Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Longqi Li, Yunhuang Yang, Tianzhi Zhou, Mengyun Wang. Data-Driven Combination-Interval Prediction for Landslide Displacement Based on Copula and VMD-WOA-KELM Method. Journal of Earth Science, 2025, 36(1): 291-306. doi: 10.1007/s12583-021-1555-3
Citation: Longqi Li, Yunhuang Yang, Tianzhi Zhou, Mengyun Wang. Data-Driven Combination-Interval Prediction for Landslide Displacement Based on Copula and VMD-WOA-KELM Method. Journal of Earth Science, 2025, 36(1): 291-306. doi: 10.1007/s12583-021-1555-3

Data-Driven Combination-Interval Prediction for Landslide Displacement Based on Copula and VMD-WOA-KELM Method

doi: 10.1007/s12583-021-1555-3
More Information
  • Corresponding author: Longqi Li, lilongqi2014@cdut.edu.cn
  • Received Date: 29 Jun 2021
  • Accepted Date: 26 Sep 2021
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction, a data-driven combination-interval prediction method (CIPM) based on copula and variational-mode-decomposition associated with kernel-based-extreme-learning-machine optimized by the whale optimization algorithm (VMD-WOA-KELM) is proposed in this paper. Firstly, the displacement is decomposed by VMD to three IMF components and a residual component of different fluctuation characteristics. The key impact factors of each IMF component are selected according to Copula model, and the corresponding WOA-KELM is established to conduct point prediction. Subsequently, the parametric method (PM) and non-parametric method (NPM) are used to estimate the prediction error probability density distribution (PDF) of each component, whose prediction interval (PI) under the 95% confidence level is also obtained. By means of the differential evolution algorithm (DE), a weighted combination model based on the PIs is built to construct the combination-interval (CI). Finally, the CIs of each component are added to generate the total PI. A comparative case study shows that the CIPM performs better in constructing landslide displacement PI with high performance.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Cao, Y., Yin, K. L., Alexander, D. E., et al., 2016. Using an Extreme Learning Machine to Predict the Displacement of Step-Like Landslides in Relation to Controlling Factors. Landslides, 13(4): 725–736. https://doi.org/10.1007/s10346-015-0596-z
    Corominas, J., Moya, J., Ledesma, A., et al., 2005. Prediction of Ground Displacements and Velocities from Groundwater Level Changes at the Vallcebre Landslide (Eastern Pyrenees, Spain). Landslides, 2(2): 83–96. https://doi.org/10.1007/s10346-005-0049-1
    Deng, D. M., Liang, Y., Wang, L. Q., et al., 2017. Displacement Prediction Method Based on Ensemble Empirical Mode Decomposition and Support Vector Machine Regression—A Case of Landslides in Three Gorges Reservoir Area. Rock and Soil Mechanics, 38(12): 3660–3669. https://doi.org/10.16285/j.rsm.2017.12.034 (in Chinese with English Abstract)
    Dragomiretskiy, K., Zosso, D., 2014. Variational Mode Decomposition. IEEE Transactions on Signal Processing, 62(3): 531–544. https://doi.org/10.1109/TSP.2013.2288675
    Du, J., Yin, K. L., Lacasse, S., 2013. Displacement Prediction in Colluvial Landslides, Three Gorges Reservoir, China. Landslides, 10(2): 203–218. https://doi.org/10.1007/s10346-012-0326-8
    Gao, Q. Y., 2019. Study on Combination of Risk Probability Rainfall Threshold of Flash Flood in Small Watershed Based on Copula Function: [Dissertation]. Zhengzhou University, Zhengzhou. 54–60 (in Chinese with English Abstract)
    Herrera, G., Fernández-Merodo, J. A., Mulas, J., et al., 2009. A Landslide Forecasting Model Using Ground Based SAR Data: The Portalet Case Study. Engineering Geology, 105(3/4): 220–230. https://doi.org/10.1016/j.enggeo.2009.02.009
