Citation: | Xiuchang Zhu, Yongbo Wang, Xinyue Dang, Huan Yang, Shucheng Xie. Spatiotemporal Distribution of Microbial Tetraether Lipids in a Lake and Its Inflowing River: Implications for the Identification of Flooding Events. Journal of Earth Science, 2022, 33(6): 1601-1613. doi: 10.1007/s12583-021-1552-6 |
Microbial glycerol dialkyl glycerol tetraethers (GDGTs) in lacustrine sediments are widely used to reconstruct terrestrial paleoenvironments. However, lipids of diverse origin in lakes make it difficult to decipher environmental information, appealing for the necessity to evaluate the impact of terrigenous input on the distribution of GDGTs through long-term monitoring. In this study, we conducted two-year monitoring of GDGTs along the river, estuary, near shore, to the center of Lake Liangzi in central China. By comparing the spatiotemporal changes of GDGT distribution in suspended particulate matter (SPM) and surface sediments, we found that the archaeal isoprenoid GDGTs (isoGDGTs) were mainly produced
Ajioka, T., Yamamoto, M., Murase, J., 2014. Branched and Isoprenoid Glycerol Dialkyl Glycerol Tetraethers in Soils and Lake/River Sediments in Lake Biwa Basin and Implications for MBT/CBT Proxies. Organic Geochemistry, 73: 70–82. https://doi.org/10.1016/j.orggeochem.2014.05.009 |
Bechtel, A., Smittenberg, R. H., Bernasconi, S. M., et al., 2010. Distribution of Branched and Isoprenoid Tetraether Lipids in an Oligotrophic and a Eutrophic Swiss Lake: Insights into Sources and GDGT-Based Proxies. Organic Geochemistry, 41(8): 822–832. https://doi.org/10.1016/j.orggeochem.2010.04.022 |
Besseling, M. A., Hopmans, E. C., Boschman, R. C., et al., 2018. Benthic Archaea as Potential Sources of Tetraether Membrane Lipids in Sediments across an Oxygen Minimum Zone. Biogeosciences, 15(13): 4047–4064. https://doi.org/10.5194/bg-15-4047-2018 |
Biddle, J. F., Lipp, J. S., Lever, M. A., et al., 2006. Heterotrophic Archaea Dominate Sedimentary Subsurface Ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 103(10): 3846–3851. https://doi.org/10.1073/pnas.0600035103 |
Blaga, C. I., Reichart, G. J., Heiri, O., et al., 2009. Tetraether Membrane Lipid Distributions in Water-Column Particulate Matter and Sediments: A Study of 47 European Lakes along a North-South Transect. Journal of Paleolimnology, 41(3): 523–540. https://doi.org/10.1007/s10933-008-9242-2 |
Bligh, E. G., Dyer, W. J., 1959. A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911–917. https://doi.org/10.1139/o59-099 |
Buckles, L. K., Weijers, J. W. H., Verschuren, D., et al., 2014. Sources of Core and Intact Branched Tetraether Membrane Lipids in the Lacustrine Environment: Anatomy of Lake Challa and Its Catchment, Equatorial East Africa. Geochimica et Cosmochimica Acta, 140: 106–126. https://doi.org/10.1016/j.gca.2014.04.042 |
Cao, J. T., Rao, Z. G., Jia, G. D., et al., 2017. A 15 ka pH Record from an Alpine Lake in North China Derived from the Cyclization Ratio Index of Aquatic brGDGTs and Its Paleoclimatic Significance. Organic Geochemistry, 109: 31–46. https://doi.org/10.1016/j.orggeochem.2017.02.005 |
Dang, X. Y., Xue, J. T., Yang, H., et al., 2016. Environmental Impacts on the Distribution of Microbial Tetraether Lipids in Chinese Lakes with Contrasting pH: Implications for Lacustrine Paleoenvironmental Reconstructions. Science China Earth Sciences, 59(5): 939–950. https://doi.org/10.1007/s11430-015-5234-z |
