema Tectonic Province, Brazil. International Geology Review, 40(6): 500-527. https://doi.org/10.1080/00206819809465221
    Guo, Z. F., Wilson, M., Liu, J. Q., et al., 2006. Post-Collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetan Plateau: Constraints on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms. Journal of Petrology, 47(6): 1177-1220. https://doi.org/10.1093/petrology/egl007
    Hegner, E., Kölbl-Ebert, M., Loeschke, J., 1998. Post-Collisional Variscan Lamprophyres (Black Forest, Germany): 40Ar/39Ar Phlogopite Dating, Nd, Pb, Sr Isotope, and Trace Element Characteristics. Lithos, 45(1/2/3/4): 395-411. https://doi.org/10.1016/S0024-4937(98)00041-3
    Ilbeyli, N., Pearce, J. A., Thirlwall, M. F., et al., 2004. Petrogenesis of Collision-Related Plutonics in Central Anatolia, Turkey. Lithos, 72(3/4): 163-182. https://doi.org/10.1016/j.lithos.2003.10.001
    Jakeš, P., White, A. J. R., 1972. Major and Trace Element Abundances in Volcanic Rocks of Orogenic Areas. Geological Society of America Bulletin, 83(1): 29-40. https://doi.org/10.1130/0016-7606(1972)83[29: mateai]2.0.co;2 doi: 10.1130/0016-7606(1972)83[29:mateai]2.0.co;2
    Janasi, V. A., Vlach, S. R. F., Ulbrich, H. H. G. J., 1993. Enriched Mantle Contributions to the Itu Granitoid Belt, Southeastern Brazil: Evidence from K-Rich Diorites and Syenites. Anais da Academia Brasileira de Ciências, 65: 107-118 (in Portguese) http://www.researchgate.net/profile/Valdecir_Janasi/publication/292031489_Enriched-mantle_contributions_to_the_Itu_Granitoid_Belt_Southeastern_Brazil_Evidence_from_K-rich_diorites_and_syenites/links/56c5b8f208ae7fd4625c53c8.pdf
    Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2002. Petrology and Geochemistry of Shoshonitic Plutons from the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China: Implications for Granitoid Geneses. Lithos, 63(3/4): 165-187. https://doi.org/10.1016/s0024-4937(02)00140-8
    Joplin, G. A., 1968. The Shoshonite Association: A Review. Journal of the Geological Society of Australia, 15(2): 275-294. https://doi.org/10.1080/00167616808728699
    Knijnik, D., Bitencourt, M. F., Nardi, L. V. S., et al., 2012. Caracterização Geoquímica e Estrutural do Granodiorito Cruzeiro do Sul: Magmatismo Shoshonítico Pós-Colisional Neoproterozoico em Zona de Transcorrência, Região de Quitéria, RS. Geologia USP Série Científica, 12(1): 17-38. https://doi.org/10.5327/z1519-874x2012000100003 (in Portguese)
    Knijnik, D. B., 2018. Geocronologia U-Pb e Geoquímica Isotópica Sr-Nd dos Granitoides Sintectônicos às Zonas de Cisalhamento Transcorrentes Quitéria Serra do Erval e Dorsal do Canguçu, Rio Grande do Sul, Brasil: [Dissertation]. Universidade Federal do Rio Grande do Sul, Porto Alegre. 260 (in Portuguese)
    Köksal, S., Romer, R. L., Göncüoglu, M. C., et al., 2004. Timing of Post-Collisional H-Type to A-Type Granitic Magmatism: U-Pb Titanite Ages from the Alpine Central Anatolian Granitoids (Turkey). International Journal of Earth Sciences, 93(6): 974-989. https://doi.org/10.1007/s00531-004-0432-5
    Lameyre, J., Bowden, P., 1982. Plutonic Rock Types Series: Discrimination of Various Granitoid Series and Related Rocks. Journal of Volcanology and Geothermal Research, 14(1/2): 169-186. https://doi.org/10.1016/0377-0273(82)90047-6
