Baker, J. A., Krogh Jensen, K., 2004. Coupled 186Os-187Os Enrichments in the Earth's Mantle-Core-Mantle Interaction or Recycling of Ferromanganese Crusts and Nodules?. Earth and Planetary Science Letters, 220(3/4): 277-286. https://doi.org/10.1016/s0012-821x(04)00059-7 |
Barnes, S. J., Maier, W. D., Ashwal, L. D., 2004. Platinum-Group Element Distribution in the Main Zone and Upper Zone of the Bushveld Complex, South Africa. Chemical Geology, 208(1/2/3/4): 293-317. https://doi.org/10.1016/j.chemgeo.2004.04.018 |
Barnes, S. J., Roeder, P. L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, 42(12): 2279-2302. https://doi.org/10.1093/petrology/42.12.2279 |
Blatter, D. L., Carmichael, I. S. E., 1998. Hornblende Peridotite Xenoliths from Central Mexico Reveal the Highly Oxidized Nature of Subarc Upper Mantle. Geology, 26(11): 1035-1038. https://doi.org/10.1130/0091-7613(1998)0261035:hpxfcm>2.3.co;2 doi: 10.1130/0091-7613(1998)0261035:hpxfcm>2.3.co;2 |
Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243-258. https://doi.org/10.1016/S0012-821x(97)00040-x |
Bordage, A., Balan, E., de Villiers, J. P. R., et al., 2011. V Oxidation State in Fe-Ti Oxides by High-Energy Resolution Fluorescence-Detected X-Ray Absorption Spectroscopy. Physics and Chemistry of Minerals, 38(6): 449-458. https://doi.org/10.1007/s00269-011-0418-3 |
Botcharnikov, R. E., Almeev, R. R., Koepke, J., et al., 2008. Phase Relations and Liquid Lines of Descent in Hydrous Ferrobasalt-Implications for the Skaergaard Intrusion and Columbia River Flood Basalts. Journal of Petrology, 49(9): 1687-1727. https://doi.org/10.1093/petrology/egn043 |
Brandon, A. D., Draper, D. S., 1996. Constraints on the Origin of the Oxidation State of Mantle Overlying Subduction Zones: An Example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta, 60(10): 1739-1749. https://doi.org/10.1016/0016-7037(96)00056-7 |
Buddington, A. F., Lindsley, D. H., 1964. Iron-Titanium Oxide Minerals and Synthetic Equivalents. Journal of Petrology, 5(2): 310-357. https://doi.org/10.1093/petrology/5.2.310 |
Cao, Z., 2019. Petrogenesis and Tectonic Implication of Late Paleozoic Dyke Swarms in Beidashan Area, the Alxa Block: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract) |
Chen, W., Ying, Y. C., Bai, T., et al., 2019. In situ Major and Trace Element Analysis of Magnetite from Carbonatite-Related Complexes: Implications for Petrogenesis and Ore Genesis. Ore Geology Reviews, 107: 30-40. https://doi.org/10.1016/j.oregeorev.2019.01.029 |
Dan, W., Li, X. H., Guo, J. H., et al., 2012. Paleoproterozoic Evolution of the Eastern Alxa Block, Westernmost North China: Evidence from in situ Zircon U-Pb Dating and Hf-O Isotopes. Gondwana Research, 21(4): 838-864. https://doi.org/10.1016/j.gr.2011.09.004 |
Dan, W., Li, X. H., Wang, Q., et al., 2014. Neoproterozoic S-Type Granites in the Alxa Block, Westernmost North China and Tectonic Implications: In situ Zircon U-Pb-Hf-O Isotopic and Geochemical Constraints. American Journal of Science, 314(1): 110-153. https://doi.org/10.2475/01.2014.04 |
Dan, W., Li, X. H., Wang, Q., et al., 2016. Phanerozoic Amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic Granitoids, U-Pb Geochronology and Sr-Nd-Pb-Hf-O Isotope Geochemistry. Gondwana Research, 32: 105-121. https://doi.org/10.1016/j.gr.2015.02.011 |