Dang, X. Y., Ding, W. H., Yang, H., et al., 2018. Different Temperature Dependence of the Bacterial brGDGT Isomers in 35 Chinese Lake Sediments Compared to that in Soils. Organic Geochemistry, 119: 72–79. https://doi.org/10.1016/j.orggeochem.2018.02.008 |
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., et al., 2014. In situ Produced Branched Glycerol Dialkyl Glycerol Tetraethers in Suspended Particulate Matter from the Yenisei River, Eastern Siberia. Geochimica et Cosmochimica Acta, 125: 476–491. https://doi.org/10.1016/j.gca.2013.10.031 |
De Jonge, C., Stadnitskaia, A., Fedotov, A., et al., 2015. Impact of Riverine Suspended Particulate Matter on the Branched Glycerol Dialkyl Glycerol Tetraether Composition of Lakes: The Outflow of the Selenga River in Lake Baikal (Russia). Organic Geochemistry, 83/84: 241–252. https://doi.org/10.1016/j.orggeochem.2015.04.004 |
Duff, D. C., Bruce, D. L., Antia, N. J., 1966. The Antibacterial Activity of Marine Planktonic Algae. Canadian Journal of Microbiology, 12(5): 877–884. https://doi.org/10.1139/m66-120 |
Fawcett, P. J., Werne, J. P., Anderson, R. S., et al., 2011. Extended Megadroughts in the Southwestern United States during Pleistocene Interglacials. Nature, 470(7335): 518–521. https://doi.org/10.1038/nature09839 |
Feng, X. P., Zhao, C., D'Andrea, W. J., et al., 2019. Temperature Fluctuations during the Common Era in Subtropical Southwestern China Inferred from brGDGTs in a Remote Alpine Lake. Earth and Planetary Science Letters, 510: 26–36. https://doi.org/10.1016/j.epsl.2018.12.028 |
French, D. W., Huguet, C., Turich, C., et al., 2015. Spatial Distributions of Core and Intact Glycerol Dialkyl Glycerol Tetraethers (GDGTs) in the Columbia River Basin and Willapa Bay, Washington: Insights into Origin and Implications for the BIT Index. Organic Geochemistry, 88: 91–112. https://doi.org/10.1016/j.orggeochem.2015.09.001 |
Guo, J. J., Glendell, M., Meersmans, J., et al., 2020. Assessing Branched Tetraether Lipids as Tracers of Soil Organic Carbon Transport through the Carminowe Creek Catchment (Southwest England). Biogeosciences, 17(12): 3183–3201. https://doi.org/10.5194/bg-17-3183-2020 |
Gupta, A. B., Shrivastava, G. C., 1965. On Antibiotic Properties of some Fresh Water Algae. Hydrobiologia, 25(1): 285–288. https://doi.org/10.1007/bf00189868 |
Hopmans, E. C., Schouten, S., Sinninghe Damsté, J. S., 2016. The Effect of Improved Chromatography on GDGT-Based Palaeoproxies. Organic Geochemistry, 93: 1–6. https://doi.org/10.1016/j.orggeochem.2015. 12.006 doi: 10.1016/j.orggeochem.2015.12.006 |
Hu, J. F., Zhou, H. D., Peng, P. A., et al., 2016. Seasonal Variability in Concentrations and Fluxes of Glycerol Dialkyl Glycerol Tetraethers in Huguangyan Maar Lake, SE China: Implications for the Applicability of the MBT-CBT Paleotemperature Proxy in Lacustrine Settings. Chemical Geology, 420: 200–212. https://doi.org/10.1016/j.chemgeo.2015.11.008 |
Hu, J. F., Zhou, H. D., Peng, P. A., et al., 2015. Reconstruction of a Paleotemperature Record from 0.3–3.7 ka for Subtropical South China Using Lacustrine Branched GDGTS from Huguangyan Maar. Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 167–176. https://doi.org/10.1016/j.palaeo.2015.06.014 |
Huang, T. L., Li, X., Rijnaarts, H., et al., 2014. Effects of Storm Runoff on the Thermal Regime and Water Quality of a Deep, Stratified Reservoir in a Temperate Monsoon Zone, in Northwest China. Science of the Total Environment, 485/486: 820–827. https://doi.org/10.1016/j.scitotenv.2014.01.008 |
