Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Lu Tao, Hongfei Zhang, Jing Wu, Xiaochun Zhou, Liqi Zhang. Magma Generation of Magnetite-Rich Intermediate-Mafic Rocks and Its Mantle Processes in the Southwestern Alxa Block, NW China. Journal of Earth Science, 2022, 33(1): 161-176. doi: 10.1007/s12583-021-1539-3
Citation: Lu Tao, Hongfei Zhang, Jing Wu, Xiaochun Zhou, Liqi Zhang. Magma Generation of Magnetite-Rich Intermediate-Mafic Rocks and Its Mantle Processes in the Southwestern Alxa Block, NW China. Journal of Earth Science, 2022, 33(1): 161-176. doi: 10.1007/s12583-021-1539-3

Magma Generation of Magnetite-Rich Intermediate-Mafic Rocks and Its Mantle Processes in the Southwestern Alxa Block, NW China

doi: 10.1007/s12583-021-1539-3
More Information
  • Corresponding author: Hongfei Zhang, hfzhang@cug.edu.cn
  • Received Date: 30 Mar 2021
  • Accepted Date: 03 Sep 2021
  • Publish Date: 28 Feb 2022
  • Many studies focus on mineralization of huge magnetite ore deposits and petrogenesis of their large-volume host rocks. However, magma generation of those small-scale intrusions with enrichment of magnetite is poorly reported and paid attention to. We here carry out an integrated study of magnetite chemistry, U-Pb zircon dating, geochemistry, and Sr-Nd-Hf isotopes for the magnetite-rich intermediate-mafic rocks from the Helishan pluton in the southwestern Alxa Block, Northwest China. This, together with several previously reported magnetite/iron-rich intrusions nearby, is capable of providing some constraints on magma generation of magnetite/iron-rich intrusive rocks. The Helishan pluton, dated at ca. 290 Ma, consists of hornblende gabbro, diorite, and quartz monzodiorite with ~3%-5% magnetite in all the lithologies. Study on magnetite chemistry manifests a magmatic origin for them. All the lithologies display high TFeO/MgO ratio (1.71-1.89), weakly fractionated REE patterns ((La/Yb)N=1.82-10.17), enrichment of Rb, Sr, and Pb, and depletion of high field strength elements. They have (87Sr/86Sr)i values of 0.705 2 to 0.705 8, εNd(t) values of +0.03 to +0.64, and zircon εHf(t) values of +6.5 to +12.0. We propose that they were derived from partial melting of iron-rich metasomatized lithospheric mantle. The systematic variations of Sr/Y ratios and Nd-Hf isotopic compositions with time for the Paleozoic igneous rocks at the southwestern Alxa Block indicate ever existence of thinning and rebirth of lithospheric mantle. This geodynamic process could be the potential mechanism to give rise to the iron-rich signature of the reborn mantle sources of the Helishan pluton. For intermediate-mafic intrusions at subduction zones, they are unlikely to form considerable magnetite ore deposits since their modest magmatic flux and early fractional crystallization of magnetite at a high oxygen fugacity and H2O condition.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables A1-A5) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1539-3.
