Bao, Z. A., Lü, N., Chen, K. Y., et al., 2021. A Potential New Chalcopyrite Reference Material for LA-MC-ICP-MS Copper Isotope Ratio Measurement. Geostandards and Geoanalytical Research, 45(2): 401-418. https://doi.org/10.1111/ggr.12372 |
Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159 |
Brenan, J. M., Shaw, H. F., Phinney, D. L., et al., 1994. Rutile-Aqueous Fluid Partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for High Field Strength Element Depletions in Island-Arc Basalts. Earth and Planetary Science Letters, 128(3/4): 327-339 |
Feng, L. P., Hu, W. F., Jiao, Y., et al., 2020. High-Precision Stable Zirconium Isotope Ratio Measurements by Double Spike Thermal Ionization Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 35(4): 736-745. https://doi.org/10.1039/c9ja00385a |
Guo, J. L., Wang, Z. C., Zhang, W., et al., 2020. Significant Zr Isotope Variations in Single Zircon Grains Recording Magma Evolution History. PNAS, 117(35): 21125-21131. https://doi.org/10.1073/pnas.2002053117 |
Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k |
Ibañez-Mejia, M., Tissot, F. L. H., 2019. Extreme Zr Stable Isotope Fractionation during Magmatic Fractional Crystallization. Science Advances, 5(12): eaax8648. https://doi.org/10.1126/sciadv.aax8648 |
Inglis, E. C., Creech, J. B., Deng, Z. B., et al., 2018. High-Precision Zirconium Stable Isotope Measurements of Geological Reference Materials as Measured by Double-Spike MC-ICPMS. Chemical Geology, 493: 544-552. https://doi.org/10.1016/j.chemgeo.2018.07.007 |
Inglis, E. C., Moynier, F., Creech, J., et al., 2019. Isotopic Fractionation of Zirconium during Magmatic Differentiation and the Stable Isotope Composition of the Silicate Earth. Geochimica et Cosmochimica Acta, 250: 311-323. https://doi.org/10.1016/j.gca.2019.02.010 |
Kirkpatrick, H. M., Harrison, T. M., Liu, M. -C., et al., 2019. In situ 94/90Zr Variations in Zircon. In: Goldschmidt 2019 Abstract. https://goldschmidtabstracts.info/2019/1696.pdf |
Lazarov, M., Horn, I., 2015. Matrix and Energy Effects during in-situ Determination of Cu Isotope Ratios by Ultraviolet-Femtosecond Laser Ablation Multicollector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 111: 64-73. https://doi.org/10.1016/j.sab.2015.06.013 |
Lin, J., Liu, Y. S., Hu, Z. C., et al., 2019. Accurate Analysis of Li Isotopes in Tourmalines by LA-MC-ICP-MS under "Wet" Conditions with Non-Matrix-Matched Calibration. Journal of Analytical Atomic Spectrometry, 34(6): 1145-1153. https://doi.org/10.1039/c9ja00013e |
Lu, J., Chen, W., Jiang, S. -Y., et al., 2020. In-situ Sulfur Isotopic Analysis of Sulfate by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS). Atomic Spectroscopy, 41(6): 223-233. https://doi.org/10.46770/as.2020.208 |
Maréchal, C. N., Télouk, P., Albarède, F., 1999. Precise Analysis of Copper and Zinc Isotopic Compositions by Plasma-Source Mass Spectrometry. Chemical Geology, 156(1/2/3/4): 251-273 |
Méheut, M., Ibañez-Mejia, M., Tissot, F. L. H., 2021. Drivers of Zirconium Isotope Fractionation in Zr-Bearing Phases and Melts: The Roles of Vibrational, Nuclear Field Shift and Diffusive Effects. Geochimica et Cosmochimica Acta, 292: 217-234 |
Niu, Y. L., 2004. Bulk-Rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-Melting Processes beneath Mid-Ocean Ridges. Journal of Petrology, 45(12): 2423-2458. https://doi.org/10.1093/petrology/egh068 |
Oeser, M., Weyer, S., Horn, I., et al., 2014. High-Precision Fe and Mg Isotope Ratios of Silicate Reference Glasses Determined in situ by Femtosecond LA-MC-ICP-MS and by Solution Nebulisation MC-ICP-MS. Geostandards and Geoanalytical Research, 38(3): 311-328 doi: 10.1111/j.1751-908X.2014.00288.x |