    Lara, P., Oyhantçabal, P., Dadd, K., 2017. Post-Collisional, Late Neoproterozoic, High-Ba-Sr Granitic Magmatism from the Dom Feliciano Belt and Its Cratonic Foreland, Uruguay: Petrography, Geochemistry, Geochronology, and Tectonic Implications. Lithos, 277: 178-198. https://doi.org/10.1016/j.lithos.2016.11.026
    Le Maitre, R. W., 2002. A Classification of Igneous Rocks and Glossary of Terms. Cambridge University Press, Cambridge. 236
    Leat, P. T., Thompson, R. N., Morrison, M. A., et al., 1988. Silicic Magmas Derived by Fractional Crystallization from Miocene Minette, Elkhead Mountains, Colorado. Mineralogical Magazine, 52(368): 577-585. https://doi.org/10.1180/minmag.1988.052.368.03
    Lima, E. F., Nardi, L. V. S., 1991. Os Lamprófiros Espessartíticos da Associação Shoshonítica de Lavras do Sul, RS. Geochimica Brasiliensis, V(1/2): 117-131 (in Portguese)
    Lima, E. F., Nardi, L. V. S., 1998. Química Mineral Das Rochas Vulcânicas e Lamprófiros Espessartíticos da Associação Shoshonítica de Lavras do Sul-RS. Revista Brasileira de Geociências, 28(2): 113-124. https://doi.org/10.25249/0375-7536.1998113124 (in Portguese)
    Lisboa, V. A., Conceição, H., Silva Rosa, M. L., et al., 2019. The Onset of Post-Collisional Magmatism in the Macururé Domain, Sergipano Orogenic System: The Glória Norte Stock. Journal of South American Earth Sciences, 89: 173-188. https://doi.org/10.1016/j.jsames.2018.11.005
    Litvinovsky, B. A., Jahn, B. M., Zanvilevich, A. N., et al., 2002. Crystal Fractionation in the Petrogenesis of an Alkali Monzodiorite-Syenite Series: The Oshurkovo Plutonic Sheeted Complex, Transbaikalia, Russia. Lithos, 64(3/4): 97-130. https://doi.org/10.1016/s0024-4937(02)00179-2
    Liz, J. D., Lima, E. F., Nardi, L. V. S., et al., 2004. Aspectos Petrográficos, Composicionais e Potencialidade para Mineralizações de ouro e Sulfetos do Sistema Multi-Intrusivo da Associação Shoshonítica de Lavras do Sul (RS). Revista Brasileira de Geociências, 34(4): 539-552 (in Portguese) doi: 10.25249/0375-7536.2004344539552
    Liz, J. D., Lima, E. F., Nardi, L. V. S., 2009. Avaliação de Fontes Magmáticas de Séries Shoshoníticas Pós-Colisionais Com Base Na Normalização Pela Associação Shoshonítica de Lavras do Sul-Aplicação de Sliding Normalization. Revista Brasileira de Geociências, 39(1): 55-66. https://doi.org/10.25249/0375-7536.20093915566 (in Portguese)
    Lopes, R. W., Fontana, E., Mexias, A. S., et al., 2014. Caracterização Petrográfica e Geoquímica da Sequência Magmática da Mina do Seival, Formação Hilário (Bacia do Camaquã-Neoproterozoico), Rio Grande do Sul, Brasil. Pesquisas em Geociências, 41(1): 39-51. https://doi.org/10.22456/1807-9806.78035 (in Portguese)
    López-Plaza, M., López-Moro, F. J., Gonzalo-Corral, J. C., et al., 1999. Asociaciones de Rocas Bpasicas e Inter-Médias de Afinidad Calcoalcalina y Shoshonítica y Granitóides Relacionados em al Domo Hercínicodel Tormes (Salamanca y Zamora). Boletin de la Sociedad Española de Mineralogia, 22: 211-234 (in Portguese)
    López-Moro, F. J., López-Plaza, M., 2004. Monzonitic Series from the Variscan Tormes Dome (Central Iberian Zone): Petrogenetic Evolution from Monzogabbro to Granite Magmas. Lithos, 72(1/2): 19-44. https://doi.org/10.1016/j.lithos.2003.08.002
