Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Xu Luo, Qiong-Xia Xia, Yong-Fei Zheng, Wan-Cai Li. An Experimental Study of Partial Melting of Metafelsic Rocks: Constraints on the Feature of Anatectic Melts and the Origin of Garnets in Collisional Orogens. Journal of Earth Science, 2022, 33(3): 753-769. doi: 10.1007/s12583-021-1547-3
Citation: Xu Luo, Qiong-Xia Xia, Yong-Fei Zheng, Wan-Cai Li. An Experimental Study of Partial Melting of Metafelsic Rocks: Constraints on the Feature of Anatectic Melts and the Origin of Garnets in Collisional Orogens. Journal of Earth Science, 2022, 33(3): 753-769. doi: 10.1007/s12583-021-1547-3

An Experimental Study of Partial Melting of Metafelsic Rocks: Constraints on the Feature of Anatectic Melts and the Origin of Garnets in Collisional Orogens

doi: 10.1007/s12583-021-1547-3
More Information
  • Corresponding author: Qiong-Xia Xia, qxxia@ustc.edu.cn
  • Received Date: 05 Aug 2021
  • Accepted Date: 13 Sep 2021
  • Crustal anatexis in continental subduction zones has great bearing on chemical differentiation of the continental crust at convergent plate boundaries. This was experimentally investigated for ultrahigh-pressure (UHP) metafelsic rocks at 0.5–3.0 GPa and 650–900 ℃. The results show that partial melting begins at about 750 ℃ when pressure drops from 3.0 to 2.0 GPa, corresponding to decompressional exhumation of the deeply subducted continental crust. As the pressure further decreases to 1.0 GPa, the partial melting degree reaches the maximum of ~25% at 900 ℃. Partial melts produced in these experiments are rich in silica and alkali, and poor in iron, manganese and magnesium. As the degree of partial melting increases, the composition of partial melts gradually converges toward homogeneous one. In the absence of free water, the partial melting of metafelsic rocks were triggered by the breakdown of hydrous minerals. At low temperatures of ~750 ℃ at 1.0–2.0 GPa, phengite dehydration melting occurs at first, giving rise to small amounts of felsic melts and peritectic K-feldspar. As the temperature rises up to 850–900 ℃, biotite begins to break down and gives rise to large amounts of felsic melts and peritectic minerals such as garnet, K-feldspar and orthopyroxene. It is noted that peritectic garnet is much different from anatectic garnet crystallized from anatectic melts and metamorphic garnet formed through metamorphic dehydration reaction under subsolidus conditions. The peritectic garnet is characterized not only by anhedral shapes with many multiphase crystal inclusions but also by compositions poor in spessartine and grossular but rich in almandine and pyrope. On the other hand, the anatectic garnets are characterized not only by euhedral shapes with few inclusions but also by compositions rich in grossular and spessartine but poor in almandine and pyrope. These observations provide experimental constraints on the origin of garnets in UHP metamorphic rocks, which have great bearing on understanding of anatectic metamorphism in collisional orogens.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S6) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1547-3.
