Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 4
Aug 2024
Turn off MathJax
Article Contents
Xuan Wang, Xinli Hu, Chang Liu, Lifei Niu, Peng Xia, Jian Wang, Jiehao Zhang. Research on Reservoir Landslide Thrust Based on Improved Morgenstern-Price Method. Journal of Earth Science, 2024, 35(4): 1263-1272. doi: 10.1007/s12583-021-1545-5
Citation: Xuan Wang, Xinli Hu, Chang Liu, Lifei Niu, Peng Xia, Jian Wang, Jiehao Zhang. Research on Reservoir Landslide Thrust Based on Improved Morgenstern-Price Method. Journal of Earth Science, 2024, 35(4): 1263-1272. doi: 10.1007/s12583-021-1545-5

Research on Reservoir Landslide Thrust Based on Improved Morgenstern-Price Method

doi: 10.1007/s12583-021-1545-5
More Information
  • Corresponding author: Xinli Hu, huxinli@cug.edu.cn
  • Received Date: 13 Jun 2021
  • Accepted Date: 10 Sep 2021
  • Available Online: 16 Aug 2024
  • Issue Publish Date: 30 Aug 2024
  • The curve of landslide thrust plays a key role in landslide design. The commonly used transfer coefficient method (TCM) and Morgenstern-Price method (MPM) are analyzed. TCM does not take into account the moment balance between slices. Although MPM considers the moment balance, the calculation is complex, and it does not consider that the force between slices may be less than zero at the back edge of the landslide. The rationality and feasibility of the improved MPM are verified by calculating the landslide stability coefficient and landslide thrust at different reservoir water levels. This paper studies the law of landslide thrust when the reservoir water level changes, and discusses the determination of design thrust, to provide a certain theoretical basis for the design of reservoir landslides.

     

  • APPENDIX
    Those important symbols used in this paper are listed alphabetically as follows.
    bi width if slice (m);
    ci cohesion (kPa);
    Ei interslice force (kN/m);
    fi a predefined function;
    Fs stability coefficient;
    hi center height of slice (m);
    kc influence coefficient of the earthquake;
    li length of sliding surface (m);
    Mi the moment of interslice force on the center of the bottom of a slice (kN/m);
    MPWi the moment of lateral water pressure on the center of the bottom of a slice (kN/m);
    MQi the moment of external load on the center of the bottom of a slice (kN/m);
    MUi the moment of buoyancy force on the center of the bottom of a slice (kN/m);
    Pwi lateral water pressure (kN);
    Qi external load (kN);
    Ri resistance (kN);
    Ti sliding force (kN);
    Ui buoyancy force (kN);
    Wi weight of slice (kN);
    zi the vertical height between interslice force and the bottom of a slice (m);
    αi the angle between the sliding surface and the horizontal direction (°);
    βi the angle between the water level line and the horizontal direction (°);
    γi the angle between the slope surface and the horizontal direction (°);
    θi the angle between the external load and the vertical direction (°);
    λ a constant arbitrarily chosen;
    φi friction angle (°);
    Φi transfer coefficient;
    Ψi transfer coefficient.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bi, R. N., Ehret, D., Xiang, W., et al., 2012. Landslide Reliability Analysis Based on Transfer Coefficient Method: A Case Study from Three Gorges Reservoir. Journal of Earth Science, 23(2): 187–198. https://doi.org/10.1007/s12583-012-0244-7
    Bishop, A. W., 1955. The Use of the Slip Circle in the Stability Analysis of Slopes. Géotechnique, 5(1): 7–17. https://doi.org/10.1680/geot.1955.5.1.7