Huguet, A., Meador, T. B., Laggoun-Défarge, F., et al., 2017. Production Rates of Bacterial Tetraether Lipids and Fatty Acids in Peatland under Varying Oxygen Concentrations. Geochimica et Cosmochimica Acta, 203: 103–116. https://doi.org/10.1016/j.gca.2017.01.012 |
Jenny, J. P., Normandeau, A., Francus, P., et al., 2016. Urban Point Sources of Nutrients were the Leading Cause for the Historical Spread of Hypoxia across European Lakes. Proceedings of the National Academy of Sciences of the United States of America, 113(45): 12655–12660. https://doi.org/10.1073/pnas.1605480113 |
Kirkels, F. M. S. A., Ponton, C., Galy, V., et al., 2020. From Andes to Amazon: Assessing Branched Tetraether Lipids as Tracers for Soil Organic Carbon in the Madre de Dios River System. Journal of Geophysical Research: Biogeosciences, 125(1): e2019JG005270. https://doi.org/10.1029/2019jg005270 |
Li, J. J., Zheng, F. F., Xu, M., et al., 2022. Distribution and Environmental Implication of GDGTs in Lake Surface Sediments from the Middle and Lower Reaches of Yangtze River. Earth Science. https://doi.org/10.3799/dqkx.2022.104 (in Chinese with English Abstract) |
Liu, X. L., Leider, A., Gillespie, A., et al., 2010. Identification of Polar Lipid Precursors of the Ubiquitous Branched GDGT Orphan Lipids in a Peat Bog in Northern Germany. Organic Geochemistry, 41(7): 653–660. https://doi.org/10.1016/j.orggeochem.2010.04.004 |
Liu, M., Zhang, Y. L., Shi, K., et al., 2020. Effects of Rainfall on Thermal Stratification and Dissolved Oxygen in a Deep Drinking Water Reservoir. Hydrological Processes, 34(15): 3387–3399. https://doi.org/10.1002/hyp.13826 |
Loomis, S. E., Russell, J. M., Lamb, H. F., et al., 2015. Northeast African Temperature Variability since the Late Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 423: 80–90. https://doi.org/10.1016/j.palaeo.2015.02.005 |
Loomis, S. E., Russell, J. M., Heureux, A. M., et al., 2014. Seasonal Variability of Branched Glycerol Dialkyl Glycerol Tetraethers (brGDGTs) in a Temperate Lake System. Geochimica et Cosmochimica Acta, 144: 173–187. https://doi.org/10.1016/j.gca.2014.08.027 |
Loomis, S. E., Russell, J. M., Ladd, B., et al., 2012. Calibration and Application of the Branched GDGT Temperature Proxy on East African Lake Sediments. Earth and Planetary Science Letters, 357/358: 277–288. https://doi.org/10.1016/j.epsl.2012.09.031 |
Martínez-Sosa, P., Tierney, J. E., 2019. Lacustrine brGDGT Response to Microcosm and Mesocosm Incubations. Organic Geochemistry, 127: 12–22. https://doi.org/10.1016/j.orggeochem.2018.10.011 |
Miller, D. R., Habicht, M. H., Keisling, B. A., et al., 2018. A 900-Year New England Temperature Reconstruction from in situ Seasonally Produced Branched Glycerol Dialkyl Glycerol Tetraethers (brGDGTs). Climate of the Past, 14(11): 1653–1667. https://doi.org/10.5194/cp-14-1653-2018 |
Naeher, S., Peterse, F., Smittenberg, R. H., et al., 2014. Sources of Glycerol Dialkyl Glycerol Tetraethers (GDGTs) in Catchment Soils, Water Column and Sediments of Lake Rotsee (Switzerland)—Implications for the Application of GDGT-Based Proxies for Lakes. Organic Geo-chemistry, 66: 164–173. https://doi.org/10.1016/j.orggeochem.2013. 10.017 doi: 10.1016/j.orggeochem.2013.10.017 |
Oba, M., Sakata, S., Tsunogai, U., 2006. Polar and Neutral Isopranyl Glycerol Ether Lipids as Biomarkers of Archaea in Near-Surface Sediments from the Nankai Trough. Organic Geochemistry, 37(12): 1643–1654. https://doi.org/10.1016/j.orggeochem.2006.09.002 |