Schuth, S., Horn, I., Brüske, A., et al., 2017. First Vanadium Isotope Analyses of V-Rich Minerals by Femtosecond Laser Ablation and Solution-Nebulization MC-ICP-MS. Ore Geology Reviews, 81: 1271-1286. https://doi.org/10.1016/j.oregeorev.2016.09.028 |
Tang, G. Q., Liu, Y., Li, Q. L., et al., 2020. New Natural and Fused Quartz Reference Materials for Oxygen Isotope Microanalysis. Atomic Spectroscopy, 41(5): 188-193. https://doi.org/10.46770/as.2020.05.002 |
Tang, X., Li, J. H., 2021. Transmission Electron Microscopy: New Advances and Applications for Earth and Planetary Sciences. Earth Science, 46(4): 1374-1415. https://doi.org/10.3799/dqkx.2020.387 |
Thirlwall, M. F., 2002. Multicollector ICP-MS Analysis of Pb Isotopes Using a 207Pb-204Pb Double Spike Demonstrates up to 400 ppm/Amu Systematic Errors in Tl-Normalization. Chemical Geology, 184(3/4): 255-279. https://doi.org/10.1016/s0009-2541(01)00365-5 |
Tian, S. Y., Inglis, E. C., Creech, J. B., et al., 2020a. The Zirconium Stable Isotope Compositions of 22 Geological Reference Materials, 4 Zircons and 3 Standard Solutions. Chemical Geology, 555: 119791-119780. https://doi.org/10.1016/j.chemgeo.2020.119791 |
Tian, S. Y., Moynier, F., Inglis, E. C., et al., 2020b. Zirconium Isotopic Composition of the Mantle through Time. Geochemical Perspectives Letters, 15: 40-43. https://doi.org/10.7185/geochemlet.2033 |
Woodhead, J., Eggins, S., Gamble, J., 1993. High Field Strength and Transition Element Systematics in Island Arc and Back-Arc Basin Basalts: Evidence for Multi-Phase Melt Extraction and a Depleted Mantle Wedge. Earth and Planetary Science Letters, 114(4): 491-504 doi: 10.1016/0012-821X(93)90078-N |
Xie, L. W., Xu, L., Yin, Q. Z., et al., 2018. A Novel Sample Cell for Reducing the "Position Effect" in Laser Ablation MC-ICP-MS Isotopic Measurements. Journal of Analytical Atomic Spectrometry, 33(9): 1571-1578. https://doi.org/10.1039/c8ja00083b |
Yang, L., 2009. Accurate and Precise Determination of Isotopic Ratios by MC-ICP-MS: A Review. Mass Spectrometry Reviews, 28(6): 990-1011. https://doi.org/10.1002/mas.20251 |
Zhang, L., Ren, Z. Y., Wu, Y. D., et al., 2018. Strontium Isotope Measurement of Basaltic Glasses by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry Based on a Linear Relationship between Analytical Bias and Rb/Sr Ratios. Rapid Communications in Mass Spectrometry, 32(2): 105-112. https://doi.org/10.1002/rcm.8011 |
Zhang, W., Hu, Z. C., Günther, D., et al., 2016. Direct Lead Isotope Analysis in Hg-Rich Sulfides by LA-MC-ICP-MS with a Gas Exchange Device and Matrix-Matched Calibration. Analytica Chimica Acta, 948: 9-18. https://doi.org/10.1016/j.aca.2016.10.040 |
Zhang, W., Hu, Z. C., Liu, Y. S., 2020. Iso-Compass: New Freeware Software for Isotopic Data Reduction of LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(6): 1087-1096. https://doi.org/10.1039/d0ja00084a |
Zhang, W., Wang, Z. C., Moynier, F., et al., 2019. Determination of Zr Isotopic Ratios in Zircons Using Laser-Ablation Multiple-Collector Inductively Coupled-Plasma Mass-Spectrometry. Journal of Analytical Atomic Spectrometry, 34(9): 1800-1809. https://doi.org/10.1039/c9ja00192a |
Zheng, X. Y., Beard, B. L., Johnson, C. M., 2018. Assessment of Matrix Effects Associated with Fe Isotope Analysis Using 266 nm Femtosecond and 193 nm Nanosecond Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 33(1): 68-83. https://doi.org/10.1039/c7ja00272f |