Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 4
Aug 2023
Turn off MathJax
Article Contents
Peishan Sui, Weidong Sun, Nan Han, Lei Wang, Shiwen Xie, Zihang Huang, Xiaohong Wang, Hongmei Gong, Jin Liu, Jinyan Lin, Yuanyuan Xiao. Neoproterozoic Diamictite of the Luoquan Formation from the North China Block and Their Implications. Journal of Earth Science, 2023, 34(4): 1128-1139. doi: 10.1007/s12583-021-1550-8
Citation: Peishan Sui, Weidong Sun, Nan Han, Lei Wang, Shiwen Xie, Zihang Huang, Xiaohong Wang, Hongmei Gong, Jin Liu, Jinyan Lin, Yuanyuan Xiao. Neoproterozoic Diamictite of the Luoquan Formation from the North China Block and Their Implications. Journal of Earth Science, 2023, 34(4): 1128-1139. doi: 10.1007/s12583-021-1550-8

Neoproterozoic Diamictite of the Luoquan Formation from the North China Block and Their Implications

doi: 10.1007/s12583-021-1550-8
More Information
  • Corresponding author: Yuanyuan Xiao, yuanyuan.xiao@qdio.ac.cn
  • Received Date: 06 Aug 2021
  • Accepted Date: 17 Sep 2021
  • Available Online: 01 Aug 2023
  • Issue Publish Date: 30 Aug 2023
  • Glacial diamictite may provide important information on paleoenvironment and average composition of the upper continental crust (UCC). In this study, we report sedimentary facies, petrological and geochemical characteristics of Neoproterozoic diamictite from a profile of the Luoquan Formation on the southern margin of the North China Block (NCB). Upwards the sampling profile, lithostratigraphic strata vary from massive diamictite with poorly sorted carbonate gravels to laminated diamictite with small gravels of terrestrial detrital materials. Along the profile, CaO-MgO-LOI-Sr values decrease with the increase of SiO2-Al2O3-K2O contents. All these petrological and geochemical variations indicate a change from lodgement till deposition in the proximal of ice sheet to ice-rafting deposition in glacial-marine environment with less dolomite to supply their source. Together with previous studies on diamictite from other outcrops on the NCB, the deposition of Luoquan diamictite reflects that the glaciation on the NCB vanished and the ice-rafting effect weakened with glacial transgression process. In addition, significant co-variations of various elements with La and Al2O3 confirm the significant conservation of most analyzed elements during the sedimentary processes to produce diamictite.

     

  • Electronic Supplementary Materials: Supplementary materials (Figs. S1–S6, Tables S1–S5) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1550-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3/4): 211–225. https://doi.org/10.1016/j.chemgeo.2009.09.001
    Beard, B. L., Johnson, C. M., von Damm, K. L., et al., 2003. Iron Isotope Constraints on Fe Cycling and Mass Balance in Oxygenated Earth Oceans. Geology, 31(7): 629–632. https://doi.org/10.1130/0091-7613(2003)031<0629:iicofc>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0629:iicofc>2.0.co;2
    Chen, S., Wang, X. H., Niu, Y. L., et al., 2017. Simple and Cost-Effective Methods for Precise Analysis of Trace Element Abundances in Geological Materials with ICP-MS. Science Bulletin, 62(4): 277–289. https://doi.org/10.1016/j.scib.2017.01.004
    Chen, X. S., Kuang, H. W., Liu, Y. Q., et al., 2020. Subglacial Bedforms and Landscapes Formed by an Ice Sheet of Ediacaran-Cambrian Age in West Henan, North China. Precambrian Research, 344: 105727. https://doi.org/10.1016/j.precamres.2020.105727
    Coats, R. P., Preiss, W. V., 1980. Stratigraphic and Geochronological Reinterpretation of Late Proterozoic Glaciogenic Sequences in the Kimberley Region, Western Australia. Precambrian Research, 13(2/3): 181–208. https://doi.org/10.1016/0301-9268(80)90004-2
    Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98. https://doi.org/10.1126/science.1107765
    Craddock, P. R., Dauphas, N., 2011. Iron Isotopic Compositions of Geological Reference Materials and Chondrites. Geostandards and Geoanalytical Research, 35(1): 101–123. https://doi.org/10.1111/j.1751-908X.2010.00085.x
    Dong, X. P., Hu, J. M., Li, Z. H., et al., 2017. Provenance of Ediacaran (Sinian) Sediments in the Helanshan Area, North China Craton: Constraints from U-Pb Geochronology and Hf Isotopes of Detrital Zircons. Precambrian Research, 298: 490–511. https://doi.org/10.1016/j.precamres.2017.06.022
    Dowling, C. B., Welch, S. A., Lyons, W. B., 2019. The Geochemistry of Glacial Deposits in Taylor Valley, Antarctica: Comparison to Upper Continental Crustal Abundances. Applied Geochemistry, 107: 91–104. https://doi.org/10.1016/j.apgeochem.2019.05.006
    Frimmel, H. E., Fölling, P. G., 2004. Late Vendian Closure of the Adamastor Ocean: Timing of Tectonic Inversion and Syn-Orogenic Sedimentation in the Gariep Basin. Gondwana Research, 7(3): 685–699. https://doi.org/10.1016/s1342-937x(05)71056-x
    Gao, L., Wang, Z., Zhang, C., 2010. Geochemical Character of C/O Isotope of the Upper Proterozoic from Southern Margin of North China Block and Implication for Its Depositional Environment. Journal of Palaeogeography, 12(6): 639–654 (in Chinese with English Abstract)
    Gaschnig, R. M., Rudnick, R. L., McDonough, W. F., et al., 2016. Compositional Evolution of the Upper Continental Crust through Time, as Constrained by Ancient Glacial Diamictites. Geochimica et Cosmochimica Acta, 186: 316–343. https://doi.org/10.1016/j.gca.2016.03.020
    Germs, G. J. B., 1995. The Neoproterozoic of Southwestern Africa, with Emphasis on Platform Stratigraphy and Paleontology. Precambrian Research, 73(1/2/3/4): 137–151. https://doi.org/10.1016/0301-9268(94)00075-3
    Goldschmidt, R., 1933. Investigations on the Genetics of Geographical Variation Ⅵ. The Geographical Variation of Speed in Development and of Growth in Size. Wilhelm Roux Archiv Fur Entwicklungsmechanik Der Organismen, 150(2): 266–339
    Gong, H. M., Guo, P. Y., Chen, S., et al., 2020. A re-Assessment of Nickel-Doping Method in Iron Isotope Analysis on Rock Samples Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Acta Geochimica, 39(3): 355–364. https://doi.org/10.1007/s11631-019-00392-4
    Gong, Y. Z., Xia, Y., Huang, F., et al., 2017. Average Iron Isotopic Compositions of the Upper Continental Crust: Constrained by Loess from the Chinese Loess Plateau. Acta Geochimica, 36(2): 125–131. https://doi.org/10.1007/s11631-016-0131-5
    Gravenor, C. P., 1980. Heavy Minerals and Sedimentological Studies on the Glaciogenic Late Precambrian Gaskiers Formation of Newfoundland. Canadian Journal of Earth Sciences, 17(10): 1331–1341. https://doi.org/10.1139/e80-140
    Gu, S. Y., Fu, Y., Long, J. X., 2019. Predominantly Ferruginous Conditions in South China during the Marinoan Glaciation: Insight from REE Geochemistry of the Syn-Glacial Dolostone from the Nantuo Formation in Guizhou Province, China. Minerals, 9(6): 348. https://doi.org/10.3390/min9060348
    Guan, B. D., Wu, R. T., Hambrey, M. J., et al., 1986. Glacial Sediments and Erosional Pavements near the Cambrian—Precambrian Boundary in Western Henan Province, China. Journal of the Geological Society, 143: 311–323 doi: 10.1144/gsjgs.143.2.0311
    Halverson, G., Hoffman, P., Schrag, D., et al., 2005. Toward a Neoproterozoic Composite Carbon-Isotope Record. Geological Society of America Bulletin, 117: 1181–1207. https://doi.org/10.1130/B25630.1