  • loading
  • Baker, J. A., Krogh Jensen, K., 2004. Coupled 186Os-187Os Enrichments in the Earth's Mantle-Core-Mantle Interaction or Recycling of Ferromanganese Crusts and Nodules?. Earth and Planetary Science Letters, 220(3/4): 277-286. https://doi.org/10.1016/s0012-821x(04)00059-7
    Barnes, S. J., Maier, W. D., Ashwal, L. D., 2004. Platinum-Group Element Distribution in the Main Zone and Upper Zone of the Bushveld Complex, South Africa. Chemical Geology, 208(1/2/3/4): 293-317. https://doi.org/10.1016/j.chemgeo.2004.04.018
    Barnes, S. J., Roeder, P. L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, 42(12): 2279-2302. https://doi.org/10.1093/petrology/42.12.2279
    Blatter, D. L., Carmichael, I. S. E., 1998. Hornblende Peridotite Xenoliths from Central Mexico Reveal the Highly Oxidized Nature of Subarc Upper Mantle. Geology, 26(11): 1035-1038. https://doi.org/10.1130/0091-7613(1998)0261035:hpxfcm>2.3.co;2 doi: 10.1130/0091-7613(1998)0261035:hpxfcm>2.3.co;2
    Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243-258. https://doi.org/10.1016/S0012-821x(97)00040-x
    Bordage, A., Balan, E., de Villiers, J. P. R., et al., 2011. V Oxidation State in Fe-Ti Oxides by High-Energy Resolution Fluorescence-Detected X-Ray Absorption Spectroscopy. Physics and Chemistry of Minerals, 38(6): 449-458. https://doi.org/10.1007/s00269-011-0418-3
    Botcharnikov, R. E., Almeev, R. R., Koepke, J., et al., 2008. Phase Relations and Liquid Lines of Descent in Hydrous Ferrobasalt-Implications for the Skaergaard Intrusion and Columbia River Flood Basalts. Journal of Petrology, 49(9): 1687-1727. https://doi.org/10.1093/petrology/egn043
    Brandon, A. D., Draper, D. S., 1996. Constraints on the Origin of the Oxidation State of Mantle Overlying Subduction Zones: An Example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta, 60(10): 1739-1749. https://doi.org/10.1016/0016-7037(96)00056-7
    Buddington, A. F., Lindsley, D. H., 1964. Iron-Titanium Oxide Minerals and Synthetic Equivalents. Journal of Petrology, 5(2): 310-357. https://doi.org/10.1093/petrology/5.2.310
    Cao, Z., 2019. Petrogenesis and Tectonic Implication of Late Paleozoic Dyke Swarms in Beidashan Area, the Alxa Block: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Chen, W., Ying, Y. C., Bai, T., et al., 2019. In situ Major and Trace Element Analysis of Magnetite from Carbonatite-Related Complexes: Implications for Petrogenesis and Ore Genesis. Ore Geology Reviews, 107: 30-40. https://doi.org/10.1016/j.oregeorev.2019.01.029
    Dan, W., Li, X. H., Guo, J. H., et al., 2012. Paleoproterozoic Evolution of the Eastern Alxa Block, Westernmost North China: Evidence from in situ Zircon U-Pb Dating and Hf-O Isotopes. Gondwana Research, 21(4): 838-864. https://doi.org/10.1016/j.gr.2011.09.004
    Dan, W., Li, X. H., Wang, Q., et al., 2014. Neoproterozoic S-Type Granites in the Alxa Block, Westernmost North China and Tectonic Implications: In situ Zircon U-Pb-Hf-O Isotopic and Geochemical Constraints. American Journal of Science, 314(1): 110-153. https://doi.org/10.2475/01.2014.04
    Dan, W., Li, X. H., Wang, Q., et al., 2016. Phanerozoic Amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic Granitoids, U-Pb Geochronology and Sr-Nd-Pb-Hf-O Isotope Geochemistry. Gondwana Research, 32: 105-121. https://doi.org/10.1016/j.gr.2015.02.011
    Dare, S. A. S., Barnes, S. J., Beaudoin, G., et al., 2014. Trace Elements in Magnetite as Petrogenetic Indicators. Mineralium Deposita, 49(7): 785-796. https://doi.org/10.1007/s00126-014-0529-0
    Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
    Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926-944. https://doi.org/10.1016/j.gr.2010.09.006
    Duan, J., Li, C. S., Qian, Z. Z., et al., 2015. Geochronological and Geochemical Constraints on the Petrogenesis and Tectonic Significance of Paleozoic Dolerite Dykes in the Southern Margin of Alxa Block, North China Craton. Journal of Asian Earth Sciences, 111: 244-253. https://doi.org/10.1016/j.jseaes.2015.07.012