  • loading
  • Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1/2/3): 51-73. https://doi.org/10.1016/s0024-4937(99)00052-3
    Auzanneau, E., Vielzeuf, D., Schmidt, M. W., 2006. Experimental Evidence of Decompression Melting during Exhumation of Subducted Continental Crust. Contributions to Mineralogy and Petrology, 152(2): 125-148. https://doi.org/10.1007/s00410-006-0104-5
    Baxter, E. F., Scherer, E. E., 2013. Garnet Geochronology: Timekeeper of Tectonometamorphic Processes. Elements, 9(6): 433-438. https://doi.org/10.2113/gselements.9.6.433
    Bose, K., Ganguly, J., 1995. Experimental and Theoretical Studies of the Stabilities of Talc, Antigorite and Phase a at High Pressures with Appli-cations to Subduction Processes. Earth and Planetary Science Letters, 136(3/4): 109-121. https://doi.org/10.1016/0012-821x(95)00188-i
    Chen, R. -X., Zheng, Y. -F., Gong, B., et al., 2007. Origin of Retrograde Fluid in Ultrahigh-Pressure Metamorphic Rocks: Constraints from Mineral Hydrogen Isotope and Water Content Changes in Eclogite-Gneiss Transitions in the Sulu Orogen. Geochimica et Cosmochimica Acta, 71(9): 2299-2325. https://doi.org/10.1016/j.gca.2007.02.012
    Chen, R. -X., Ding, B. H., Zheng, Y. -F., et al., 2015. Multiple Episodes of Anatexis in a Collisional Orogen: Zircon Evidence from Migmatite in the Dabie Orogen. Lithos, 212-215: 247-265. https://doi.org/10.1016/j.lithos.2014.11.004
    Chen, Y. -X., Zheng, Y. -F., Hu, Z., 2013a. Petrological and Zircon Evidence for Anatexis of UHP Quartzite during Continental Collision in the Sulu Orogen. Journal of Metamorphic Geology, 31(4): 389-413. https://doi.org/10.1111/jmg.12026
    Chen, Y. -X., Zheng, Y. -F., Hu, Z. C., 2013b. Synexhumation Anatexis of Ultrahigh-Pressure Metamorphic Rocks: Petrological Evidence from Granitic Gneiss in the Sulu Orogen. Lithos, 156-159: 69-96. https://doi.org/10.1016/j.lithos.2012.10.008
    Chen, Y. -X., Zhou, K., Gao, X. -Y., 2017. Partial Melting of Ultrahigh-Pressure Metamorphic Rocks during Continental Collision: Evidence, Time, Mechanism, and Effect. Journal of Asian Earth Sciences, 145: 177-191. https://doi.org/10.1016/j.jseaes.2017.03.020
    Clemens, J., Watkins, J., 2001. The Fluid Regime of High-Temperature Metamorphism during Granitoid Magma Genesis. Contributions to Mineralogy and Petrology, 140(5): 600-606. https://doi.org/10.1007/s004100000205
    Erdmann, S., Martel, C., Pichavant, M., et al., 2014. Amphibole as an Archivist of Magmatic Crystallization Conditions: Problems, Potential, and Implications for Inferring Magma Storage Prior to the Paroxysmal 2010 Eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology, 167(6): 1-23. https://doi.org/10.1007/s00410-014-1016-4
    Ferrando, S., Frezzotti, M. L., Dallai, L., et al., 2005. Multiphase Solid Inclusions in UHP Rocks (Su-Lu, China): Remnants of Supercritical Silicate-Rich Aqueous Fluids Released during Continental Sub-duction. Chemical Geology, 223(1/2/3): 68-81. https://doi.org/10.1016/j.chemgeo.2005.01.029
    Frezzotti, M. L., Ferrando, S., Dallai, L., et al., 2007. Intermediate Alkali-Alumino-Silicate Aqueous Solutions Released by Deeply Subducted Continental Crust: Fluid Evolution in UHP OH-Rich Topaz-Kyanite Quartzites from Donghai (Sulu, China). Journal of Petrology, 48(6): 1219-1241. https://doi.org/10.1093/petrology/egm015
    Ganguly, J., Cheng, W. J., Chakraborty, S., 1998. Cation Diffusion in Aluminosilicate Garnets: Experimental Determination in Pyrope-Almandine Diffusion Couples. Contributions to Mineralogy and Petrology, 131(2/3): 171-180. https://doi.org/10.1007/s004100050386