    He Y, Ke S, Teng F-Z, Wang T, Wu H, Lu Y, Li S., 2015. High precision Iron Isotope Analysis of Geological Reference Materials by High-Resolution MC-ICP-MS. Geostand Geoanal Res, 39: 341–356. https://doi.org/10.1111/j.1751-908X.2014.00304.x
    Hoffman, P. F., Li, Z. X., 2009. A Palaeogeographic Context for Neoproterozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(3/4): 158–172. https://doi.org/10.1016/j.palaeo.2009.03.013
    Hoffman, P. F., Schrag, D. P., 2000. Snowball Earth. Scientific American, 282(1): 68–75. https://doi.org/10.1038/scientificamerican0100-68
    Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129–155. https://doi.org/10.1046/j.1365-3121.2002.00408.x
    Hoffman, P., Kaufman, A., Halverson, G., et al., 1998. A Neoproterozoic Snowball Earth. Science, 281(5381): 1342–1346. https://doi.org/10.1126/science.281.5381.1342
    Hofmann, M., Linnemann, U., Hoffmann, K. H., et al., 2015. The Four Neoproterozoic Glaciations of Southern Namibia and Their Detrital Zircon Record: The Fingerprints of Four Crustal Growth Events during Two Supercontinent Cycles. Precambrian Research, 259: 176–188. https://doi.org/10.1016/j.precamres.2014.07.021
    Jiang, H. J., Yang, C. S., Wang, D. Q., et al., 2022. Multiple-Stage Mineralization in the Huayangchuan U-REE-Mo-Cu-Fe Ore Belt of the Qinling Orogen, Central China: Geological and Re-Os Geochronological Constraints. Journal of Earth Science, 33(1): 193–204. https://doi.org/10.1007/s12583-021-1557-1
    Jin S., Ma P. F., Guo H., et al., 2022. Genesis of Mesoproterozoic Gaoyuzhuang Formation Manganese Ore in Qinjiayu, East Hebei: Constraints from Mineralogical and Geochemical Evidences. Earth Science, 47(1): 277–289. https://doi.org/10.3799/dqkx.2021.055
    Johnson, C. M., Beard, B. L., Beukes, N. J., et al., 2003. Ancient Geochemical Cycling in the Earth as Inferred from Fe Isotope Studies of Banded Iron Formations from the Transvaal Craton. Contributions to Mineralogy and Petrology, 144(5): 523–547. https://doi.org/10.1007/s00410-002-0418-x
    Kano, A., Kunimitsu, Y., Togo, T., et al., 2011. Evolution of Animal Multicellularity Stimulated by Dissolved Organic Carbon in Early Ediacaran Ocean: DOXAM Hypothesis. Island Arc, 20(2): 280–293. https://doi.org/10.1111/j.1440-1738.2011.00767.x
    Kong, J. J., Niu, Y. L., Sun, P., et al., 2019. The Origin and Geodynamic Significance of the Mesozoic Dykes in Eastern Continental China. Lithos, 332: 328–339. https://doi.org/10.1016/j.lithos.2019.02.024
    Lang, X. G., Shen, B., Peng, Y. B., et al., 2018. Transient Marine Euxinia at the End of the Terminal Cryogenian Glaciation. Nature Communications, 9(1): 1–8. https://doi.org/10.1038/s41467-018-05423-x
    Le Guerroué, E., Allen, P. A., Cozzi, A., et al., 2006. 50 Myr Recovery from the Largest Negative δ13C Excursion in the Ediacaran Ocean. Terra Nova, 18(2): 147–153. https://doi.org/10.1111/j.1365-3121.2006.00674.x
    Le Heron, D. P., Vandyk, T. M., Wu, G. H., et al., 2018. New Perspectives on the Luoquan Glaciation (Ediacaran-Cambrian) of North China. The Depositional Record, 4(2): 274–292. https://doi.org/10.1002/dep2.46
    Li, H. F., Song, Z. J., Si, W. L., et al., 2011. Analysis on the Formation Environment of Tillite in Zhengmuguan Formation of Suyukou, Helan Mountain. Journal of Shandong University of Science and Technology, 30(1): 27–30 (in Chinese)
    Li, M., Vandyk, T. M., Wu, G. H., et al., 2020. A Window into the Great Unconformity: Insights from Geochemistry and Geochronology of Ediacaran Glaciogenic Rocks in the North China Craton. Journal of Asian Earth Sciences, 194: 104327. https://doi.org/10.1016/j.jseaes.2020.104327