    Dupuis, C., Beaudoin, G., 2011. Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types. Mineralium Deposita, 46(4): 319-335. https://doi.org/10.1007/s00126-011-0334-y
    Feng, J. Y., Xiao, W. J., Windley, B., et al., 2013. Field Geology, Geochronology and Geochemistry of Mafic-Ultramafic Rocks from Alxa, China: Implications for Late Permian Accretionary Tectonics in the Southern Altaids. Journal of Asian Earth Sciences, 78: 114-142. https://doi.org/10.1016/j.jseaes.2013.01.020
    Fleet, M. E., 1981. The Structure of Magnetite. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 37(4): 917-920. https://doi.org/10.1107/s0567740881004597
    Frost, B. R., 1991. Stability of Oxide Minerals in Metamorphic Rocks. Reviews in Mineralogy & Geochemistry, 25: 469-488. https://doi.org/10.1515/9781501508684-016
    Ganino, C., Arndt, N. T., Zhou, M. F., et al., 2008. Interaction of Magma with Sedimentary Wall Rock and Magnetite Ore Genesis in the Panzhihua Mafic Intrusion, SW China. Mineralium Deposita, 43(6): 677-694. https://doi.org/10.1007/s00126-008-0191-5
    Ganino, C., Harris, C., Arndt, N. T., et al., 2013. Assimilation of Carbonate Country Rock by the Parent Magma of the Panzhihua Fe-Ti-V Deposit (SW China): Evidence from Stable Isotopes. Geoscience Frontiers, 4(5): 547-554. https://doi.org/10.1016/j.gsf.2012.12.006
    Gao, S., Rudnick, R. L., Carlson, R. W., et al., 2002. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3/4): 307-322. https://doi.org/10.1016/S0012-821X(02)00489-2
    Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162[PubMed]
    Geng, Y., Wang, X., Shen, Q., et al., 2002. The Discovery of Neoproterozoic Jinningian Deformed Granites in Alax Area and Its Significance. Acta Petrologica et Mineralogica, 21: 412-420 (in Chinese with English Abstract) http://www.researchgate.net/publication/284634846_The_discovery_of_Neoproterozoic_Jinningian_deformed_granites_in_Alax_area_and_its_significance
    Geng, Y. S., Wang, X. S., Shen, Q. H., et al., 2006. Redefinition of the Alxa Group-Complex (Precambrian Metamorphic Basement) in the Alxa Area, Inner Mongolia. Geology in China, 33(1): 138-145 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200601014.htm
    Ghiorso, M. S., Sack, O., 1991. Fe-Ti Oxide Geothermometry: Thermodynamic Formulation and the Estimation of Intensive Variables in Silicic Magmas. Contributions to Mineralogy and Petrology, 108(4): 485-510. https://doi.org/10.1007/bf00303452
    Gong, J. H., Zhang, J. X., Wang, Z. Q., et al., 2018. Zircon U-Pb Dating, Hf Isotopic and Geochemical Characteristics of Two Suites of Gabbros in the Beidashan Region, Western Alxa Block: Its Implications for Evolution of the Central Asian Orogenic Belt. Acta Geologica Sinica, 92(7): 1369-1388 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201807003&dbcode=CJFD&year=2018&dflag=pdfdown
    Gong, J. H., Zhang, J. X., Yu, S. Y., 2011. The Origin of Longshoushan Group and Associated Rocks in the Southern Part of the Alxa Block: Constraint from LA-ICP-MS U-Pb Zircon Dating. Acta Petrologica et Mineralogica, 30(5): 795-818 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201105006.htm
    Gong, J., Zhang, J., Yu, S., et al., 2012. Ca. 2.5 Ga TTG Rocks in the Western Alxa Block and Their Implications. Science Bulletin, 57: 4064-4076 (in Chinese) doi: 10.1007/s11434-012-5315-8
    Grove, T. L., Kinzler, R. J., 1986. Petrogenesis of Andesites. Annual Review of Earth and Planetary Sciences, 14(1): 417-454. https://doi.org/10.1146/annurev.ea.14.050186.002221
    Groves, D. I., Bierlein, F. P., Meinert, L. D., et al., 2010. Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits. Economic Geology, 105(3): 641-654. https://doi.org/10.2113/gsecongeo.105.3.641
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h
    Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
    Kelemen, P. B., Hanghøj, K., Greene, A. R., 2007. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry, 138: 1-70. https://doi.org/10.1016/b0-08-043751-6/03035-8
    Klein, C., 2005. Some Precambrian Banded Iron-Formations (BIFs) from around the World: Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry, and Origins. American Mineralogist, 90(10): 1473-1499. https://doi.org/10.2138/am.2005.1871
    Labanieh, S., Chauvel, C., Germa, A., et al., 2012. Martinique: A Clear Case for Sediment Melting and Slab Dehydration as a Function of Distance to the Trench. Journal of Petrology, 53(12): 2441-2464. https://doi.org/10.1093/petrology/egs055
    Li, Y. Q., Li, Z. L., Chen, H. L., et al., 2012. Mineral Characteristics and Metallogenesis of the Wajilitag Layered Mafic-Ultramafic Intrusion and Associated Fe-Ti-V Oxide Deposit in the Tarim Large Igneous Province, Northwest China. Journal of Asian Earth Sciences, 49: 161-174. https://doi.org/10.1016/j.jseaes.2011.11.026
    Liu, M., Zhang, D., Xiong, G. Q., et al., 2016. Zircon U-Pb Age, Hf Isotope and Geochemistry of Carboniferous Intrusions from the Langshan Area, Inner Mongolia: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 120: 139-158. https://doi.org/10.1016/j.jseaes.2016.01.005
    Liu, Q., Zhao, G. C., Han, Y. G., et al., 2017. Timing of the Final Closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from Geochronology and Geochemistry of Late Carboniferous to Permian Gabbros and Diorites. Lithos, 274/275: 19-30. https://doi.org/10.1016/j.lithos.2016.12.029
    Liu, Q., Zhao, G. C., Sun, M., et al., 2016. Early Paleozoic Subduction Processes of the Paleo-Asian Ocean: Insights from Geochronology and Geochemistry of Paleozoic Plutons in the Alxa Terrane. Lithos, 262: 546-560. https://doi.org/10.1016/j.lithos.2016.07.041
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008a. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008b. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
    Lu, H., 2014. Study on the Diagenesis and Metallogenic Characteristics of Yejili Mafic-Ultramafic Intrusions in Beidashan Mountains of Gansu: [Dissertation]. Chang'an University, Xi'an (in Chinese with English Abstract)
    McCarthy, T. S., Cawthorn, R. G., 1983. The Geochemistry of Vanadiferous Magnetite in the Bushveld Complex: Implications for Crystallization Mechanisms in Layered Complexes. Mineralium Deposita, 18(3): 505-518. https://doi.org/10.1007/BF00204494
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
    Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321
    Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3/4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
    Müller, B., Axelsson, M. D., Öhlander, B., 2003. Trace Elements in Magnetite from Kiruna, Northern Sweden, as Determined by LA-ICP-MS. GFF, 125(1): 1-5. https://doi.org/10.1080/11035890301251001
    Nadoll, P., Angerer, T., Mauk, J. L., et al., 2014. The Chemistry of Hydrothermal Magnetite: A Review. Ore Geology Reviews, 61: 1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013
    Nadoll, P., Mauk, J. L., Hayes, T. S., et al., 2012. Geochemistry of Magnetite from Hydrothermal Ore Deposits and Host Rocks of the Mesoproterozoic Belt Supergroup, United States. Economic Geology, 107(6): 1275-1292. https://doi.org/10.2113/econgeo.107.6.1275
    Ning, Q., 2017. Study on the Geological Characteristics and Genesis of Yejili Ti-Fe Oxide Ore Deposit, Southern Margin of Alashan Block: [Dissertation]. Chang'an University, Xi'an (in Chinese with English Abstract)
    NMBGMR (Nei Mongol Bureau of Geology and Mineral Resources), 1991. Regional Geology of Nei Mongol Autonomous Region. Geological Publishing House, Beijing (in Chinese with English Abstract)
    Olsson, J. R., Söderlund, U., Hamilton, M. A., et al., 2011. A Late Archaean Radiating Dyke Swarm as Possible Clue to the Origin of the Bushveld Complex. Nature Geoscience, 4(12): 865-869. https://doi.org/10.1038/ngeo1308