Dare, S. A. S., Barnes, S. J., Beaudoin, G., et al., 2014. Trace Elements in Magnetite as Petrogenetic Indicators. Mineralium Deposita, 49(7): 785-796. https://doi.org/10.1007/s00126-014-0529-0 |
Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 |
Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926-944. https://doi.org/10.1016/j.gr.2010.09.006 |
Duan, J., Li, C. S., Qian, Z. Z., et al., 2015. Geochronological and Geochemical Constraints on the Petrogenesis and Tectonic Significance of Paleozoic Dolerite Dykes in the Southern Margin of Alxa Block, North China Craton. Journal of Asian Earth Sciences, 111: 244-253. https://doi.org/10.1016/j.jseaes.2015.07.012 |
Dupuis, C., Beaudoin, G., 2011. Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types. Mineralium Deposita, 46(4): 319-335. https://doi.org/10.1007/s00126-011-0334-y |
Feng, J. Y., Xiao, W. J., Windley, B., et al., 2013. Field Geology, Geochronology and Geochemistry of Mafic-Ultramafic Rocks from Alxa, China: Implications for Late Permian Accretionary Tectonics in the Southern Altaids. Journal of Asian Earth Sciences, 78: 114-142. https://doi.org/10.1016/j.jseaes.2013.01.020 |
Fleet, M. E., 1981. The Structure of Magnetite. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 37(4): 917-920. https://doi.org/10.1107/s0567740881004597 |
Frost, B. R., 1991. Stability of Oxide Minerals in Metamorphic Rocks. Reviews in Mineralogy & Geochemistry, 25: 469-488. https://doi.org/10.1515/9781501508684-016 |
Ganino, C., Arndt, N. T., Zhou, M. F., et al., 2008. Interaction of Magma with Sedimentary Wall Rock and Magnetite Ore Genesis in the Panzhihua Mafic Intrusion, SW China. Mineralium Deposita, 43(6): 677-694. https://doi.org/10.1007/s00126-008-0191-5 |
Ganino, C., Harris, C., Arndt, N. T., et al., 2013. Assimilation of Carbonate Country Rock by the Parent Magma of the Panzhihua Fe-Ti-V Deposit (SW China): Evidence from Stable Isotopes. Geoscience Frontiers, 4(5): 547-554. https://doi.org/10.1016/j.gsf.2012.12.006 |
Gao, S., Rudnick, R. L., Carlson, R. W., et al., 2002. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3/4): 307-322. https://doi.org/10.1016/S0012-821X(02)00489-2 |
Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162[PubMed] |
Geng, Y., Wang, X., Shen, Q., et al., 2002. The Discovery of Neoproterozoic Jinningian Deformed Granites in Alax Area and Its Significance. Acta Petrologica et Mineralogica, 21: 412-420 (in Chinese with English Abstract) http://www.researchgate.net/publication/284634846_The_discovery_of_Neoproterozoic_Jinningian_deformed_granites_in_Alax_area_and_its_significance |
Geng, Y. S., Wang, X. S., Shen, Q. H., et al., 2006. Redefinition of the Alxa Group-Complex (Precambrian Metamorphic Basement) in the Alxa Area, Inner Mongolia. Geology in China, 33(1): 138-145 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200601014.htm |
Ghiorso, M. S., Sack, O., 1991. Fe-Ti Oxide Geothermometry: Thermodynamic Formulation and the Estimation of Intensive Variables in Silicic Magmas. Contributions to Mineralogy and Petrology, 108(4): 485-510. https://doi.org/10.1007/bf00303452 |
Gong, J. H., Zhang, J. X., Wang, Z. Q., et al., 2018. Zircon U-Pb Dating, Hf Isotopic and Geochemical Characteristics of Two Suites of Gabbros in the Beidashan Region, Western Alxa Block: Its Implications for Evolution of the Central Asian Orogenic Belt. Acta Geologica Sinica, 92(7): 1369-1388 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201807003&dbcode=CJFD&year=2018&dflag=pdfdown |