    Huang, F. M., Huang, J. S., Jiang, S. H., et al., 2017. Landslide Displacement Prediction Based on Multivariate Chaotic Model and Extreme Learning Machine. Engineering Geology, 218: 173–186. https://doi.org/10.1016/j.enggeo.2017.01.016
    Huang, G. B., 2003. Learning Capability and Storage Capacity of Two-Hidden-Layer Feedforward Networks. IEEE Transactions on Neural Networks, 14(2): 274–281. https://doi.org/10.1109/TNN.2003.809401
    Huang, G. B., Chen, L., Siew, C. K., 2006a. Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes. IEEE Transactions on Neural Networks, 17(4): 879–892. https://doi.org/10.1109/tnn.2006.875977
    Huang, G. B., Zhu, Q. Y., Siew, C. K., 2006b. Extreme Learning Machine: Theory and Applications. Neurocomputing, 70(1/2/3): 489–501. https://doi.org/10.1016/j.neucom.2005.12.126
    Huang, G. B., Zhou, H. M., Ding, X. J., et al., 2012. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 42(2): 513–529. https://doi.org/10.1109/tsmcb.2011.2168604
    Intrieri, E., Gigli, G., Casagli, N., et al., 2013. Brief Communication "Landslide Early Warning System: Toolbox and General Concepts". Natural Hazards and Earth System Sciences, 13(1): 85–90. https://doi.org/10.5194/nhess-13-85-2013
    Khosravi, A., Nahavandi, S., Creighton, D., 2010. A Prediction Interval-Based Approach to Determine Optimal Structures of Neural Network Metamodels. Expert Systems with Applications, 37(3): 2377–2387. https://doi.org/10.1016/j.eswa.2009.07.059
    Khosravi, A., Nahavandi, S., Creighton, D., et al., 2011. Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances. IEEE Transactions on Neural Networks, 22(9): 1341–1356. https://doi.org/10.1109/TNN.2011.2162110
    Li, C. D., Criss, R. E., Fu, Z. Y., et al., 2021. Evolution Characteristics and Displacement Forecasting Model of Landslides with Stair-Step Sliding Surface along the Xiangxi River, Three Gorges Reservoir Region, China. Engineering Geology, 283: 105961. https://doi.org/10.1016/j.enggeo.2020.105961
    Li, D. Y., Yin, K. L., Leo, C., 2010. Analysis of Baishuihe Landslide Influenced by the Effects of Reservoir Water and Rainfall. Environmental Earth Sciences, 60(4): 677–687. https://doi.org/10.1007/s12665-009-0206-2
    Li, L. Q., Wang, M. Y., Zhao, H. Q., et al., 2021. Baishuihe Landslide Displacement Prediction Based on CEEMDAN-BA-SVR-Adaboost Model. Journal of Yangtze River Scientific Research Institute, 38(6): 52–59+66 (in Chinese with English Abstract)
    Li, L. W., Wu, Y. P., Miao, F. S., et al., 2018. Displacement Prediction of Landslides Based on Variational Mode Decomposition and GWO-MIC-SVR Model. Chinese Journal of Rock Mechanics and Engineering, 37(6): 1395–1406. https://doi.org/10.13722/j.cnki.jrme.2017.1508 (in Chinese with English Abstract)
    Li, L. W., Wu, Y. P., Miao, F. S., et al., 2019. Displacement Interval Prediction Method for Step-Like Landslides Considering Deformation State Dynamic Switching. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2272–2287 (in Chinese with English Abstract)
    Li, X. Z., Kong, J. M., Wang, Z. Y., 2012. Landslide Displacement Prediction Based on Combining Method with Optimal Weight. Natural Hazards, 61(2): 635–646. https://doi.org/10.1007/s11069-011-0051-y
    Lian, C., Zeng, Z. G., Yao, W., et al., 2014. Extreme Learning Machine for the Displacement Prediction of Landslide under Rainfall and Reservoir Level. Stochastic Environmental Research and Risk Assessment, 28(8): 1957–1972. https://doi.org/10.1007/s00477-014-0875-6
    Liao, K., Wu, Y. P., Li, L. W., et al., 2019. Displacement Prediction Model of Landslide Based on Time Series and GWO-ELM. Journal of Central South University (Science and Technology), 50(3): 619–626 (in Chinese with English Abstract)
    Lin, D. C., An, F. P., Guo, Z. L., et al., 2011. Prediction of Landslide Displacement by Multi-Modal Support Vector Machine Model. Rock and Soil Mechanics, 32(S1): 451–458. https://doi.org/10.16285/j.rsm.2011.s1.051 (in Chinese with English Abstract)