    Gao, P., Zheng, Y. -F., Zhao, Z. -F., 2016. Experimental Melts from Crustal Rocks: A Lithochemical Constraint on Granite Petrogenesis. Lithos, 266/267: 133-157. https://doi.org/10.1016/j.lithos.2016.10.005
    Gao, X. -Y., Zheng, Y. -F., Chen, Y. -X., 2012. Dehydration Melting of Ultrahigh-Pressure Eclogite in the Dabie Orogen: Evidence from Multiphase Solid Inclusions in Garnet. Journal of Metamorphic Geology, 30(2): 193-212. https://doi.org/10.1111/j.1525-1314.2011.00962.x
    Gardien, V., Thompson, A. B., Grujic, D., et al., 1995. Experimental Melting of Biotite + Plagioclase + Quartz ± Muscovite Assemblages and Implications for Crustal Melting. Journal of Geophysical Research: Solid Earth, 100(B8): 15581-15591. https://doi.org/10.1029/95jb00916
    Gardien, V., Thompson, A. B., Ulmer, P., 2000. Melting of Biotite + Plagioclase + Quartz Gneisses: The Role of H2O in the Stability of Amphibole. Journal of Petrology, 41(5): 651-666. https://doi.org/10.1093/petrology/41.5.651
    Guo, S., Tang, P., Chen, Y., 2019. Genesis of UHP Eclogite-Vein System and Metamorphic Fluid Evolution in Subduction Zones. Earth Science, 44(12): 4072-4080. https://doi.org/10.3799/dqkx.2019.238(in Chinese with English Abstract)
    Hermann, J., Green, D. H., 2001. Experimental Constraints on High Pressure Melting in Subducted Crust. Earth and Planetary Science Letters, 188(1/2): 149-168. https://doi.org/10.1016/s0012-821x(01)00321-1
    Hermann, J., 2002. Allanite: Thorium and Light Rare Earth Element Carrier in Subducted Crust. Chemical Geology, 192(3/4): 289-306. https://doi.org/10.1016/s0009-2541(02)00222-x
    Hermann, J., Rubatto, D., 2014. Subduction of Continental Crust to Mantle Depth. Treatise on Geochemistry, Elsevier, Amsterdam. 309-340. https://doi.org/10.1016/b978-0-08-095975-7.00309-0
    Hermann, J., Spandler, C., Hack, A., et al., 2006. Aqueous Fluids and Hydrous Melts in High-Pressure and Ultra-High Pressure Rocks: Implications for Element Transfer in Subduction Zones. Lithos, 92(3/4): 399-417. https://doi.org/10.1016/j.lithos.2006.03.055
    Hermann, J., Spandler, C. J., 2008. Sediment Melts at Sub-Arc Depths: An Experimental Study. Journal of Petrology, 49(4): 717-740. https://doi.org/10.1093/petrology/egm073
    Kelemen, P. B., Hanghøj, K., Greene, A. R., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry 3. Elsevier, Amsterdam. 1-70. https://doi.org/10.1016/b0-08-043751-6/03035-8
    Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
    Le Breton, N., Thompson, A. B., 1988. Fluid-Absent (Dehydration) Melting of Biotite in Metapelites in the Early Stages of Crustal Anatexis. Contributions to Mineralogy and Petrology, 99(2): 226-237. https://doi.org/10.1007/bf00371463
    Li, W. -C., Chen, R. -X., Zheng, Y. -F., et al., 2013. Zirconological Tracing of Transition between Aqueous Fluid and Hydrous Melt in the Crust: Constraints from Pegmatite Vein and Host Gneiss in the Sulu Orogen. Lithos, 162/163: 157-174. https://doi.org/10.1016/j.lithos.2013.01.004
    Liu, F. L., Robinson, P. T., Gerdes, A., et al., 2010. Zircon U-Pb Ages, REE Concentrations and Hf Isotope Compositions of Granitic Leucosome and Pegmatite from the North Sulu UHP Terrane in China: Constraints on the Timing and Nature of Partial Melting. Lithos, 117(1-4): 247-268. https://doi.org/10.1016/j.lithos.2010.03.002
    Liu, L., Chen, D. L., Zhang, J. F., et al., 2019. New Evidence of an Ultra-Deep Continental Subduction to Mantle Depth (~300 km) in Stishovite Stability Field. Earth Science, 44(12): 3998-4003. https://doi.org/10.3799/dqkx.2019.275(in Chinese with English Abstract)
    Liu, P. L., Wu, Y., Liu, Q., et al., 2014. Partial Melting of UHP Calc-Gneiss from the Dabie Mountains. Lithos, 192-195: 86-101. https://doi.org/10.1016/j.lithos.2014.01.012