    Chen, C. F., Xiao, Z. Y., Zhang, G. B., 2011. Time-Variant Reliability Analysis of Three-Dimensional Slopes Based on Support Vector Machine Method. Journal of Central South University of Technology, 18(6): 2108–2114. https://doi.org/10.1007/s11771-011-0950-9
    Chen, Z. Y., Morgenstern, N. R., 1983. Extensions to the Generalized Method of Slices for Stability Analysis. Canadian Geotechnical Journal, 20(1): 104–119. https://doi.org/10.1139/t83-010
    Cheng, Y. M., Yip, C. J., 2007. Three-Dimensional Asymmetrical Slope Stability Analysis Extension of Bishop's, Janbu's, and Morgenstern–Price's Techniques. Journal of Geotechnical and Geoenvironmental Engineering, 133(12): 1544–1555. https://doi.org/10.1061/(asce)1090-0241(2007)133: 12(1544) doi: 10.1061/(asce)1090-0241(2007)133:12(1544
    Deng, D. P., Lu, K., Wen, S. S., et al., 2020. The Expanded LE Morgenstern-Price Method for Slope Stability Analysis Based on a Force-Displacement Coupled Mode. Geomechanics and Engineering, 23(4): 313–325. https://doi.org/10.12989/GAE.2020.23.4.313
    Fellenius, W., 1936. Calculation of the Stability of Earth Dams. Engineering, Environmental Science, 4: 445–463
    Gandomi, A. H., Kashani, A. R., Mousavi, M., et al., 2015. Slope Stability Analyzing Using Recent Swarm Intelligence Techniques. International Journal for Numerical and Analytical Methods in Geomechanics, 39(3): 295–309. https://doi.org/10.1002/nag.2308
    Gandomi, A. H., Kashani, A. R., Mousavi, M., et al., 2017. Slope Stability Analysis Using Evolutionary Optimization Techniques. International Journal for Numerical and Analytical Methods in Geomechanics, 41(2): 251–264. https://doi.org/10.1002/nag.2554
    Gao, W., 2015. Slope Stability Analysis Based on Immunised Evolutionary Programming. Environmental Earth Sciences, 74(4): 3357–3369. https://doi.org/10.1007/s12665-015-4372-0
    Guo, M. W., Liu, S. J., Wang, S. L., et al., 2020. Determination of Residual Thrust Force of Landslide Using Vector Sum Method. Journal of Engineering Mechanics, 146(7): 04020063. https://doi.org/10.1061/(asce)em.1943-7889.0001791
    Hu, X. L., Tang, H. M., Li, C. D., et al., 2012. Stability of Huangtupo Riverside Slumping Mass Ⅱ# under Water Level Fluctuation of Three Gorges Reservoir. Journal of Earth Science, 23(3): 326–334. https://doi.org/10.1007/s12583-012-0259-0
    Kahatadeniya, K. S., Nanakorn, P., Neaupane, K. M., 2009. Determination of the Critical Failure Surface for Slope Stability Analysis Using Ant Colony Optimization. Engineering Geology, 108(1/2): 133–141. https://doi.org/10.1016/j.enggeo.2009.06.010
    Kashani, A. R., Gandomi, A. H., Mousavi, M., 2016. Imperialistic Competitive Algorithm: A Metaheuristic Algorithm for Locating the Critical Slip Surface in 2-Dimensional Soil Slopes. Geoscience Frontiers, 7(1): 83–89. https://doi.org/10.1016/j.gsf.2014.11.005
    Khajehzadeh, M., Taha, M. R., El-Shafie, A., et al., 2012a. Locating the General Failure Surface of Earth Slope Using Particle Swarm Optimisation. Civil Engineering and Environmental Systems, 29(1): 41–57. https://doi.org/10.1080/10286608.2012.663356
    Khajehzadeh, M., Taha, M. R., El-Shafie, A., et al., 2012b. A Modified Gravitational Search Algorithm for Slope Stability Analysis. Engineering Applications of Artificial Intelligence, 25(8): 1589–1597. https://doi.org/10.1016/j.engappai.2012.01.011
    Khajehzadeh, M., Taha, M. R., El-Shafie, A., 2011. Reliability Analysis of Earth Slopes Using Hybrid Chaotic Particle Swarm Optimization. Journal of Central South University, 18(5): 1626–1637. https://doi.org/10.1007/s11771-011-0882-4