    Lins, I. D., Droguett, E. L., das Chagas Moura, M., et al., 2015. Computing Confidence and Prediction Intervals of Industrial Equipment Degradation by Bootstrapped Support Vector Regression. Reliability Engineering & System Safety, 137: 120–128. https://doi.org/10.1016/j.ress.2015.01.007
    Liu, Y., Yin, K. L., Chen, L. X., et al., 2016. A Community-Based Disaster Risk Reduction System in Wanzhou, China. International Journal of Disaster Risk Reduction, 19: 379–389. https://doi.org/10.1016/j.ijdrr.2016.09.009
    Ma, J. W., Tang, H. M., Liu, X., et al., 2017. Establishment of a Deformation Forecasting Model for a Step-Like Landslide Based on Decision Tree C5.0 and Two-Step Cluster Algorithms: a Case Study in the Three Gorges Reservoir Area, China. Landslides, 14(3): 1275–1281. https://doi.org/10.1007/s10346-017-0804-0
    Ma, J. W., Tang, H. M., Liu, X., et al., 2018. Probabilistic Forecasting of Landslide Displacement Accounting for Epistemic Uncertainty: a Case Study in the Three Gorges Reservoir Area, China. Landslides, 15(6): 1145–1153. https://doi.org/10.1007/s10346-017-0941-5
    Miao, F. S., Wu, Y. P., Xie, Y. H., et al., 2018. Prediction of Landslide Displacement with Step-Like Behavior Based on Multialgorithm Optimization and a Support Vector Regression Model. Landslides, 15(3): 475–488. https://doi.org/10.1007/s10346-017-0883-y
    Miao, S. J., Hao, X., Guo, X. L., et al., 2017. Displacement and Landslide Forecast Based on an Improved Version of Saito's Method Together with the Verhulst-Grey Model. Arabian Journal of Geosciences, 10(3): 53. https://doi.org/10.1007/s12517-017-2838-y
    Mirjalili, S., Mirjalili, S. M., Lewis, A., 2014. Grey Wolf Optimizer. Advances in Engineering Software, 69(3): 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
    Phoon, K. K., Kulhawy, F. H., 1999a. Characterization of Geotechnical Variability. Canadian Geotechnical Journal, 36(4): 612–624. https://doi.org/10.1139/t99-038
    Phoon, K. K., Kulhawy, F. H., 1999b. Evaluation of Geotechnical Property Variability. Canadian Geotechnical Journal, 36(4): 625–639. https://doi.org/10.1139/t99-039
    Posada, D., Buckley, T. R., 2004. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches over Likelihood Ratio Tests. Systematic Biology, 53(5): 793–808. https://doi.org/10.1080/10635150490522304 [PubMed] doi: 10.1080/10635150490522304[PubMed
    Reboredo, J. C., 2011. How Do Crude Oil Prices Co-Move? A Copula Approach. Energy Economics, 33(5): 948–955. https://doi.org/10.1016/j.eneco.2011.04.006
    Saito, M., 1965. Forecasting the Time of Occurrence of a Slope Failure. In: Proceedings of the 6th International Mechanics and Foundation Engineering. Pergamon Press, Oxford. 537–541
    Sebbar, A., Heddam, S., Djemili, L., 2020. Kernel Extreme Learning Machines (KELM): A New Approach for Modeling Monthly Evaporation (EP) from Dams Reservoirs. Physical Geography, 42(4), 351–373. https://doi.org/10.1080/02723646.2020.1776087
    Shrestha, D. L., Solomatine, D. P., 2006. Machine Learning Approaches for Estimation of Prediction Interval for the Model Output. Neural Networks, 19(2): 225–235. https://doi.org/10.1016/j.neunet.2006.01.012
    Shrivastava, N. A., Lohia, K., Panigrahi, B. K., 2016. A Multiobjective Framework for Wind Speed Prediction Interval Forecasts. Renewable Energy, 87: 903–910. https://doi.org/10.1016/j.renene.2015.08.038
    Shrivastava, N. A., Panigrahi, B. K., 2013. Point and Prediction Interval Estimation for Electricity Markets with Machine Learning Techniques and Wavelet Transforms. Neurocomputing, 118: 301–310. https://doi.org/10.1016/j.neucom.2013.02.039
    Sklar, A., 1996. Random Variables, Distribution Functions, and Copulas—A Personal Look Backward and Forward. Institute of Mathematical Statistics Lecture Notes: Monograph Series, 28: 1–14. https://doi.org/10.1214/lnms/1215452606