Gong, J. H., Zhang, J. X., Yu, S. Y., 2011. The Origin of Longshoushan Group and Associated Rocks in the Southern Part of the Alxa Block: Constraint from LA-ICP-MS U-Pb Zircon Dating. Acta Petrologica et Mineralogica, 30(5): 795-818 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201105006.htm |
Gong, J., Zhang, J., Yu, S., et al., 2012. Ca. 2.5 Ga TTG Rocks in the Western Alxa Block and Their Implications. Science Bulletin, 57: 4064-4076 (in Chinese) doi: 10.1007/s11434-012-5315-8 |
Grove, T. L., Kinzler, R. J., 1986. Petrogenesis of Andesites. Annual Review of Earth and Planetary Sciences, 14(1): 417-454. https://doi.org/10.1146/annurev.ea.14.050186.002221 |
Groves, D. I., Bierlein, F. P., Meinert, L. D., et al., 2010. Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits. Economic Geology, 105(3): 641-654. https://doi.org/10.2113/gsecongeo.105.3.641 |
Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h |
Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055 |
Kelemen, P. B., Hanghøj, K., Greene, A. R., 2007. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry, 138: 1-70. https://doi.org/10.1016/b0-08-043751-6/03035-8 |
Klein, C., 2005. Some Precambrian Banded Iron-Formations (BIFs) from around the World: Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry, and Origins. American Mineralogist, 90(10): 1473-1499. https://doi.org/10.2138/am.2005.1871 |
Labanieh, S., Chauvel, C., Germa, A., et al., 2012. Martinique: A Clear Case for Sediment Melting and Slab Dehydration as a Function of Distance to the Trench. Journal of Petrology, 53(12): 2441-2464. https://doi.org/10.1093/petrology/egs055 |
Li, Y. Q., Li, Z. L., Chen, H. L., et al., 2012. Mineral Characteristics and Metallogenesis of the Wajilitag Layered Mafic-Ultramafic Intrusion and Associated Fe-Ti-V Oxide Deposit in the Tarim Large Igneous Province, Northwest China. Journal of Asian Earth Sciences, 49: 161-174. https://doi.org/10.1016/j.jseaes.2011.11.026 |
Liu, M., Zhang, D., Xiong, G. Q., et al., 2016. Zircon U-Pb Age, Hf Isotope and Geochemistry of Carboniferous Intrusions from the Langshan Area, Inner Mongolia: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 120: 139-158. https://doi.org/10.1016/j.jseaes.2016.01.005 |
Liu, Q., Zhao, G. C., Han, Y. G., et al., 2017. Timing of the Final Closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from Geochronology and Geochemistry of Late Carboniferous to Permian Gabbros and Diorites. Lithos, 274/275: 19-30. https://doi.org/10.1016/j.lithos.2016.12.029 |
Liu, Q., Zhao, G. C., Sun, M., et al., 2016. Early Paleozoic Subduction Processes of the Paleo-Asian Ocean: Insights from Geochronology and Geochemistry of Paleozoic Plutons in the Alxa Terrane. Lithos, 262: 546-560. https://doi.org/10.1016/j.lithos.2016.07.041 |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008a. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008b. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 |
Lu, H., 2014. Study on the Diagenesis and Metallogenic Characteristics of Yejili Mafic-Ultramafic Intrusions in Beidashan Mountains of Gansu: [Dissertation]. Chang'an University, Xi'an (in Chinese with English Abstract) |