    Li, S. H., Wu, L. Z., Luo, X. H., 2020. A Novel Method for Locating the Critical Slip Surface of a Soil Slope. Engineering Applications of Artificial Intelligence, 94: 103733. https://doi.org/10.1016/j.engappai.2020.103733
    Morgenstern, N. R., Price, V. E., 1965. The Analysis of the Stability of General Slip Surfaces. Géotechnique, 15(1): 79–93. https://doi.org/10.1680/geot.1965.15.1.79
    Morgenstern, N. R., Price, V. E., 1967. A Numerical Method for Solving the Equations of Stability of General Slip Surfaces. The Computer Journal, 9(4): 388–393. https://doi.org/10.1093/comjnl/9.4.388
    GB 50330-2013, 2013. Technical Code for Building Slope Engineering. China Architecture and Building Press, Beijing (in Chinese)
    Spencer, E., 1967. A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Géotechnique, 17(1): 11–26. https://doi.org/10.1680/geot.1967.17.1.11
    Stolle, D., Guo, P. J., 2008. Limit Equilibrium Slope Stability Analysis Using Rigid Finite Elements. Canadian Geotechnical Journal, 45(5): 653–662. https://doi.org/10.1139/t08-010
    Sun, G. H., Cheng, S. G., Jiang, W., et al., 2016a. A Global Procedure for Stability Analysis of Slopes Based on the Morgenstern-Price Assumption and Its Applications. Computers and Geotechnics, 80: 97–106. https://doi.org/10.1016/j.compgeo.2016.06.014
    Sun, G. H., Huang, Y. Y., Li, C. G., et al., 2016b. Formation Mechanism, Deformation Characteristics and Stability Analysis of Wujiang Landslide near Centianhe Reservoir Dam. Engineering Geology, 211: 27–38. https://doi.org/10.1016/j.enggeo.2016.06.025
    Zhang, T. T., Yan, E. C., Cheng, J. T., et al., 2010. Mechanism of Reservoir Water in the Deformation of Hefeng Landslide. Journal of Earth Science, 21(6): 870–875. https://doi.org/10.1007/s12583-010-0139-4
    Zhang, Z. H., Liu, W., Zhang, Y. B., et al., 2021. Towards on Slope-Cutting Scheme Optimization for Shiliushubao Landslide Exposed to Reservoir Water Level Fluctuations. Arabian Journal for Science and Engineering, 46(11): 10505–10517. https://doi.org/10.1007/s13369-021-05360-w
    Zheng, H., 2012. A Three-Dimensional Rigorous Method for Stability Analysis of Landslides. Engineering Geology, 145/146: 30–40. https://doi.org/10.1016/j.enggeo.2012.06.010
    Zhou, C. M., Shao, W., van Westen, C. J., 2014. Comparing Two Methods to Estimate Lateral Force Acting on Stabilizing Piles for a Landslide in the Three Gorges Reservoir, China. Engineering Geology, 173: 41–53. https://doi.org/10.1016/j.enggeo.2014.02.004
    Zhu, D. Y., Lee, C. F., 2002. Explicit Limit Equilibrium Solution for Slope Stability. International Journal for Numerical and Analytical Methods in Geomechanics, 26(15): 1573–1590. https://doi.org/10.1002/nag.260
    Zhu, D. Y., Lee, C. F., Qian, Q. H., et al., 2001. A New Procedure for Computing the Factor of Safety Using the Morgenstern-Price Method. Canadian Geotechnical Journal, 38(4): 882–888. https://doi.org/10.1139/cgj-38-4-882
    Zhu, D. Y., Lee, C. F., Qian, Q. H., et al., 2005. A Concise Algorithm for Computing the Factor of Safety Using the Morgenstern–Price Method. Canadian Geotechnical Journal, 42(1): 272–278. https://doi.org/10.1139/t04-072
    Zolfaghari, A. R., Heath, A. C., McCombie, P. F., 2005. Simple Genetic Algorithm Search for Critical Non-Circular Failure Surface in Slope Stability Analysis. Computers and Geotechnics, 32(3): 139–152. https://doi.org/10.1016/j.compgeo.2005.02.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(62) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return