Pancost, R. D., Hopmans, E. C., Sinninghe Damsté, J. S., 2001. Archaeal Lipids in Mediterranean Cold Seeps: Molecular Proxies for Anaerobic Methane Oxidation. Geochimica et Cosmochimica Acta, 65(10): 1611–1627. https://doi.org/10.1016/s0016-7037(00)00562-7 |
Pearson, E. J., Juggins, S., Talbot, H. M., et al., 2011. A Lacustrine GDGT-Temperature Calibration from the Scandinavian Arctic to Antarctic: Renewed Potential for the Application of GDGT-Paleothermometry in Lakes. Geochimica et Cosmochimica Acta, 75(20): 6225–6238. https://doi.org/10.1016/j.gca.2011.07.042 |
Peterse, F., van der Meer, J., Schouten, S., et al., 2012. Revised Calibration of the MBT-CBT Paleotemperature Proxy Based on Branched Tetraether Membrane Lipids in Surface Soils. Geochimica et Cosmochimica Acta, 96: 215–229. https://doi.org/10.1016/j.gca.2012.08.011 |
Pitcher, A., Hopmans, E. C., Schouten, S., et al., 2009. Separation of Core and Intact Polar Archaeal Tetraether Lipids Using Silica Columns: Insights into Living and Fossil Biomass Contributions. Organic Geochemistry, 40(1): 12–19. https://doi.org/10.1016/j.orggeochem.2008.09.008 |
Pitcher, A., Rychlik, N., Hopmans, E. C., et al., 2010. Crenarchaeol Dominates the Membrane Lipids of Candidatus Nitrososphaera Gargensis, a Thermophilic Group I. 1b Archaeon. The ISME Journal, 4(4): 542–552. https://doi.org/10.1038/ismej.2009.138 |
Powers, L. A., Werne, J. P., Johnson, T. C., et al., 2004. Crenarchaeotal Membrane Lipids in Lake Sediments: A New Paleotemperature Proxy for Continental Paleoclimate Reconstruction? Geology, 32(7): 613–616. https://doi.org/10.1130/g20434.1 doi: 10.1130/G20434.1 |
Powers, L. A., Werne, J. P., Vanderwoude, A. J., et al., 2010. Applicability and Calibration of the TEX86 Paleothermometer in Lakes. Organic Geochemistry, 41(4): 404–413. https://doi.org/10.1016/j.orggeochem. 2009.11.009 doi: 10.1016/j.orggeochem.2009.11.009 |
Powers, L. A., Johnson, T. C., Werne, J. P., et al., 2011. Organic Geochemical Records of Environmental Variability in Lake Malawi during the Last 700 Years, Part I: The TEX86 Temperature Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 303(1/2/3/4): 133–139. https://doi.org/10.1016/j.palaeo.2010.09.006 |
Qian, W., Gan, J. P., Liu, J. W., et al., 2018. Current Status of Emerging Hypoxia in a Eutrophic Estuary: The Lower Reach of the Pearl River Estuary, China. Estuarine, Coastal and Shelf Science, 205: 58–67. https://doi.org/10.1016/j.ecss.2018.03.004 |
Qian, S., Yang, H., Dong, C. H., et al., 2019. Rapid Response of Fossil Tetraether Lipids in Lake Sediments to Seasonal Environmental Variables in a Shallow Lake in Central China: Implications for the Use of Tetraether-Based Proxies. Organic Geochemistry, 128: 108–121. https://doi.org/10.1016/j.orggeochem.2018.12.007 |
Rabalais, N. N., Turner, R. E., Díaz, R. J., et al., 2009. Global Change and Eutrophication of Coastal Waters. ICES Journal of Marine Science, 66(7): 1528–1537. https://doi.org/10.1093/icesjms/fsp047 |
Russell, J. M., Hopmans, E. C., Loomis, S. E., et al., 2018. Distributions of 5- and 6-Methyl Branched Glycerol Dialkyl Glycerol Tetraethers (BRGDGTS) in East African Lake Sediment: Effects of Temperature, pH, and New Lacustrine Paleotemperature Calibrations. Organic Geochemistry, 117: 56–69. https://doi.org/10.1016/j.orggeochem. 2017.12.003 doi: 10.1016/j.orggeochem.2017.12.003 |