    Pang, K. N., Li, C. S., Zhou, M. F., et al., 2009. Mineral Compositional Constraints on Petrogenesis and Oxide Ore Genesis of the Late Permian Panzhihua Layered Gabbroic Intrusion, SW China. Lithos, 110(1/2/3/4): 199-214. https://doi.org/10.1016/j.lithos.2009.01.007
    Peccerillo, A., Wu, T. W, 1992. Evolution of Calc-Alkaline Magmas in Continental Arc Volcanoes: Evidence from Alicudi, Aeolian Arc (Southern Tyrrhenian Sea, Italy). Journal of Petrology, 33(6): 1295-1315. https://doi.org/10.1093/petrology/33.6.1295
    Pons, J. M., Franchini, M., Meinert, L. D., et al., 2009. Iron Skarns of the Vegas Peladas District, Mendoza, Argentina. Economic Geology, 104(2): 157-184. https://doi.org/10.2113/gsecongeo.104.2.157
    Powell, R., Powell, M., 1977. Geothermometry and Oxygen Barometry Using Coexisting Iron-Titanium Oxides: A Reappraisal. Mineralogical Magazine, 41(318): 257-263. https://doi.org/10.1180/minmag.1977.041.318.14
    Ren, Y., Shen, Y., 2008. Finite Frequency Tomography in Southeastern Tibet: Evidence for the Causal Relationship between Mantle Lithosphere Delamination and the North-South Trending Rifts. Journal of Geophysical Research Atmospheres, 113(B10): B10316. https://doi.org/10.1029/2008jb005615
    Righter, K., Leeman, W. P., Hervig, R. L., 2006a. Partitioning of Ni, Co and V between Spinel-Structured Oxides and Silicate Melts: Importance of Spinel Composition. Chemical Geology, 227(1/2): 1-25. https://doi.org/10.1016/j.chemgeo.2005.05.011
    Righter, K., Sutton, S. R., Newville, M., et al., 2006b. An Experimental Study of the Oxidation State of Vanadium in Spinel and Basaltic Melt with Implications for the Origin of Planetary Basalt. American Mineralogist, 91(10): 1643-1656. https://doi.org/10.2138/am.2006.2111
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/b0-08-043751-6/03016-4
    Ryabchikov, I. D., Kogarko, L. N., 2006. Magnetite Compositions and Oxygen Fugacities of the Khibina Magmatic System. Lithos, 91(1/2/3/4): 35-45. https://doi.org/10.1016/j.lithos.2006.03.007
    Sauerzapf, U., Lattard, D., Burchard, M., et al., 2008. The Titanomagnetite-Ilmenite Equilibrium: New Experimental Data and Thermo-Oxybarometric Application to the Crystallization of Basic to Intermediate Rocks. Journal of Petrology, 49(6): 1161-1185. https://doi.org/10.1093/petrology/egn021
    Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683-687. https://doi.org/10.1126/science.1061372
    Shi, X. J., Wang, T., Zhang, L., et al., 2014. Timing, Petrogenesis and Tectonic Setting of the Late Paleozoic Gabbro-Granodiorite-Granite Intrusions in the Shalazhashan of Northern Alxa: Constraints on the Southernmost Boundary of the Central Asian Orogenic Belt. Lithos, 208/209: 158-177. https://doi.org/10.1016/j.lithos.2014.08.024
    Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/BF00283225
    Song, S. G., Niu, Y. L., Su, L., et al., 2013. Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 23(4): 1378-1401. https://doi.org/10.1016/j.gr.2012.02.004
    Song, X. Y., Qi, H. W., Hu, R. Z., et al., 2013. Formation of Thick Stratiform Fe-Ti Oxide Layers in Layered Intrusion and Frequent Replenishment of Fractionated Mafic Magma: Evidence from the Panzhihua Intrusion, SW China. Geochemistry, Geophysics, Geosystems, 14(3): 712-732. https://doi.org/10.1002/ggge.20068
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tatsumi, Y., Suzuki, T., 2009. Tholeiitic vs Calc-Alkalic Differentiation and Evolution of Arc Crust: Constraints from Melting Experiments on a Basalt from the Izu-Bonin-Mariana Arc. Journal of Petrology, 50(8): 1575-1603. https://doi.org/10.1093/petrology/egp044
    Toplis, M. J., Corgne, A., 2002. An Experimental Study of Element Partitioning between Magnetite, Clinopyroxene and Iron-Bearing Silicate Liquids with Particular Emphasis on Vanadium. Contributions to Mineralogy and Petrology, 144(1): 22-37. https://doi.org/10.1007/s00410-002-0382-5