McCarthy, T. S., Cawthorn, R. G., 1983. The Geochemistry of Vanadiferous Magnetite in the Bushveld Complex: Implications for Crystallization Mechanisms in Layered Complexes. Mineralium Deposita, 18(3): 505-518. https://doi.org/10.1007/BF00204494 |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 |
Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321 |
Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3/4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001 |
Müller, B., Axelsson, M. D., Öhlander, B., 2003. Trace Elements in Magnetite from Kiruna, Northern Sweden, as Determined by LA-ICP-MS. GFF, 125(1): 1-5. https://doi.org/10.1080/11035890301251001 |
Nadoll, P., Angerer, T., Mauk, J. L., et al., 2014. The Chemistry of Hydrothermal Magnetite: A Review. Ore Geology Reviews, 61: 1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013 |
Nadoll, P., Mauk, J. L., Hayes, T. S., et al., 2012. Geochemistry of Magnetite from Hydrothermal Ore Deposits and Host Rocks of the Mesoproterozoic Belt Supergroup, United States. Economic Geology, 107(6): 1275-1292. https://doi.org/10.2113/econgeo.107.6.1275 |
Ning, Q., 2017. Study on the Geological Characteristics and Genesis of Yejili Ti-Fe Oxide Ore Deposit, Southern Margin of Alashan Block: [Dissertation]. Chang'an University, Xi'an (in Chinese with English Abstract) |
NMBGMR (Nei Mongol Bureau of Geology and Mineral Resources), 1991. Regional Geology of Nei Mongol Autonomous Region. Geological Publishing House, Beijing (in Chinese with English Abstract) |
Olsson, J. R., Söderlund, U., Hamilton, M. A., et al., 2011. A Late Archaean Radiating Dyke Swarm as Possible Clue to the Origin of the Bushveld Complex. Nature Geoscience, 4(12): 865-869. https://doi.org/10.1038/ngeo1308 |
Pang, K. N., Li, C. S., Zhou, M. F., et al., 2009. Mineral Compositional Constraints on Petrogenesis and Oxide Ore Genesis of the Late Permian Panzhihua Layered Gabbroic Intrusion, SW China. Lithos, 110(1/2/3/4): 199-214. https://doi.org/10.1016/j.lithos.2009.01.007 |
Peccerillo, A., Wu, T. W, 1992. Evolution of Calc-Alkaline Magmas in Continental Arc Volcanoes: Evidence from Alicudi, Aeolian Arc (Southern Tyrrhenian Sea, Italy). Journal of Petrology, 33(6): 1295-1315. https://doi.org/10.1093/petrology/33.6.1295 |
Pons, J. M., Franchini, M., Meinert, L. D., et al., 2009. Iron Skarns of the Vegas Peladas District, Mendoza, Argentina. Economic Geology, 104(2): 157-184. https://doi.org/10.2113/gsecongeo.104.2.157 |
Powell, R., Powell, M., 1977. Geothermometry and Oxygen Barometry Using Coexisting Iron-Titanium Oxides: A Reappraisal. Mineralogical Magazine, 41(318): 257-263. https://doi.org/10.1180/minmag.1977.041.318.14 |
Ren, Y., Shen, Y., 2008. Finite Frequency Tomography in Southeastern Tibet: Evidence for the Causal Relationship between Mantle Lithosphere Delamination and the North-South Trending Rifts. Journal of Geophysical Research Atmospheres, 113(B10): B10316. https://doi.org/10.1029/2008jb005615 |
Righter, K., Leeman, W. P., Hervig, R. L., 2006a. Partitioning of Ni, Co and V between Spinel-Structured Oxides and Silicate Melts: Importance of Spinel Composition. Chemical Geology, 227(1/2): 1-25. https://doi.org/10.1016/j.chemgeo.2005.05.011 |