    Liu, Q., Wu, Y., Zhang, J. F., 2011. Experimental Investigation on Low-Degree Dehydration Partial Melting of Biotite Gneiss and Phengite-Bearing Eclogite at 2 GPa. Journal of Earth Science, 22(6): 677-687. https://doi.org/10.1007/s12583-011-0219-0
    Liu, Y. -C., Li, S. -G., Xu, S. -T., 2007. Zircon SHRIMP U-Pb Dating for Gneisses in Northern Dabie High T/P Metamorphic Zone, Central China: Implications for Decoupling within Subducted Continental Crust. Lithos, 96(1/2): 170-185. https://doi.org/10.1016/j.lithos.2006.09.010
    Liu, Y. -C., Gu, X. -F., Rolfo, F., et al., 2011a. Ultrahigh-Pressure Metamorphism and Multistage Exhumation of Eclogite of the Luotian Dome, North Dabie Complex Zone (Central China): Evidence from Mineral Inclusions and Decompression Textures. Journal of Asian Earth Sciences, 42(4): 607-617. https://doi.org/10.1016/j.jseaes.2010.10.016
    Liu, Y. -C., Gu, X. -F., Li, S. -G., et al., 2011b. Multistage Metamorphic Events in Granulitized Eclogites from the North Dabie Complex Zone, Central China: Evidence from Zircon U-Pb Age, Trace Element and Mineral Inclusion. Lithos, 122(1/2): 107-121. https://doi.org/10.1016/j.lithos.2010.12.005
    Liu, Y. -C., Yang, Y., Jiang, W. J., et al., 2019. Diverse Partial Melting during Continental Rifting, Subduction-Exhumation and Mountain-Root Collapse in the Dabie Orogen, Central China. Earth Science, 44(12): 4195-4202. https://doi.org/10.3799/dqkx.2019.237(in Chinese with English Abstract)
    London, D., Morgan, G. B., Acosta-Vigil, A., 2012. Experimental Simula-tions of Anatexis and Assimilation Involving Metapelite and Granitic Melt. Lithos, 153: 292-307. https://doi.org/10.1016/j.lithos.2012.04.006
    Montel, J. M., Vielzeuf, D., 1997. Partial Melting of Metagreywackes, Part Ⅱ. Compositions of Minerals and Melts. Contributions to Mineralogy and Petrology, 128(2/3): 176-196. https://doi.org/10.1007/s004100050302
    Moyen, J. F., Stevens, G., 2006. Experimental Constraints on TTG Petrogenesis: Implications for Archean Geodynamics. Archean Geodynamics and Environments. American Geophysical Union, Washington, D.C. 149-175. https://doi.org/10.1029/164gm11
    Patiño Douce, A. E., Johnston, A. D., 1991. Phase Equilibria and Melt Productivity in the Pelitic System: Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites. Contributions to Mineralogy and Petrology, 107(2): 202-218. https://doi.org/10.1007/bf00310707
    Patiño Douce, A. E., Beard, J. S., 1995. Dehydration-Melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. Journal of Petrology, 36(3): 707-738. https://doi.org/10.1093/petrology/36.3.707
    Patiño Douce, A. E., 1995. Experimental Generation of Hybrid Silicic Melts by Reaction of High-Al Basalt with Metamorphic Rocks. Journal of Geophysical Research: Solid Earth, 100(B8): 15623-15639. https://doi.org/10.1029/94jb03376
    Patiño Douce, A. E., 1996. Effects of Pressure and H2O Content on the Compositions of Primary Crustal Melts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1/2): 11-21
    Patiño Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689-710. https://doi.org/10.1093/petroj/39.4.689
    Patiño Douce, A. E., McCarthy, T. C., 1998. Melting of Crustal Rocks during Continental Collision and Subduction. In: Hacker, B. R., Liou, J. G., eds., When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Springer. 27-55
    Pëto, P., 1976. An Experimental Investigation of Melting Relations Involving Muscovite and Paragonite in the Silica-Saturated Portion of the System K2O-Na2O-Al2O3-SiO2-H2O to 15 kb Total Pressure. United Kingdom Natural Environment Research Council, Swindon