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of American Bulletin, 101(5): 635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    Maria, A. H., Luhr, J. F., 2008. Lamprophyres, Basanites, and Basalts of the Western Mexican Volcanic Belt: Volatile Contents and a Vein-Wallrock Melting Relationship. Journal of Petrology, 49(12): 2123-2156. https://doi.org/10.1093/petrology/egn060
    Martini, A., Bitencourt, M. F., Weinberg, R. F., et al., 2019. From Migmatite to Magma-Crustal Melting and Generation of Granite in the Camboriú Complex, South Brazil. Lithos, 340/341: 270-286. https://doi.org/10.1016/j.lithos.2019.05.017
    Martins, G. G., Mendes, J. C., Schmitt, R. S., et al., 2016. 550-490 Ma Pre- to Post-Collisional Shoshonitic Rocks in the Ribeira Belt (SE Brazil) and Their Tectonic Significance. Precambrian Research, 286: 352-369. https://doi.org/10.1016/j.precamres.2016.10.010
    Melzer, S., Foley, S. F., 2000. Phase Relations and Fractionation Sequences in Potassic Magma Series Modelled in the System CaMgSi2O6-KAlSiO4- Mg2SiO4-SiO2-F2O-1 at 1 bar to 18 kbar. Contributions to Mineralogy and Petrology, 138(2): 186-197. https://doi.org/10.1007/s004100050017
    Mexias, A. S., Berger, G., Gomes, M. E., et al., 2005. Geochemical Modeling of Gold Precipitation Conditions in the Bloco do Butiá Mine, Lavras do Sul/Brazil. Anais da Academia Brasileira de Ciencias, 77(4): 717-728. https://doi.org/10.1590/s0001-37652005000400010
    Miller, C., Schuster, R., Klotzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399
    Montel, J. M., Vielzeuf, D., 1997. Partial Melting of Metagreywackes, Part II. Compositions of Minerals and Melts. Contributions to Mineralogy and Petrology, 128(2): 176-196. https://doi.org/10.1007/s004100050302
    Morrison, G. W., 1980. Characteristics and Tectonic Setting of the Shoshonite Rock Association. Lithos, 13(1): 97-108. https://doi.org/10.1016/0024-4937(80)90067-5
    Müller, D., Groves, D. I., 1993. Direct and Indirect Associations between Potassic Igneous Rocks, Shoshonites and Gold-Copper Deposits. Ore Geology Reviews, 8(5): 383-406. https://doi.org/10.1016/0169-1368(93)90035-w
    Müller, I. F., Nardi, L. V. S., Lima, E. F., et al., 2012. Os Diques Latíticos Portadores de Ouro e Sulfetos da Associação Shoshonítica de Lavras do Sul-RS: Petrogênese e Geoquímica. Pesquisas em Geociências, 39(2): 173-191. https://doi.org/10.22456/1807-9806.35911 (in Portguese)
    Nardi, L. V. S., 1984. Geochemistry and Petrology of the Lavras Granite Complex, R.S., Brazil: [Dissertation]. London University, London. 268
    Nardi, L. V. S., 1986. As Rochas Granitóides da Série Shoshonítica. Revista Brasileira de Geociências, 16(1): 3-10. https://doi.org/10.25249/0375-7536.1986310 (in Portguese)
    Nardi, L. V. S., Lima, E. F., 1985. A Associação Shoshonítica de Lavras do Sul, RS. Revista Brasileira de Geociências, 15(2): 139-146. https://doi.org/10.25249/0375-7536.1985139146
    Nardi, L. V. S., Lima, E. F., 1988. Hidrotermalismo no Complexo Granítico Lavras e Vulcânicas Associadas, RS. Revista Brasileira de Geociências, 18(3): 369-375. https://doi.org/10.25249/0375-7536.1988369375
    Nardi, L. V. S., Lima, E. F., 2000. Hybridisation of Mafic Microgranular Enclaves in the Lavras Granite Complex, Southern Brazil. Journal of South American Earth Sciences, 13(1/2): 67-78. https://doi.org/10.1016/s0895-9811(00)00006-7