Righter, K., Sutton, S. R., Newville, M., et al., 2006b. An Experimental Study of the Oxidation State of Vanadium in Spinel and Basaltic Melt with Implications for the Origin of Planetary Basalt. American Mineralogist, 91(10): 1643-1656. https://doi.org/10.2138/am.2006.2111 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/b0-08-043751-6/03016-4 |
Ryabchikov, I. D., Kogarko, L. N., 2006. Magnetite Compositions and Oxygen Fugacities of the Khibina Magmatic System. Lithos, 91(1/2/3/4): 35-45. https://doi.org/10.1016/j.lithos.2006.03.007 |
Sauerzapf, U., Lattard, D., Burchard, M., et al., 2008. The Titanomagnetite-Ilmenite Equilibrium: New Experimental Data and Thermo-Oxybarometric Application to the Crystallization of Basic to Intermediate Rocks. Journal of Petrology, 49(6): 1161-1185. https://doi.org/10.1093/petrology/egn021 |
Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683-687. https://doi.org/10.1126/science.1061372 |
Shi, X. J., Wang, T., Zhang, L., et al., 2014. Timing, Petrogenesis and Tectonic Setting of the Late Paleozoic Gabbro-Granodiorite-Granite Intrusions in the Shalazhashan of Northern Alxa: Constraints on the Southernmost Boundary of the Central Asian Orogenic Belt. Lithos, 208/209: 158-177. https://doi.org/10.1016/j.lithos.2014.08.024 |
Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/BF00283225 |
Song, S. G., Niu, Y. L., Su, L., et al., 2013. Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 23(4): 1378-1401. https://doi.org/10.1016/j.gr.2012.02.004 |
Song, X. Y., Qi, H. W., Hu, R. Z., et al., 2013. Formation of Thick Stratiform Fe-Ti Oxide Layers in Layered Intrusion and Frequent Replenishment of Fractionated Mafic Magma: Evidence from the Panzhihua Intrusion, SW China. Geochemistry, Geophysics, Geosystems, 14(3): 712-732. https://doi.org/10.1002/ggge.20068 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Tatsumi, Y., Suzuki, T., 2009. Tholeiitic vs Calc-Alkalic Differentiation and Evolution of Arc Crust: Constraints from Melting Experiments on a Basalt from the Izu-Bonin-Mariana Arc. Journal of Petrology, 50(8): 1575-1603. https://doi.org/10.1093/petrology/egp044 |
Toplis, M. J., Corgne, A., 2002. An Experimental Study of Element Partitioning between Magnetite, Clinopyroxene and Iron-Bearing Silicate Liquids with Particular Emphasis on Vanadium. Contributions to Mineralogy and Petrology, 144(1): 22-37. https://doi.org/10.1007/s00410-002-0382-5 |
Wang, C. Y., Zhou, M. F., 2013. New Textural and Mineralogical Constraints on the Origin of the Hongge Fe-Ti-V Oxide Deposit, SW China. Mineralium Deposita, 48(6): 787-798. https://doi.org/10.1007/s00126-013-0457-4 |
Wang, Z. Z., Han, B. F., Feng, L. X., et al., 2015. Geochronology, Geochemistry and Origins of the Paleozoic-Triassic Plutons in the Langshan Area, Western Inner Mongolia, China. Journal of Asian Earth Sciences, 97: 337-351. https://doi.org/10.1016/j.jseaes.2014.08.005 |
Wang, Z. Z., Han, B. F., Feng, L. X., et al., 2016. Tectonic Attribution of the Langshan Area in Western Inner Mongolia and Implications for the Neoarchean-Paleoproterozoic Evolution of the Western North China Craton: Evidence from LA-ICP-MS Zircon U-Pb Dating of the Langshan Basement. Lithos, 261: 278-295. https://doi.org/10.1016/j.lithos.2016.03.005 |
Wechsler, B. A., Lindsley, D. H., Prewitt, C. T., 1984. Crystal Structure and Cation Distribution in Titanomagnetites (Fe3xTixO4). American Mineralogist, 69: 754-770 http://ammin.geoscienceworld.org/content/69/7-8/754 |