    Qian, Q., Hermann, J., 2013. Partial Melting of Lower Crust at 10-15 kbar: Constraints on Adakite and TTG Formation. Contributions to Mineralogy and Petrology, 165(6): 1195-1224. https://doi.org/10.1007/s00410-013-0854-9
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recyc-ling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
    Rushmer, T., 1987. Fluid-Absent Melting of Amphibolite—Experimental Results at 8 Kbar. Terra Cognita, 7: 286
    Samadi, R., Miller, N. R., Mirnejad, H., et al., 2014. Origin of Garnet in Aplite and Pegmatite from Khajeh Morad in Northeastern Iran: A Major, Trace Element, and Oxygen Isotope Approach. Lithos, 208/209: 378-392. https://doi.org/10.1016/j.lithos.2014.08.023
    Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234. https://doi.org/10.2113/gselements.7.4.229
    Schmidt, M. W., Vielzeuf, D., Auzanneau, E., 2004. Melting and Dissolution of Subducting Crust at High Pressures: The Key Role of White Mica. Earth and Planetary Science Letters, 228(1/2): 65-84. https://doi.org/10.1016/j.epsl.2004.09.020
    Skjerlie, K. P., Johnston, A. D., 1993. Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites. Journal of Petrology, 34(4): 785-815. https://doi.org/10.1093/petrology/34.4.785
    Skjerlie, K. P., Patiño Douce, A. E., 2002. The Fluid-Absent Partial Melting of a Zoisite-Bearing Quartz Eclogite from 1.0 to 3.2 GPa; Implications for Melting in Thickened Continental Crust and for Subduction-Zone Processes. Journal of Petrology, 43(2): 291-314. https://doi.org/10.1093/petrology/43.2.291
    Stevens, G., Villaros, A., Moyen, J. F., 2007. Selective Peritectic Garnet Entrainment as the Origin of Geochemical Diversity in S-Type Granites. Geology, 35(1): 9-12. https://doi.org/10.1130/g22959a.1
    Sun, G.-C., Gao, P., Zhao, Z.-F., et al., 2020. Syn-Exhumation Melting of the Subducted Continental Crust: Geochemical Evidence from Early Paleozoic Granitoids in North Qaidam, Northern Tibet. Lithos, 374/375: 105707. https://doi.org/10.1016/j.lithos.2020.105707
    Thompson, A. B., 2001. Partial Melting of Metavolcanics in Amphibolite Facies Regional Metamorphism. Journal of Earth System Science, 110(4): 287-291. https://doi.org/10.1007/bf02702895
    Thompson, R. N., 1982. Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology, 18(1): 49-107. https://doi.org/10.1144/sjg18010049
    Vielzeuf, D., Holloway, J. R., 1988. Experimental Determination of the Fluid-Absent Melting Relations in the Pelitic System. Contributions to Mineralogy and Petrology, 98(3): 257-276. https://doi.org/10.1007/bf00375178
    Vielzeuf, D., Montel, J. M., 1994. Partial Melting of Metagreywackes. Part Ⅰ. Fluid-Absent Experiments and Phase Relationships. Contributions to Mineralogy and Petrology, 117(4): 375-393. https://doi.org/10.1007/bf00307272
    Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: a Review. Lithos, 212-215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021
    Wang, S.-J., Li, S.-G., An, S.-C., et al., 2012. A Granulite Record of Multistage Metamorphism and REE Behavior in the Dabie Orogen: Constraints from Zircon and Rock-Forming Minerals. Lithos, 136-139: 109-125. https://doi.org/10.1016/j.lithos.2011.11.001
    Wang, S.-J., Li, S.-G., Chen, L.-J., et al., 2013. Geochronology and Geochemistry of Leucosomes in the North Dabie Terrane, East China: Implication for Post-UHPM Crustal Melting during Exhumation. Contributions to Mineralogy and Petrology, 165(5): 1009-1029. https://doi.org/10.1007/s00410-012-0845-2
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185-187. https://doi.org/10.2138/am.2010.3371
    Wolf, M. B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369-383. https://doi.org/10.1007/bf00320972
