Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 4
Aug 2022
Turn off MathJax
Article Contents
Jin Chen, Hong Tang, Wenkai Chen, Naisen Yang. A Prediction Method of Ground Motion for Regions without Available Observation Data (LGB-FS) and Its Application to both Yangbi and Maduo Earthquakes in 2021. Journal of Earth Science, 2022, 33(4): 869-884. doi: 10.1007/s12583-021-1560-6
Citation: Jin Chen, Hong Tang, Wenkai Chen, Naisen Yang. A Prediction Method of Ground Motion for Regions without Available Observation Data (LGB-FS) and Its Application to both Yangbi and Maduo Earthquakes in 2021. Journal of Earth Science, 2022, 33(4): 869-884. doi: 10.1007/s12583-021-1560-6

A Prediction Method of Ground Motion for Regions without Available Observation Data (LGB-FS) and Its Application to both Yangbi and Maduo Earthquakes in 2021

doi: 10.1007/s12583-021-1560-6
More Information
  • Corresponding author: Hong Tang, hongtang@bnu.edu.cn
  • Received Date: 13 Jul 2021
  • Accepted Date: 07 Oct 2021
  • Issue Publish Date: 30 Aug 2022
  • Currently available earthquake attenuation equations are locally applicable, and methods based on observation data are not applicable in areas without available observation data. To solve the above problems and further improve the prediction accuracy of ground motion parameters, we present a prediction model referred to as a light gradient boosting machine with feature selection (LGB-FS). It is based on a light gradient boosting machine (LightGBM) constructed using historical strong motion data from the NGA-west2 database and can quickly simulate the distribution of strong motion near the epicenter after an earthquake. Cases study shows that compared with GMPE methods and those based on real-time observation data, the model has a better prediction effect in areas without available observation data and can be applied to Yangbi Earthquake and Maduo Earthquake. The feature importance evaluation based on both information gains and partial dependence plots (PDPs) reveals the complex relationships between multiple factors and ground motion parameters, allowing us to better understand their mechanisms and connections.

     