Whalen, J. B., Chappell, B. W., 1988. Opaque Mineralogy and Mafic Mineral Chemistry of I- and S-Type Granites of the Lachlan Fold Belt, Southeast Australia. American Mineralogist, 73: 281-296 http://minsocam.org/ammin/AM73/AM73_281.pdf |
Wu, F., Yang J., Xu Y., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173-195. https://doi.org/10.1146/annurev-earth-053018-060342 |
Wu, S. J., Hu, J. M., Ren, M. H., et al., 2014. Petrography and Zircon U-Pb Isotopic Study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic Evolution of the Alxa Block, Westernmost North China Craton. Journal of Asian Earth Sciences, 94: 226-239. https://doi.org/10.1016/j.jseaes.2014.05.011 |
Wu, T. R., He, G. Q., 1993. Tectonic Units and Their Fundamental Characteristics on the Northern Margin of the Alxa Block. Acta Geologica Sinica, 6: 373-385 (in Chinese with English Abstract) |
Wu, T. R., He, G. Q., Zhang, C., 2010. On Palaeozoic Tectonics in the Alxa Region, Inner Mongolia, China. Acta Geologica Sinica: English Edition, 72(3): 256-263. https://doi.org/10.1111/j.1755-6724.1998.tb00402.x |
Xia, L. Q., Li, X. M., Yu, J. Y., et al., 2016. Mid-Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilianshan, NW China. GeoResJ, 9/10/11/12: 1-41. https://doi.org/10.1016/j.grj.2016.06.001 |
Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145-168. https://doi.org/10.1016/s0024-4937(01)00055-x |
Xue, S., Ling, M. X., Liu, Y. L., et al., 2017. The Genesis of Early Carboniferous Adakitic Rocks at the Southern Margin of the Alxa Block, North China. Lithos, 278/279/280/281: 181-194. https://doi.org/10.1016/j.lithos.2017.01.012 |
Yang, Q. D., Zhang, L., Wang, T., et al., 2014. Geochemistry and LA-ICP-MS Zircon U-Pb Age of Late Carboniferous Shalazhashan Pluton on the Northern Margin of the Alxa Block, Inner Mongolia and Their Implications. Geological Bulletin of China, 33: 776-787 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252281372.html |
Yang, S. F., Chen, H. L., Li, Z. L., et al., 2013. Early Permian Tarim Large Igneous Province in Northwest China. Science China Earth Sciences, 56(12): 2015-2026. https://doi.org/10.1007/s11430-013-4653-y |
Zhang, J. X., Gong, J. H., Yu, S. Y., et al., 2013. Neoarchean-Paleoproterozoic Multiple Tectonothermal Events in the Western Alxa Block, North China Craton and Their Geological Implication: Evidence from Zircon U-Pb Ages and Hf Isotopic Composition. Precambrian Research, 235: 36-57. https://doi.org/10.1016/j.precamres.2013.05.002 |
Zhang, J. J., Wang, T., Castro, A., et al., 2016. Multiple Mixing and Hybridization from Magma Source to Final Emplacement in the Permian Yamatu Pluton, the Northern Alxa Block, China. Journal of Petrology, 57(5): 933-980. https://doi.org/10.1093/petrology/egw028 |
Zhang, J. J., Wang, T., Zhang, Z. C., et al., 2012. Magma Mixing Origin of Yamatu Granite in Nuoergong-Langshan Area, Western Part of the Northern Margin of North China Craton: Petrological and Geochemical Evidences. Geological Review, 58(1): 53-66. https://doi.org/10.16509/j.georeview.2012.01.015(in Chinese with English Abstract) |
Zhang, J. B., Liu, Y. S., Ling, W. L., et al., 2017. Pressure-Dependent Compatibility of Iron in Garnet: Insights into the Origin of Ferropicritic Melt. Geochimica et Cosmochimica Acta, 197: 356-377. https://doi.org/10.1016/j.gca.2016.10.047 |