    Li, S., Gaschnig, R. M., Rudnick, R. L., 2016. Insights into Chemical Weathering of the Upper Continental Crust from the Geochemistry of Ancient Glacial Diamictites. Geochimica et Cosmochimica Acta, 176: 96–117. https://doi.org/10.1016/j.gca.2015.12.012
    Li, Z. X., Evans, D. A. D., Halverson, G. P., 2013. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 294: 219–232. https://doi.org/10.1016/j.sedgeo.2013.05.016
    Lin, J., Liu, Y. S., Yang, Y. H., et al., 2016. Calibration and Correction of LA-ICP-MS and LA-MC-ICP-MS Analyses for Element Contents and Isotopic Ratios. Solid Earth Sciences, 1(1): 5–27. https://doi.org/10.1016/j.sesci.2016.04.002
    Link, P., Gostin, V., 1981. Facies and Paleogeography of Sturtian Glacial Strata (Late Precambrian), South Australia. American Journal of Science, 281(4): 353–374. https://doi.org/10.2475/ajs.281.4.353
    Liu, X. F., Zuo, P. F., Wang, Q. F., et al., 2019. Initial Accretion of the North Qinling Terrane to the North China Craton before the Grenville Orogeny: Constraints from Detrital Zircons. International Geology Review, 61(1): 109–128. https://doi.org/10.1080/00206814.2017.1410861
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94–107. https://doi.org/10.1016/j.precamres.2007.04.025
    McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295–303. https://doi.org/10.1086/648222
    Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715–717. https://doi.org/10.1038/299715a0
    Nesbitt, H. W., Young, G. M., 1996. Petrogenesis of Sediments in the Absence of Chemical Weathering: Effects of Abrasion and Sorting on Bulk Composition and Mineralogy. Sedimentology, 43(2): 341–358. https://doi.org/10.1046/j.1365-3091.1996.d01-12.x
    Passchier, S., Erukanure, E., 2010. Palaeoenvironments and Weathering Regime of the Neoproterozoic Squantum 'Tillite', Boston Basin: No Evidence of a Snowball Earth. Sedimentology, 57(6): 1526–1544. https://doi.org/10.1111/j.1365-3091.2010.01154.x
    Pu, J., Bowring, S., Ramezani, J., et al., 2016. Dodging Snowballs: Geochronology of the Gaskiers Glaciation and the First Appearance of the Ediacaran Biota. Geology, 44(11): 955–958. https://doi.org/10.1130/G38284.1
    Rodler, A. S., Frei R., Gaucher, C., Germs, G. J. B., 2016. Chromium Isotope, REE and Redox-Sensitive Trace Element Chemostratigraphy across the Late Neoproterozoic Ghaub Glaciation, Otavi Group, Namibia. Precambrian Res, 286: 234–249. https://doi.org/10.1016/j.precamres.2016.10.007
    Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Earth Systems and Environmental Sciences, 4: 1–51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
    Shen, B., Xiao, S. H., Dong, L., et al., 2007. Problematic Macrofossils from Ediacaran Successions in the North China and Chaidam Blocks: Implications for Their Evolutionary Roots and Biostratigraphic Significance. Journal of Paleontology, 81(6): 1396–1411. https://doi.org/10.1666/06-016R.1
    Shen, B., Xiao, S. H., Zhou, C. M., et al., 2010. Carbon and Sulfur Isotope Chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China: Basin Stratification in the Aftermath of an Ediacaran Glaciation Postdating the Shuram Event? Precambrian Research, 177(3/4): 241–252. https://doi.org/10.1016/j.precamres.2009.12.006
    Sun, P., Niu, Y. L., Guo, P. Y., et al., 2019. Multiple Mantle Metasomatism beneath the Leizhou Peninsula, South China: Evidence from Elemental and Sr-Nd-Pb-Hf Isotope Geochemistry of the Late Cenozoic Volcanic Rocks. International Geology Review, 61(14): 1768–1785. https://doi.org/10.1080/00206814.2018.1548307