    Wyllie, P. J., Wolf, M. B., 1993. Amphibolite Dehydration-Melting: Sorting out the Solidus. Geological Society, London, Special Publications, 76(1): 405-416. https://doi.org/10.1144/gsl.sp.1993.076.01.20
    Xia, Q.-X., Zheng, Y.-F., Zhou, L.-G., 2008. Dehydration and Melting during Continental Collision: Constraints from Element and Isotope Geoche-mistry of Low-T/UHP Granitic Gneiss in the Dabie Orogen. Chemical Geology, 247(1/2): 36-65. https://doi.org/10.1016/j.chemgeo.2007.09.013
    Xia, Q.-X., Zheng, Y.-F., Lu, X.-N., et al., 2012. Formation of Metamorphic and Metamorphosed Garnets in the Low-T/UHP Metagranite during Continental Collision in the Dabie Orogen. Lithos, 136-139: 73-92. https://doi.org/10.1016/j.lithos.2011.10.004
    Xia, Q.-X., Wang, H.-Z., Zhou, L.-G., et al., 2016. Growth of Metamorphic and Peritectic Garnets in Ultrahigh-Pressure Metagranite during Continental Subduction and Exhumation in the Dabie Orogen. Lithos, 266/267: 158-181. https://doi.org/10.1016/j.lithos.2016.08.043
    Xia, Q.-X., Zhou, L.-G., 2017. Different Origins of Garnet in High Pressure to Ultrahigh Pressure Metamorphic Rocks. Journal of Asian Earth Sciences, 145: 130-148. https://doi.org/10.1016/j.jseaes.2017.03.037
    Xu, H. J., Ye, K., Song, Y. R., et al., 2013. Prograde Metamorphism, Decompressional Partial Melting and Subsequent Melt Fractional Crystallization in the Weihai Migmatitic Gneisses, Sulu UHP Terrane, Eastern China. Chemical Geology, 341: 16-37. https://doi.org/10.1016/j.chemgeo.2013.01.002
    Yardley, B. W. D., Valley, J. W., 1997. The Petrologic Case for a Dry Lower Crust. Journal of Geophysical Research: Solid Earth, 102(B6): 12173-12185. https://doi.org/10.1029/97jb00508
    Zhang, R. Y., Liou, J. G., Ernst, W. G., 1995. Ultrahigh-Pressure Metamorphism and Decompressional P-T Paths of Eclogites and Country Rocks from Weihai, Eastern China. Island Arc, 4(4): 293-309. https://doi.org/10.1111/j.1440-1738.1995.tb00151.x
    Zhao, Z.-F., Zheng, Y.-F., Chen, R.-X., et al., 2007. Element Mobility in Mafic and Felsic Ultrahigh-Pressure Metamorphic Rocks during Continental Collision. Geochimica et Cosmochimica Acta, 71(21): 5244-5266. https://doi.org/10.1016/j.gca.2007.09.009
    Zheng, Y.-F., 2009. Fluid Regime in Continental Subduction Zones: Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 166(4): 763-782. https://doi.org/10.1144/0016-76492008-016r
    Zheng, Y.-F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
    Zheng, Y.-F., Xia, Q.-X., Chen, R.-X., et al., 2011. Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamor-phic Rocks during Continental Collision. Earth-Science Reviews, 107(3/4): 342-374. https://doi.org/10.1016/j.earscirev.2011.04.004
    Zheng, Y.-F., Hermann, J., 2014. Geochemistry of Continental Subduction-Zone Fluids. Earth, Planets and Space, 66(1): 93. https://doi.org/10.1186/1880-5981-66-93
    Zheng, Y.-F., Chen, Y.-X., 2016. Continental Versus Oceanic Subduction Zones. National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049
    Zheng, Y.-F., 2021a. Metamorphism in Subduction Zones. In: Alderton, D., Elias, S. A., eds., Encyclopedia of Geology, 2nd Edition. Academic Press, United Kingdom. 2: 612-622. https://doi.org/10.1016/b978-0-08-102908-4.00020-5
    Zheng, Y.-F., 2021b. Exhumation of Ultrahigh-Pressure Metamorphic Terranes. In: Alderton, D., Elias, S. A., eds., Encyclopedia of Geology, 2nd Edition. Academic Press, United Kingdom. 2: 868-878. https://doi.org/10.1016/b978-0-08-102908-4.00016-3
    Zheng, Y.-F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402: 106232. https://doi.org/10.1016/j.lithos.2021.106232
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(275) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return