    Nardi, L. V. S., 2016. Granitoides e Séries Magmáticas: O Estudo Contextualizado dos Granitoides. Pesquisas em Geociências, 43(1): 85. https://doi.org/10.22456/1807-9806.78194 (in Portguese)
    Nardi, L. V. S., Plá Cid, J., Bitencourt, M. F., 2007. Minette Mafic Microgranular Enclaves and Their Relationship to Host Syenites in Systems Formed at Mantle Pressures: Major and Trace Element Evidence from the Piquiri Syenite Massif, Southernmost Brazil. Mineralogy and Petrology, 91(1/2): 101-116. https://doi.org/10.1007/s00710-007-0186-4
    Nardi, L. V. S., Plá Cid, J., Bitencourt, M. F., et al., 2008. Geochemistry and Petrogenesis of Post-Collisional Ultrapotassic Syenites and Granites from Southernmost Brazil: The Piquiri Syenite Massif. Anais da Academia Brasileira de Ciencias, 80(2): 353-371. https://doi.org/10.1590/s0001-37652008000200014
    Nascimento, A. L., Antunes, A. F., Galindo, A. C., et al., 2000. Geochemical Signature of the Brasilianoage Plutonism in the Seridó Belt, Northeastern Borborema Province (NE Brazil). Revista Brasileira de Geociências, 30(1): 161-164. https://doi.org/10.25249/0375-7536.2000301161164
    Oyhantçabal, P., Wagner-Eimer, M., Wemmer, K., et al., 2012. Paleo- and Neoproterozoic Magmatic and Tectonometamorphic Evolution of the Isla Cristalina de Rivera (Nico Pérez Terrane, Uruguay). International Journal of Earth Sciences, 101(7): 1745-1762. https://doi.org/10.1007/s00531-012-0757-4
    Padilha, D. F., Bitencourt, M. F., Nardi, L. V. S., et al., 2019. Sources and Settings of Ediacaran Post-Collisional Syenite-Monzonite-Diorite Shoshonitic Magmatism from Southernmost Brazil. Lithos, 344/345: 482-503. https://doi.org/10.1016/j.lithos.2019.06.004
    Pagel, M., Leterrier, J., 1980. The Subalkaline Potassic Magmatism of the Ballons Massif (Southern Vosges, France): Shoshonitic Affinity. Lithos, 13(1): 1-10. https://doi.org/10.1016/0024-4937(80)90056-0
    Paim, M. M., Plá Cid, J., Rosa, M. L. S., et al., 2002. Mineralogy of Lamprophyres and Mafic Enclaves Associated with the Paleoproterozoic Cara Suja Syenite, Northeast Brazil. International Geology Review, 44(11): 1017-1036. https://doi.org/10.2747/0020-6814.44.11.1017
    Patiño Douce, A. E., 1999. What do Experiments Tell us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
    Peccerillo, A., 1992. Potassic and Ultrapotassic Rocks: Compositional Characteristics, Petrogenesis, and Geologic Significance. Episodes, 15(4): 243-251. https://doi.org/10.18814/epiiugs/1992/v15i4/002
    Peruchi, F. M., Florisbal, L. M., Bitencourt, M. F., et al., 2021. Time Constraints, Sources and Settings of the Neoproterozoic Post-Collisional Shoshonitic Magmatism in the Dom Feliciano Belt: A Case Study of the Estaleiro Granitic Complex, South Brazil. Lithos. https://doi.org/10.1016/j.lithos.2021.106341
    Plá Cid, J., Nardi, L. V. S., Conceição, H., et al., 2000. The Alkaline Silica- Saturated Ultrapotassic Magmatism of the Riacho do Pontal Fold Belt, NE Brazil: An Example of Syenite-Granite Neoproterozoic Association. Journal of South American Earth Sciences, 13(7): 661-683. https://doi.org/10.1016/s0895-9811(00)00047-x