Sayer, C. D., Davidson, T. A., Jones, J. I., 2010. Seasonal Dynamics of Macrophytes and Phytoplankton in Shallow Lakes: A Eutrophication-Driven Pathway from Plants to Plankton? Freshwater Biology, 55(3): 500–513. https://doi.org/10.1111/j.1365-2427.2009.02365.x |
Schouten, S., Hopmans, E. C., Schefuß, E., et al., 2002. Distributional Variations in Marine Crenarchaeotal Membrane Lipids: A New Tool for Reconstructing Ancient Sea Water Temperatures? Earth and Planetary Science Letters, 204(1/2): 265–274. https://doi.org/10.1016/s0012-821x(02)00979-2 |
Schubotz, F., Wakeham, S. G., Lipp, J. S., et al., 2009. Detection of Microbial Biomass by Intact Polar Membrane Lipid Analysis in the Water Column and Surface Sediments of the Black Sea. Environmental Microbiology, 11(10): 2720–2734. https://doi.org/10.1111/j.1462-2920.2009.01999.x |
Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., et al., 2002. Crenarchaeol: The Characteristic Core Glycerol Dibiphytanyl Glycerol Tetraether Membrane Lipid of Cosmopolitan Pelagic Crenarchaeota. Journal of Lipid Research, 43(10): 1641–1651. https://doi.org/10.1194/jlr.m200148-jlr200 |
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., et al., 2012a. Intact Polar and Core Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Group I. 1a and I. 1b Thaumarchaeota in Soil. Applied and Environmental Microbiology, 78(19): 6866–6874. https://doi.org/10.1128/aem.01681-12 |
Sinninghe Damsté, J. S., Ossebaar, J., Schouten, S., et al., 2012b. Distribution of Tetraether Lipids in the 25-ka Sedimentary Record of Lake Challa: Extracting Reliable TEX86 and MBT/CBT Palaeotemperatures from an Equatorial African Lake. Quaternary Science Reviews, 50: 43–54. https://doi.org/10.1016/j.quascirev.2012.07.001 |
Sturt, H. F., Summons, R. E., Smith, K., et al., 2004. Intact Polar Membrane Lipids in Prokaryotes and Sediments Deciphered by High-Performance Liquid Chromatography/Electrospray Ionization Multistage Mass Spectrometry—New Biomarkers for Biogeochemistry and Microbial Ecology. Rapid Communications in Mass Spectrometry, 18(6): 617–628. https://doi.org/10.1002/rcm.1378 |
Sun, Q., Chu, G. Q., Liu, M. M., et al., 2011. Distributions and Temperature Dependence of Branched Glycerol Dialkyl Glycerol Tetraethers in Recent Lacustrine Sediments from China and Nepal. Journal of Geophysical Research, 116(G1): G01008. https://doi.org/10.1029/2010jg001365 |
Tierney, J. E., Russell, J. M., 2009. Distributions of Branched GDGTS in a Tropical Lake System: Implications for Lacustrine Application of the MBT/CBT Paleoproxy. Organic Geochemistry, 40(9): 1032–1036. https://doi.org/10.1016/j.orggeochem.2009.04.014 |
Tierney, J. E., Mayes, M. T., Meyer, N., et al., 2010a. Late-Twentieth-Century Warming in Lake Tanganyika Unprecedented since AD 500. Nature Geoscience, 3(6): 422–425. https://doi.org/10.1038/ngeo865 |
Tierney, J. E., Russell, J. M., Eggermont, H., et al., 2010b. Environmental Controls on Branched Tetraether Lipid Distributions in Tropical East African Lake Sediments. Geochimica et Cosmochimica Acta, 74(17): 4902–4918. https://doi.org/10.1016/j.gca.2010.06.002 |
Tyler, J. J., Nederbragt, A. J., Jones, V. J., et al., 2010. Assessing Past Temperature and Soil pH Estimates from Bacterial Tetraether Membrane Lipids: Evidence from the Recent Lake Sediments of Lochnagar, Scotland. Journal of Geophysical Research, 115(G1): G01015. https://doi.org/10.1029/2009jg001109 |