Zhang, J. X., Gong, J. H., 2018. Revisiting the Nature and Affinity of the Alxa Block. Acta Petrologica Sinica, 34(4): 940-962 (in Chinese with English Abstract) http://search.cnki.net/down/default.aspx?filename=YSXB201804008&dbcode=CJFD&year=2018&dflag=pdfdown |
Zhang, L. Q., Zhang, H. F., Hawkesworth, C., et al., 2019. Sediment Contribution in Post-Collisional High Ba-Sr Magmatism: Evidence from the Xijing Pluton in the Alxa Block, NW China. Gondwana Research, 69:177-192. https://doi.org/10.1016/j.gr.2018.12.010 |
Zhang, S., He, Z., Zhao, P., et al., 2021. Zircon U-Pb Chronology and Geochemistry of the Wuliji Intrusions in the Northern Alxa Block: Constraints on the Tectonic Evolution of the Southern Altaids. Earth Science, 46(1): 101-121. https://doi.org/10.3799/dqkx.2019.259(in Chinese with English Abstract) |
Zhang, Z. C., Mao, J. W., Saunders, A. D., et al., 2009. Petrogenetic Modeling of Three Mafic-Ultramafic Layered Intrusions in the Emeishan Large Igneous Province, SW China, Based on Isotopic and Bulk Chemical Constraints. Lithos, 113(3/4): 369-392. https://doi.org/10.1016/j.lithos.2009.04.023 |
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2007. Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203-5225. https://doi.org/10.1016/j.gca.2007.07.028 |
Zheng, R. G., Wu, T. R., Zhang, W., et al., 2014. Late Paleozoic Subduction System in the Northern Margin of the Alxa Block, Altaids: Geochronological and Geochemical Evidences from Ophiolites. Gondwana Research, 25(2): 842-858. https://doi.org/10.1016/j.gr.2013.05.011 |
Zhou, M. F., Arndt, N. T., Malpas, J., et al., 2008. Two Magma Series and Associated Ore Deposit Types in the Permian Emeishan Large Igneous Province, SW China. Lithos, 103(3/4): 352-368. https://doi.org/10.1016/j.lithos.2007.10.006 |
Zhou, M. F., Robinson, P. T., Lesher, C. M., et al., 2005. Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe-Ti-V Oxide Deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280. https://doi.org/10.1093/petrology/egi054 |
Zhou, X., 2016. Petrogenesis and Geodynamic Processes of the Paleozoic Magmatism in the Southwestern of the Alxa Block: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract) |
Zhou, X. C., Zhang, H. F., Luo, B. J., et al., 2016. Origin of High Sr/Y-Type Granitic Magmatism in the Southwestern of the Alxa Block, Northwest China. Lithos, 256/257:211-227. https://doi.org/10.1016/j.lithos.2016.04.021 |
Zhu, R. X., Yang, J. H., Wu, F. Y., 2012. Timing of Destruction of the North China Craton. Lithos, 149:51-60. https://doi.org/10.1016/j.lithos.2012.05.013 |
Zou, L., Liu, P. H., Liu, L., et al., 2020. Diagenetic and Metamorphic Timing of the Diebusige Complex, the Eastern Alxa Block: New Evidence from Zircon LA-ICP-MS U-Pb Dating of Biotite-Plagioclase Gneiss. Earth Science, 45(9): 3313-3329. https://doi.org/10.3799/dqkx.2020.126(in Chinese with English Abstract) |
Zou, L., Liu, P. H., Tian, Z. H., et al., 2019. Late Paleozoic Metamorphic Complex of Precambrian Metamorphic Basement from Eastern Alxa Block: New Evidence from Zircon LA-ICP-MS U-Pb Dating of Boluositanmiao Complex. Earth Science, 44(4): 1406-1436. https://doi.org/10.3799/dqkx.2018.386 (in Chinese with English Abstract) |