    Plá Cid, J., Nardi, L. V. S., Stabel, L. Z., et al., 2003. High-Pressure Minerals in Mafic Microgranular Enclaves: Evidences for Co-Mingling between Lamprophyric and Syenitic Magmas at Mantle Conditions. Contributions to Mineralogy and Petrology, 145(4): 444-459. https://doi.org/10.1007/s00410-003-0451-4
    Plá Cid, J., Nardi, L. V. S., 2006. Alkaline Ultrapotassic A-Type Granites Derived from Ultrapotassic Syenite Magmas Generated from Metasomatized Mantle. International Geology Review, 48(10): 942-956. https://doi.org/10.2747/0020-6814.48.10.942
    Plá Cid, J., Campos, C. S., Nardi, L. V. S., et al., 2012. Petrology of Gameleira Potassic Lamprophyres, São Francisco Craton. Anais da Academia Brasileira de Ciências, 84(2): 377-398. https://doi.org/10.1590/s0001-37652012005000030
    Prelević, D., Akal, C., Foley, S. F., et al., 2012. Ultrapotassic Mafic Rocks as Geochemical Proxies for Post-Collisional Dynamics of Orogenic Lithospheric Mantle: The Case of Southwestern Anatolia, Turkey. Journal of Petrology, 53(5): 1019-1055. https://doi.org/10.1093/petrology/egs008
    Remus, M. V. D., McNaughton, N. J., Hartmann, L. A., et al., 1997. U-Pb SHRIMP Zircon Dating and Nd Isotope Data of Granitoids of the São Gabriel Block, Southern Brazil: Evidence for an Archaean/Paleoproterozoic Basement. Second International Symposium on Granites and Associated Mineralization, Salvador, Brazil. 271-272
    Remus, M. V. D., Hartmann, L. A., McNaughton, N. J., et al., 2000. Distal Magmatic-Hydrothermal Origin for the Camaquã Cu (Au-Ag) and Santa Maria Pb, Zn (Cu-Ag) Deposits, Southern Brazil. Gondwana Research, 3(2): 155-174. https://doi.org/10.1016/s1342-937x(05)70094-0
    Richards, J. P., Spell, T., Rameh, E., et al., 2012. High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu±Mo±Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107(2): 295-332. https://doi.org/10.2113/econgeo.107.2.295
    Rios, D. C., Conceição, H., Davis, D. W., et al., 2007. Paleoproterozoic Potassic-Ultrapotassic Magmatism: Morro do Afonso Syenite Pluton, Bahia, Brazil. Precambrian Research, 154(1/2): 1-30. https://doi.org/10.1016/j.precamres.2006.11.015
    Rivera, C. B., 2019. Construção do Maciço Sienítico Piquiri (609 a 583 Ma) por Colocação Sucessiva de Pulsos de Magma Ultrapotássico e Shoshonítico sob Extensão no Escudo Sul-rio-Grandense: [Dissertation]. Universidade Federal do Rio Grande do Sul, Porto Alegre. 219 (in Portuguese)
    Rivera, C. B., Bittencourt, M. F., Nardi, L. V. S., 2004. Integração de Parâmetros Físicos do Magma e Composição Química Dos Minerais Na Petrogênese do Granito Itapema, SC. Revista Brasileira de Geociências, 34(3): 361-372. https://doi.org/10.25249/0375-7536.2004343361372
    Rogers, N. W., 1992. Potassic Magmatism as a Key to Trace-Element Enrichment Processes in the Upper Mantle. Journal of Volcanology and Geothermal Research, 50(1/2): 85-99. https://doi.org/10.1016/0377-0273(92)90038-f
    Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234. https://doi.org/10.2113/gselements.7.4.229
    Schaltegger, U., 1997. Magma Pulses in the Central Variscan Belt: Episodic Melt Generation and Emplacement during Lithospheric Thinning. Terra Nova, 9(5/6): 242-245. https://doi.org/10.1046/j.1365-3121.1997.d01-43.x