    Wang, C. Y., Zhou, M. F., 2013. New Textural and Mineralogical Constraints on the Origin of the Hongge Fe-Ti-V Oxide Deposit, SW China. Mineralium Deposita, 48(6): 787-798. https://doi.org/10.1007/s00126-013-0457-4
    Wang, Z. Z., Han, B. F., Feng, L. X., et al., 2015. Geochronology, Geochemistry and Origins of the Paleozoic-Triassic Plutons in the Langshan Area, Western Inner Mongolia, China. Journal of Asian Earth Sciences, 97: 337-351. https://doi.org/10.1016/j.jseaes.2014.08.005
    Wang, Z. Z., Han, B. F., Feng, L. X., et al., 2016. Tectonic Attribution of the Langshan Area in Western Inner Mongolia and Implications for the Neoarchean-Paleoproterozoic Evolution of the Western North China Craton: Evidence from LA-ICP-MS Zircon U-Pb Dating of the Langshan Basement. Lithos, 261: 278-295. https://doi.org/10.1016/j.lithos.2016.03.005
    Wechsler, B. A., Lindsley, D. H., Prewitt, C. T., 1984. Crystal Structure and Cation Distribution in Titanomagnetites (Fe3xTixO4). American Mineralogist, 69: 754-770 http://ammin.geoscienceworld.org/content/69/7-8/754
    Whalen, J. B., Chappell, B. W., 1988. Opaque Mineralogy and Mafic Mineral Chemistry of I- and S-Type Granites of the Lachlan Fold Belt, Southeast Australia. American Mineralogist, 73: 281-296 http://minsocam.org/ammin/AM73/AM73_281.pdf
    Wu, F., Yang J., Xu Y., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173-195. https://doi.org/10.1146/annurev-earth-053018-060342
    Wu, S. J., Hu, J. M., Ren, M. H., et al., 2014. Petrography and Zircon U-Pb Isotopic Study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic Evolution of the Alxa Block, Westernmost North China Craton. Journal of Asian Earth Sciences, 94: 226-239. https://doi.org/10.1016/j.jseaes.2014.05.011
    Wu, T. R., He, G. Q., 1993. Tectonic Units and Their Fundamental Characteristics on the Northern Margin of the Alxa Block. Acta Geologica Sinica, 6: 373-385 (in Chinese with English Abstract)
    Wu, T. R., He, G. Q., Zhang, C., 2010. On Palaeozoic Tectonics in the Alxa Region, Inner Mongolia, China. Acta Geologica Sinica: English Edition, 72(3): 256-263. https://doi.org/10.1111/j.1755-6724.1998.tb00402.x
    Xia, L. Q., Li, X. M., Yu, J. Y., et al., 2016. Mid-Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilianshan, NW China. GeoResJ, 9/10/11/12: 1-41. https://doi.org/10.1016/j.grj.2016.06.001
    Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145-168. https://doi.org/10.1016/s0024-4937(01)00055-x
    Xue, S., Ling, M. X., Liu, Y. L., et al., 2017. The Genesis of Early Carboniferous Adakitic Rocks at the Southern Margin of the Alxa Block, North China. Lithos, 278/279/280/281: 181-194. https://doi.org/10.1016/j.lithos.2017.01.012
    Yang, Q. D., Zhang, L., Wang, T., et al., 2014. Geochemistry and LA-ICP-MS Zircon U-Pb Age of Late Carboniferous Shalazhashan Pluton on the Northern Margin of the Alxa Block, Inner Mongolia and Their Implications. Geological Bulletin of China, 33: 776-787 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252281372.html
    Yang, S. F., Chen, H. L., Li, Z. L., et al., 2013. Early Permian Tarim Large Igneous Province in Northwest China. Science China Earth Sciences, 56(12): 2015-2026. https://doi.org/10.1007/s11430-013-4653-y
    Zhang, J. X., Gong, J. H., Yu, S. Y., et al., 2013. Neoarchean-Paleoproterozoic Multiple Tectonothermal Events in the Western Alxa Block, North China Craton and Their Geological Implication: Evidence from Zircon U-Pb Ages and Hf Isotopic Composition. Precambrian Research, 235: 36-57. https://doi.org/10.1016/j.precamres.2013.05.002
    Zhang, J. J., Wang, T., Castro, A., et al., 2016. Multiple Mixing and Hybridization from Magma Source to Final Emplacement in the Permian Yamatu Pluton, the Northern Alxa Block, China. Journal of Petrology, 57(5): 933-980. https://doi.org/10.1093/petrology/egw028