Wang, H. Y., Liu, W. G., Zhang, C. L., et al., 2012. Distribution of Glycerol Dialkyl Glycerol Tetraethers in Surface Sediments of Lake Qinghai and Surrounding Soil. Organic Geochemistry, 47: 78–87. https://doi.org/10.1016/j.orggeochem.2012.03.008 |
Wang, M. Y., Zheng, Z., Man, M. L., et al., 2017. Branched GDGT-Based Paleotemperature Reconstruction of the Last 30, 000 Years in Humid Monsoon Region of Southeast China. Chemical Geology, 463: 94–102. https://doi.org/10.1016/j.chemgeo.2017.05.014 |
Wang, Y. J., Li, H. B., Xing, P., et al., 2017. Contrasting Patterns of Free-Living Bacterioplankton Diversity in Macrophyte-Dominated Versus Phytoplankton Blooming Regimes in Dianchi Lake, a Shallow Lake in China. Chinese Journal of Oceanology and Limnology, 35(2): 336–349. https://doi.org/10.1007/s00343-016-5277-9 |
Wang, Z. C., Li, D., Li, Z. J., 2012. Rainfalls Accelerate the Decline Process of Microcystis (Cyanophyceae) Blooms. Fresenius Environmental Bulletin, 21: 2145–2152. https://doi.org/10.2478/v10265-012-0034-4 |
Weber, Y., Sinninghe Damsté, J. S., Zopfi, J., et al., 2018. Redox-Dependent Niche Differentiation Provides Evidence for Multiple Bacterial Sources of Glycerol Tetraether Lipids in Lakes. Proceedings of the National Academy of Sciences of the United States of America, 115(43): 10926–10931. https://doi.org/10.1073/pnas.1805186115 |
Weijers, J. W. H., Schouten, S., Hopmans, E. C., et al., 2006. Membrane Lipids of Mesophilic Anaerobic Bacteria Thriving in Peats Have Typical Archaeal Traits. Environmental Microbiology, 8(4): 648–657. https://doi.org/10.1111/j.1462-2920.2005.00941.x |
Weijers, J. W. H., Schouten, S., van den Donker, J. C., et al., 2007. Environmental Controls on Bacterial Tetraether Membrane Lipid Distribution in Soils. Geochimica et Cosmochimica Acta, 71(3): 703–713. https://doi.org/10.1016/j.gca.2006.10.003 |
Wu, J., Yang, H., Pancost, R. D., et al., 2021. Variations in Dissolved O2 in a Chinese Lake Drive Changes in Microbial Communities and Impact Sedimentary GDGT Distributions. Chemical Geology, 579: 120348. https://doi.org/10.1016/j.chemgeo.2021.120348 |
Xiong, Z. Q., Zhang, Y. F., Mao, X., et al., 2020. Magnetic Characteristics of ZK145 Borehole Sediments in Wuhan Area and Its Records of Paleoflood. Earth Science, 45(2): 663–671. https://doi.org/10.3799/dqkx.2018.398 (in Chinese with English Abstract) |
Yang, H., Xiao, W. J., Słowakiewicz, M., et al., 2019. Depth-Dependent Variation of Archaeal Ether Lipids along Soil and Peat Profiles from Southern China: Implications for the Use of Isoprenoidal GDGTs as Environmental Tracers. Organic Geochemistry, 128: 42–56. https://doi.org/10.1016/j.orggeochem.2018.12.009 |
Zhang, Y. F., Li, C. A., Chen, L., et al., 2009. Magnetic Fabric of Holocene Palaeo-Floods Events in Jianghan Plain. Earth Science, 34(6): 985–992 (in Chinese with English Abstract) doi: 10.3321/j.issn:1000-2383.2009.06.013 |
Zhang, R., Li, T. G., Russell, J., et al., 2018. High-Resolution Recon-struction of Historical Flood Events in the Changjiang River Catchment Based on Geochemical and Biomarker Records. Chemical Geology, 499: 58–70. https://doi.org/10.1016/j.chemgeo.2018.09.003 |
Zink, K. G., Vandergoes, M. J., Mangelsdorf, K., et al., 2010. Application of Bacterial Glycerol Dialkyl Glycerol Tetraethers (GDGTs) to Develop Modern and Past Temperature Estimates from New Zealand Lakes. Organic Geochemistry, 41(9): 1060–1066. https://doi.org/10.1016/j.orggeochem.2010.03.004 |