  • loading
  • Abrahamson, N. A., Silva, W. J., Kamai, R., 2014. Summary of the ASK14 Ground Motion Relation for Active Crustal Regions. Earthquake Spectra, 30(3): 1025–1055. https://doi.org/10.1193/070913eqs198m
    Abrahamson, N., Silva, W., 2008. Summary of the Abrahamson & Silva NGA Ground-Motion Relations. Earthquake Spectra, 24(1): 67–97. https://doi.org/10.1193/1.2924360
    Akkar, S., Sandıkkaya, M. A., Bommer, J. J., 2014. Empirical Ground-Motion Models for Point- and Extended-Source Crustal Earthquake Scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12(1): 359–387. https://doi.org/10.1007/s10518-013-9461-4
    Alavi, A. H., Gandomi, A. H., 2011. Prediction of Principal Ground-Motion Parameters Using a Hybrid Method Coupling Artificial Neural Networks and Simulated Annealing. Computers & Structures, 89(23/24): 2176–2194. https://doi.org/10.1016/j.compstruc.2011.08.019
    Alavi, A. H., Gandomi, A. H., Modaresnezhad, M., et al., 2011. New Ground-Motion Prediction Equations Using Multi Expression Programing. Journal of Earthquake Engineering, 15(4): 511–536. https://doi.org/10.1080/13632469.2010.526752
    Ambraseys, N. N., Douglas, J., 2003. Near-Field Horizontal and Vertical Earthquake Ground Motions. Soil Dynamics and Earthquake Engineering, 23(1): 1–18. https://doi.org/10.1016/S0267-7261(02)00153-7
    Ambraseys, N. N., Simpson, K. A., Bommer, J. J., 1996. Prediction of Horizontal Response Spectra in Europe. Earthquake Engineering & Structural Dynamics, 25(4): 371–400. https://doi.org/10.1002/(sici)1096-9845(199604)25:4371:aid-eqe550>3.0.co;2-a doi: 10.1002/(sici)1096-9845(199604)25:4371:aid-eqe550>3.0.co;2-a
    Aptikaev, F., Kopnichev, J., 1980. Correlation between Seismic Vibration Parameters and Type of Faulting. In: Proceedings of Seventh World Conference on Earthquake Engineering. September 8–13, 1980, Istanbul
    Boore, D. M., Stewart, J. P., Seyhan, E., et al., 2013. NGA-West2 Equations for Predicting Response Spectral Accelerations for Shallow Crustal Earthquakes. In: PEER Report No. 2013. Pacific Earthquake Engineering Research Center, University of California, Berkeley
    Bozorgnia, Y., Abrahamson, N. A., Atik, L. A., et al., 2014. NGA-West2 Research Project. Earthquake Spectra, 131(3): 409–444 https://www.researchgate.net/publication/261359931_NGA-West2_research_project
    Breiman, L., Friedman, J. H., Olshen, R. A., et al., 1984. Classification and Regression Trees (CART). Biometrics, 40(3): 874. https://doi.org/10.2307/2530946
    Campbell, K. W., 1985. Strong Motion Attenuation Relations: A Ten-Year Perspective. Earthquake Spectra, 1(4): 759–804. https://doi.org/10.1193/1.1585292
    Campbell, K. W., Bozorgnia, Y., 2008. NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 S. Earthquake Spectra, 24(1): 139–171. https://doi.org/10.1193/1.2857546
    Campbell, K. W., Bozorgnia, Y., 2014. NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra, 30(3): 1087–1115. https://doi.org/10.1193/062913eqs175m
    Cheng, H. L., Zhou, J. M., Chen, Z. Y., et al., 2021. A Comparative Study of the Seismic Performances and Failure Mechanisms of Slopes Using Dynamic Centrifuge Modeling. Journal of Earth Science, 32(5): 1166–1173. https://doi.org/10.1007/s12583-021-1481-4
    Chiou, B. S.-J., Youngs, R. R., 2014. Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 30(3): 1117–1153. https://doi.org/10.1193/072813eqs219m
    Derakhshani, A., Foruzan, A. H., 2019. Predicting the Principal Strong Ground Motion Parameters: A Deep Learning Approach. Applied Soft Computing, 80: 192–201. https://doi.org/10.1016/j.asoc.2019.03.029
    Derras, B., Bard, P. Y., Cotton, F., 2014. Towards Fully Data Driven Ground-Motion Prediction Models for Europe. Bulletin of Earthquake Engineering, 12(1): 495–516. https://doi.org/10.1007/s10518-013-9481-0
    Derras, B., Bard, P. Y., Cotton, F., et al., 2012. Adapting the Neural Network Approach to PGA Prediction: An Example Based on the KIK-NET Data. Bulletin of the Seismological Society of America, 102(4): 1446–1461. https://doi.org/10.1785/0120110088
    Douglas, J., 2003. Earthquake Ground Motion Estimation Using Strong-Motion Records: A Review of Equations for the Estimation of Peak Ground Acceleration and Response Spectral Ordinates. Earth-Science Reviews, 61(1/2): 43–104. https://doi.org/10.1016/S0012-8252(02)00112-5
    Friedman, J. H., 2001. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5): 1189–1232. https://doi.org/10.1214/aos/1013203451
    Gandomi, A. H., Alavi, A. H., Mousavi, M., et al., 2011. A Hybrid Computational Approach to Derive New Ground-Motion Prediction Equations. Engineering Applications of Artificial Intelligence, 24(4): 717–732. https://doi.org/10.1016/j.engappai.2011.01.005