    Schmitt, R. S., Trouw, R. A. J., van Schmus, W. R., et al., 2004. Late Amalgamation in the Central Part of West Gondwana: New Geochronological Data and the Characterization of a Cambrian Collisional Orogeny in the Ribeira Belt (SE Brazil). Precambrian Research, 133(1/2): 29-61. https://doi.org/10.1016/j.precamres.2004.03.010
    Silva Filho, A. F., Guimaraes, I. P., Thompson, R. N., 1993. Shoshonitic and Ultrapotassic Proterozoic Intrusive Suites in the Cachoeirinha- Salgueiro Belt, NE Brazil: A Transition from Collisional to Post- Collisional Magmatism. Precambrian Research, 62(3): 323-342. https://doi.org/10.1016/0301-9268(93)90028-z
    Skjerlie, K. P., Johnston, A. D., 1996. Vapour-Absent Melting from 10 to 20 kbar of Crustal Rocks that Contain Multiple Hydrous Phases: Implications for Anatexis in the Deep to very Deep Continental Crust and Active Continental Margins. Journal of Petrology, 37(3): 661-691. https://doi.org/10.1093/petrology/37.3.661
    Sommer, C. A., Lima, E. F., Nardi, L. V. S., et al., 2005. Potassic and Low- and High-Ti Mildly Alkaline Volcanism in the Neoproterozoic Ramada Plateau, Southernmost Brazil. Journal of South American Earth Sciences, 18(3/4): 237-254. https://doi.org/10.1016/j.jsames.2004.11.003
    Sommer, C. A., Lima, E. F., Nardi, L. V., et al., 2006. The Evolution of Neoproterozoic Magmatism in Southernmost Brazil: Shoshonitic, High-K Tholeiitic and Silica-Saturated, Sodic Alkaline Volcanism in Post-Collisional Basins. Anais da Academia Brasileira de Ciencias, 78(3): 573-589. https://doi.org/10.1590/s0001-37652006000300015
    Springer, W., Seck, H. A., 1997. Partial Fusion of Basic Granulites at 5 to 15 kbar: Implications for the Origin of TTG Magmas. Contributions to Mineralogy and Petrology, 127(1/2): 30-45. https://doi.org/10.1007/s004100050263
    Stabel, L. Z., Nardi, L. V. S., Plá Cid, J., 2001. Química Mineral e Evolução Petrológica do Sienito Piquiri: Magmatismo Shoshonítico, Neoproterozóico, Pós-Colisional no Sul do Brasil. Revista Brasileira de Geociências, 31(2): 211-222. https://doi.org/10.25249/0375-7536.200131221122
    Stevens, G., Clemens, J. D., Droop, G. T. R., 1997. Melt Production during Granulite-Facies Anatexis: Experimental Data from "Primitive" Metasedimentary Protoliths. Contributions to Mineralogy and Petrology, 128(4): 352-370. https://doi.org/10.1007/s004100050314
    Stoppa, F., Rukhlov, A. S., Bell, K., et al., 2014. Lamprophyres of Italy: Early Cretaceous Alkaline Lamprophyres of Southern Tuscany, Italy. Lithos, 188: 97-112. https://doi.org/10.1016/j.lithos.2013.10.010
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tarney, J., Jones, C. E., 1994. Trace Element Geochemistry of Orogenic Igneous Rocks and Crustal Growth Models. Journal of the Geological Society, 151(5): 855-868. https://doi.org/10.1144/gsjgs.151.5.0855
    Tauson, L. V., Kozlov, V. D., 1972. Distribution Functions and Ratios of Trace Element Concentrations as Estimators of Ore-Bearing Potential of Granites. In: Jones, M. J., ed., Geochemical Exploration. Institution of Mining and Metallurgy, London. 3744
    Tauson, L. V., 1983. Geochemistry and Metallogeny of the Latitic Series. International Geology Review, 25: 125-135 doi: 10.1080/00206818309466685