    Zhang, J. J., Wang, T., Zhang, Z. C., et al., 2012. Magma Mixing Origin of Yamatu Granite in Nuoergong-Langshan Area, Western Part of the Northern Margin of North China Craton: Petrological and Geochemical Evidences. Geological Review, 58(1): 53-66. https://doi.org/10.16509/j.georeview.2012.01.015(in Chinese with English Abstract)
    Zhang, J. B., Liu, Y. S., Ling, W. L., et al., 2017. Pressure-Dependent Compatibility of Iron in Garnet: Insights into the Origin of Ferropicritic Melt. Geochimica et Cosmochimica Acta, 197: 356-377. https://doi.org/10.1016/j.gca.2016.10.047
    Zhang, J. X., Gong, J. H., 2018. Revisiting the Nature and Affinity of the Alxa Block. Acta Petrologica Sinica, 34(4): 940-962 (in Chinese with English Abstract) http://search.cnki.net/down/default.aspx?filename=YSXB201804008&dbcode=CJFD&year=2018&dflag=pdfdown
    Zhang, L. Q., Zhang, H. F., Hawkesworth, C., et al., 2019. Sediment Contribution in Post-Collisional High Ba-Sr Magmatism: Evidence from the Xijing Pluton in the Alxa Block, NW China. Gondwana Research, 69:177-192. https://doi.org/10.1016/j.gr.2018.12.010
    Zhang, S., He, Z., Zhao, P., et al., 2021. Zircon U-Pb Chronology and Geochemistry of the Wuliji Intrusions in the Northern Alxa Block: Constraints on the Tectonic Evolution of the Southern Altaids. Earth Science, 46(1): 101-121. https://doi.org/10.3799/dqkx.2019.259(in Chinese with English Abstract)
    Zhang, Z. C., Mao, J. W., Saunders, A. D., et al., 2009. Petrogenetic Modeling of Three Mafic-Ultramafic Layered Intrusions in the Emeishan Large Igneous Province, SW China, Based on Isotopic and Bulk Chemical Constraints. Lithos, 113(3/4): 369-392. https://doi.org/10.1016/j.lithos.2009.04.023
    Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2007. Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203-5225. https://doi.org/10.1016/j.gca.2007.07.028
    Zheng, R. G., Wu, T. R., Zhang, W., et al., 2014. Late Paleozoic Subduction System in the Northern Margin of the Alxa Block, Altaids: Geochronological and Geochemical Evidences from Ophiolites. Gondwana Research, 25(2): 842-858. https://doi.org/10.1016/j.gr.2013.05.011
    Zhou, M. F., Arndt, N. T., Malpas, J., et al., 2008. Two Magma Series and Associated Ore Deposit Types in the Permian Emeishan Large Igneous Province, SW China. Lithos, 103(3/4): 352-368. https://doi.org/10.1016/j.lithos.2007.10.006
    Zhou, M. F., Robinson, P. T., Lesher, C. M., et al., 2005. Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe-Ti-V Oxide Deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280. https://doi.org/10.1093/petrology/egi054
    Zhou, X., 2016. Petrogenesis and Geodynamic Processes of the Paleozoic Magmatism in the Southwestern of the Alxa Block: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Zhou, X. C., Zhang, H. F., Luo, B. J., et al., 2016. Origin of High Sr/Y-Type Granitic Magmatism in the Southwestern of the Alxa Block, Northwest China. Lithos, 256/257:211-227. https://doi.org/10.1016/j.lithos.2016.04.021
    Zhu, R. X., Yang, J. H., Wu, F. Y., 2012. Timing of Destruction of the North China Craton. Lithos, 149:51-60. https://doi.org/10.1016/j.lithos.2012.05.013
    Zou, L., Liu, P. H., Liu, L., et al., 2020. Diagenetic and Metamorphic Timing of the Diebusige Complex, the Eastern Alxa Block: New Evidence from Zircon LA-ICP-MS U-Pb Dating of Biotite-Plagioclase Gneiss. Earth Science, 45(9): 3313-3329. https://doi.org/10.3799/dqkx.2020.126(in Chinese with English Abstract)
    Zou, L., Liu, P. H., Tian, Z. H., et al., 2019. Late Paleozoic Metamorphic Complex of Precambrian Metamorphic Basement from Eastern Alxa Block: New Evidence from Zircon LA-ICP-MS U-Pb Dating of Boluositanmiao Complex. Earth Science, 44(4): 1406-1436. https://doi.org/10.3799/dqkx.2018.386 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views(222) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return