    Hao, H. Z., Gu, Q., Hu, X. M., 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091–3106. https://doi.org/10.3799/dqkx.2020.360
    Heath, D. C., Wald, D. J., Worden, C. B., et al., 2020. A Global Hybrid VS30 Map with a Topographic Slope-Based Default and Regional Map Insets. Earthquake Spectra, 36(3): 1570–1584. https://doi.org/10.1177/8755293020911137
    Idriss, I. M., 2013. NGA-West2 Model for Estimating Average Horizontal Values of Pseudo-Absolute Spectral Accelerations Generated by Crustal Earthquakes. In: PEER Report No. 2013. Pacific Earthquake Engineering Research Center, University of California, Berkeley
    Jafariavval, Y., Derakhshani, A., 2020. New Formulae for Capacity Energy-Based Assessment of Liquefaction Triggering. Marine Georesources & Geotechnology, 38(2): 214–222. https://doi.org/10.1080/1064119x.2019.1566297
    Kafaei Mohammadnejad, A., Mousavi, S. M., Torabi, M., et al., 2012. Robust Attenuation Relations for Peak Time-Domain Parameters of Strong Ground Motions. Environmental Earth Sciences, 67(1): 53–70. https://doi.org/10.1007/s12665-011-1479-9
    Kayabali, K., Beyaz, T., 2011. Strong Motion Attenuation Relationship for Turkey—A Different Perspective. Bulletin of Engineering Geology and the Environment, 70(3): 467–481. https://doi.org/10.1007/s10064-010-0335-6
    Ke, G. L., Meng, Q., Finley, T., et al., 2017. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: NIPS'17: Proceeding of the 31st International Conference on Neural Information Processing Systems, December 2017, New York
    Molnar, C., 2019. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Leanpub
    Nagelkerke, N. J. D., 1991. A Note on a General Definition of the Coefficient of Determination. Biometrika, 78(3): 691–692. https://doi.org/10.1093/biomet/78.3.691
    Şen, Z., 2011. Supervised Fuzzy Logic Modeling for Building Earthquake Hazard Assessment. Expert Systems with Applications, 38(12): 14564–14573. https://doi.org/10.1016/j.eswa.2011.05.026
    Shiuly, A., Roy, N., Sahu, R. B., 2020. Prediction of Peak Ground Acceleration for Himalayan Region Using Artificial Neural Network and Genetic Algorithm. Arabian Journal of Geosciences, 13(5): 1–10. https://doi.org/10.1007/s12517-020-5211-5
    Singer, D. A., 2021. How Deep Learning Networks could be Designed to Locate Mineral Deposits. Journal of Earth Science, 32(2): 288–292. https://doi.org/10.1007/s12583-020-1399-2
    Thomas, S., Pillai, G. N., Pal, K., 2017. Prediction of Peak Ground Acceleration Using ϵ-SVR, Ν-SVR and Ls-SVR Algorithm. Geomatics, Natural Hazards and Risk, 8(2): 177–193. https://doi.org/10.1080/19475705.2016.1176604
    Tobler, W. R., 1970. A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46(Sup1): 234–240. https://doi.org/10.2307/143141
    Tuv, E., Borisov, A., Runger, G., et al., 2009. Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination. Journal of Machine Learning Research, 10(3): 1341–1366. https://doi.org/10.1145/1577069.1755828
    Wen, R. Z., Xu, P. B., Ren, Y. F., et al., 2017. Development of the Strong-Motion Flatfile. Earthquake Engineering and Engineering Dynamics, 37(3): 38–47. https://doi.org/10.13197/j.eeev.2017.03.38.wenrz.004 (in Chinese with English Abstract)
    Worden, C. B., Wald, D. J., Allen, T. I., et al., 2010. A Revised Ground-Motion and Intensity Interpolation Scheme for ShakeMap. Bulletin of the Seismological Society of America, 100(6): 3083–3096. https://doi.org/10.1785/0120100101
    Yenier, E., Erdoğan, Ö., Akkar, S., 2008. Empirical Relationships for Magnitude and Source-to-Site Distance Conversions Using Recently Compiled Turkish Strong-Ground Motion Database. In: The 14th World Conference on Earthquake Engineering. October 12–17, 2008, Beijing
    Youngs, R. R., Chiou, B. S.-J., Silva, W. J., et al., 1997. Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes. Seismological Research Letters, 68(1): 58–73. https://doi.org/10.1785/gssrl.68.1.58
    Youngs, R. R., Day, S. M., Stevens, J. L., 1988. Near Field Ground Motions on Rock for Large Subduction Earthquakes. In: Thun, J. L. V., ed., Earthquake Engineering and Soil Dynamics Ⅱ: Recent Advances in Ground-Motion Evaluation. American Society of Civil Engineers, Reston. 445–462
    Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350–358. https://doi.org/10.3799/dqkx.2020.111
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(9)

    Article Metrics

    Article views(596) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return