    Tang, J., 2018. Correlation Analysis and Modeling of Power Network Planning Index Based on Copula Function: [Dissertation]. Kunming University of Science and Technology, Kunming (in Chinese with English Abstract)
    Wan, C., Xu, Z., Wang, Y. L., et al., 2014. A Hybrid Approach for Probabilistic Forecasting of Electricity Price. IEEE Transactions on Smart Grid, 5(1): 463–470. https://doi.org/10.1109/TSG.2013.2274465
    Wang, L., 2018. The Method of Optimum Combined Power Load Forecasting Based on Differential Evolution Optimization Weight: [Dissertation]. Tianjin University, Tianjin (in Chinese with English Abstract)
    Wang, X. L., Xie, H. Y., Wang, J. J., et al., 2020. Prediction of Dam Deformation Based on Bootstrap and ICS-MKELM Algorithms. Journal of Hydroelectric Engineering, 39(3): 106–120 (in Chinese with English Abstract)
    Wang, Y. K., Tang, H. M., Wen, T., et al., 2019. A Hybrid Intelligent Approach for Constructing Landslide Displacement Prediction Intervals. Applied Soft Computing, 81: 105506. https://doi.org/10.1016/j.asoc.2019.105506
    Wu, X. L., Zhan, F. B., Zhang, K. X., et al., 2016. Application of a Two-Step Cluster Analysis and the Apriori Algorithm to Classify the Deformation States of Two Typical Colluvial Landslides in the Three Gorges, China. Environmental Earth Sciences, 75(2): 146–161. https://doi.org/10.1007/s12665-015-5022-2
    Xiang, Q. L., 2012. Study for Dam Deformation Monitoring Data Based On Time Series Anylysis: [Dissertation]. Northwest A & F University, Yanglin (in Chinese with English Abstract)
    Xu, S. L., Niu, R. Q., 2018. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term Memory Neural Network in Three Gorges Area, China. Computers & Geosciences, 111: 87–96. https://doi.org/10.1016/j.cageo.2017.10.013
    Yang, M., Yang, C. L., Dong, J. C., 2019. Ultra-Short Term Probabilistic Intervals Forecasting of Wind Power Based on Optimization Model of Forecasting Error Distribution. Acta Energiae Solaris Sinica, 40(10): 2067–2978 (in Chinese with English Abstract)
    Yang, X. Y., Zhang, Y. F., Ye, T. Z., et al., 2020. Prediction of Combination Probability Interval of Wind Power Based on Naive Bayes. High Voltage Engineering, 46(3): 1099–1108 (in Chinese with English Abstract)
    Yao, W. M., Li, C. D., Zuo, Q. J., et al., 2019. Spatiotemporal Deformation Characteristics and Triggering Factors of Baijiabao Landslide in Three Gorges Reservoir Region, China. Geomorphology, 343: 34–47. https://doi.org/10.1016/j.geomorph.2019.06.024
    Yao, W., Zeng, Z. G., Lian, C., et al., 2015. Training Enhanced Reservoir Computing Predictor for Landslide Displacement. Engineering Geology, 188: 101–109. https://doi.org/10.1016/j.enggeo.2014.11.008
    Yin, K. L., Yan, T. Z., 1996. Landslide Prediction and Related Models. China Journal of Rock Mechanics and Engineering, 1: 1–8 (in Chinese with English Abstract)
    Yin, Y. P., Wang, H. D., Gao, Y. L., et al., 2010. Real-Time Monitoring and Early Warning of Landslides at Relocated Wushan Town, the Three Gorges Reservoir, China. Landslides, 7(3): 339–349. https://doi.org/10.1007/s10346-010-0220-1
    Zhang, K., Zhang, K., Bao, R., et al., 2021. Intelligent Prediction of Landslide Displacements Based on Optimized Empirical Mode Decomposition and K-Mean Clustering. Rock and Soil Mechanics, 42(1): 211–223 (in Chinese with English Abstract)
    Zhou, C., Yin, K. L., Cao, Y., et al., 2016. Application of Time Series Analysis and PSO-SVM Model in Predicting the Bazimen Landslide in the Three Gorges Reservoir, China. Engineering Geology, 204: 108–120. https://doi.org/10.1016/j.enggeo.2016.02.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views(11) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return