    Thompson, M. D., Bowring, S. A., 2000. Age of the Squantum "Tillite, " Boston Basin, Massachusetts; U-Pb Zircon Constraints on Terminal Neoproterozoic Glaciation. American Journal of Science, 300(8): 630–655. https://doi.org/10.2475/ajs.300.8.630
    von Blanckenburg, F., Mamberti, M., Schoenberg, R., et al., 2008. The Iron Isotope Composition of Microbial Carbonate. Chemical Geology, 249(1/2): 113–128. https://doi.org/10.1016/j.chemgeo.2007.12.001
    Wang, D., Zhu, X. K., Zhao, N. N., et al., 2019. Timing of the Termination of Sturtian Glaciation: SIMS U-Pb Zircon Dating from South China. Journal of Asian Earth Sciences, 177: 287–294. https://doi.org/10.1016/j.jseaes.2019.03.015
    Wen, H. J., Fan, H. F., Zhang, Y. X., et al., 2015. Reconstruction of Early Cambrian Ocean Chemistry from Mo Isotopes. Geochimica et Cosmochimica Acta, 164: 1–16. https://doi.org/10.1016/j.gca.2015.05.008
    Xiao, S. H., Bao, H. M., Wang, H. F., et al., 2004. The Neoproterozoic Quruqtagh Group in Eastern Chinese Tianshan: Evidence for a Post-Marinoan Glaciation. Precambrian Research, 130(1/2/3/4): 1–26. https://doi.org/10.1016/j.precamres.2003.10.013
    Xiao, Y. Y., Chen, S., Niu, Y. L., et al., 2020. Mineral Compositions of Syn-Collisional Granitoids and Their Implications for the Formation of Juvenile Continental Crust and Adakitic Magmatism. Journal of Petrology, 61(3): egaa038. https://doi.org/10.1093/petrology/egaa038
    Xu, B., Xiao, S. H., Zou, H. B., et al., 2009. SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 168(3/4): 247–258. https://doi.org/10.1016/j.precamres.2008.10.008
    Xu, Y., Li, C. D., Zhao, L. G., et al., 2021. Bimodal Volcanic Rocks of Dingyuan Formation on the Northern Margin of Dabie Belt: A Witness of Late Neoproterozoic Rifting Event. Earth Science, 46(8): 2732–2750. https://doi.org/10.3799/dqkx.2020.322
    Yang, J., Lyons, T. W., Zeng, Z. X., et al., 2019. Geochemical Constraints on the Origin of Neoproterozoic Cap Carbonate in the Helan Mountains, North China: Implications for Mid-Late Ediacaran Glaciation? Precambrian Research, 331: 105361. https://doi.org/10.1016/j.precamres.2019.105361
    Yang, J., Zeng, Z. X., Cai, X. F., et al., 2013. Carbon and Oxygen Isotopes Analyses for the Sinian Carbonates in the Helan Mountain, North China. Chinese Science Bulletin, 58(32): 3943–3955. https://doi.org/10.1007/s11434-013-5857-4
    Ye, Y. T., Wang, H. J., Zhai, L. N., et al., 2018. Contrasting Mo-U Enrichments of the Basal Datangpo Formation in South China: Implications for the Cryogenian Interglacial Ocean Redox. Precambrian Research, 315: 66–74. https://doi.org/10.1016/j.precamres.2018.07.013
    Yin, L. M., Guan, B. D., 1999. Organic-Walled Microfossils of Neoproterozoic Dongjia Formation, Lushan County, Henan Province, North China. Precambrian Research, 94(1/2): 121–137. https://doi.org/10.1016/S0301-9268(98)00115-6
    Zhang, Q. R., Li, X. H., Feng, L. J., et al., 2008. A New Age Constraint on the Onset of the Neoproterozoic Glaciations in the Yangtze Platform, South China. The Journal of Geology, 116(4): 423–429. https://doi.org/10.1086/589312
    Zhang, S. H., Jiang, G. Q., Song, B., et al., 2005. U-Pb Sensitive High-Resolution Ion Microprobe Ages from the Doushantuo Formation in South China: Constraints on Late Neoproterozoic Glaciations. Geology, 33: 473–476. https://doi.org/10.1130/G21418.1
    Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207–1240. https://doi.org/10.1016/j.gr.2012.08.016
    Zhou, C. M., Tucker, R., Xiao, S. H., et al., 2004. New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 32(5): 437–440. https://doi.org/10.1130/G20286.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(101) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return