    Thompson, R. N., Fowler, M. B., 1986. Subduction-Related Shoshonitic and Ultrapotassic Magmatism: A Study of Siluro-Ordovician Syenites from the Scottish Caledonides. Contributions to Mineralogy and Petrology, 94(4): 507-522. https://doi.org/10.1007/bf00376342
    Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45
    Valério, C. S., Macambira, M. J. B., Souza, V. D. S., et al., 2017. SiO2-Saturated Potassic Alkaline Magmatism in the Central Amazonian Craton, Southernmost Uatumã-Anauá Domain, NE Amazonas, Brazil. Brazilian Journal of Geology, 47(3): 441-446. https://doi.org/10.1590/2317-4889201720170044
    Venturelli, G., Thorpe, R. S., Piaz, G. V., et al., 1984. Petrogenesis of Calc-Alkaline, Shoshonitic and Associated Ultrapotassic Oligocene Volcanic Rocks from the Northwestern Alps, Italy. Contributions to Mineralogy and Petrology, 86(3): 209-220. https://doi.org/10.1007/bf00373666
    Vielzeuf, D., Schmidt, M. W., 2001. Melting Relations in Hydrous Systems Revisited: Application to Metapelites, Metagreywackes and Metabasalts. Contributions to Mineralogy and Petrology, 141(3): 251-267. https://doi.org/10.1007/s004100100237
    Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth- Science Reviews, 181: 122-143. https://doi.org/10.1016/j.earscirev.2018.02.019
    Weaver, S. L., Wallace, P. J., Johnston, A. D., 2013. Experimental Constraints on the Origins of Primitive Potassic Lavas from the Trans-Mexican Volcanic Belt. Contributions to Mineralogy and Petrology, 166(3): 825-843. https://doi.org/10.1007/s00410-013-0921-2
    Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2/3/4): 381-197. https://doi.org/10.1016/0012-821x(91)90217-6
    Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212/213/214/215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021
    White, R. W., Stevens, G., Johnson, T. E., 2011. Is the Crucible Reproducible? Reconciling Melting Experiments with Thermodynamic Calculations. Elements, 7(4): 241-246. https://doi.org/10.2113/gselements.7.4.241
    Wildner, W., Nardi, L. V. S., Lima, E. F., 1999. Post-Collisional Alkaline Magmatism on the Taquarembó Plateau: A Well-Preserved Neoproterozoic-Cambrian Plutono-Volcanic Association in Southern Brazil. International Geology Review, 41(12): 1082-1098. https://doi.org/10.1080/00206819909465193
    Williams, H. M., Turner, S. P., Pearce, J. A., et al., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3): 555-607. https://doi.org/10.1093/petrology/egg094
    Yang, W. B., Niu, H. C., Shan, Q., et al., 2012. Late Paleozoic Calc-Alkaline to Shoshonitic Magmatism and Its Geodynamic Implications, Yuximolegai Area, Western Tianshan, Xinjiang. Gondwana Research, 22(1): 325-340. https://doi.org/10.1016/j.gr.2011.10.008
    Zhang, Y. Q., Xie, Y. W., Li, X. H., et al., 2001. Isotopic Characteristics of Shoshonitic Rocks in Eastern Qinghai-Tibet Plateau: Petrogenesis and Its Tectonic Implication. Science in China Series D: Earth Sciences, 44(1): 1-6 doi: 10.1007/BF02906879
    Zhao, J.-X., Shiraishi, K., Ellis, D. J., et al., 1995. Geochemical and Isotopic Studies of Syenites from the Yamato Mountains, East Antarctica: Implications for the Origin of Syenitic Magmas. Geochimica et Cosmochimica Acta, 59(7): 1363-1382. https://doi.org/10.1016/0016-7037(95)00050-a
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(756) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return