Abrahamson, N. A., Silva, W. J., 2008. Summary of the Abrahamson & Silva NGA ground motion relations. Earthquake Spectra, 24(1): 67-97. https://doi.org/10.1193/1.2924360 |
Abrahamson, N. A., Silva, W. J., Kamai, R., 2014. Summary of the ASK14 ground-motion relation for active crustal regions. Earthquake Spectra, 30(3): 1025-1055. https://doi.org/10.1193/070913EQS198M |
Akkar, S., Sandikkaya, M. A., Bommer, J., 2014. Empirical ground-motion models for point and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12: 389-390. https://doi.org/10.1007/s10518-013-9461-4 |
Alavi, A. H., Gandomi, A. H., 2011. Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Computer & Structures, 89(23-24): 2176-2194. https://doi.org/10.1016/j.compstruc.2011.08.019 |
Alavi, A. H., Gandomi, A. H., Modaresnezhad, M., et al., 2011. New ground-motion prediction equations using multi expression programing. Journal of Earthquake Engineering, 15(4): 511-536. https://doi.org/10.1080/13632469.2010.526752 |
Ambraseys, N. N., Douglas, J., 2003. Near-field horizontal and vertical earthquake ground motions. Soil Dynamics and Earthquake Engineering, 23: 1–18. https://doi.org/10.1016/S0267-7261(02)00153-7 |
Ambraseys, N. N., Simpson, K. A., Bommer, J., 1996. Prediction of horizontal response spectra in Europe. Earthquake Engineering & Structural Dynamics, 25(4): 371–400. https://doi.org/10.1002/(SICI)1096-9845(199604)25:4<371::AID-EQE550>3.0.CO;2-A |
Aptikaev, F., Kopnichev, J., 1980. Correlation between seismic vibration parameters and type of faulting. In: Proceedings of Seventh World Conference on Earthquake Engineering. 8-13 September, 1980. Istanbul. |
Boore, D. M., Stewart, J. P., Seyhan, E., et al., 2013. NGA-West2 equations for predicting response spectral accelerations for shallow crustal earthquakes. In: PEER Report No. 2013. Pacific Earthquake Engineering Research Center, University of California, Berkeley, California. |
Bozorgnia, Y., Abrahamson, N. A., Atik, L. A., et al., 2014. Nga-west2 research project. Earthquake Spectra, 131(3): 409-444. |
Breiman, L., Friedman, J., Olshen, R., et al., 1984. Classification and Regression Trees (CART). Biometrics, 40(3): 358. https://doi.org/10.2307/2530946 |
Campbell, K. W., 1985. Strong motion attenuation relations: a ten-year perspective. Earthquake Spectra, 1(4): 759–804. https://doi.org/10.1193/1.1585292 |
Campbell, K.W., Bozorgnia, Y., 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1): 139–171. https://doi.org/10.1193/1.2857546 |
Campbell, K. W., Bozorgnia, Y., 2014. NGA-West2 ground motion model for the average Horizontal components of PGA, PGV, and 5%-damped linear Response Spectra. Earthquake Spectra, 30(3): 1087-1115. https://doi.org/10.1193/062913EQS175M |
Chiou, B. S. J., Youngs, R. R., 2014. Update of the Chiou and Youngs NGA ground motion model for average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3): 1117-1153. https://doi.org/10.1193/072813EQS219M |
Derakhshani, A., Foruzan, A. H., 2019. Predicting the principal strong ground motion parameters: a deep learning approach. Applied Soft Computing, 80: 192-201. https://doi.org/10.1016/j.asoc.2019.03.029 |
Derras, B., Bard, P. Y., Cotton, F., et al., 2012. Adapting the neural network approach to PGA prediction: an example based on the KIK‐NET data. Bulletin of the Seismological Society of America, 102(4): 1446-1461. https://doi.org/10.1785/0120110088 |
Derras, B., Bard, P. Y., Cotton, F., 2014. Towards fully data driven ground-motion prediction models for Europe. Bulletin of Earthquake Engineering, 12(1): 495-516. https://doi.org/10.1007/s10518-013-9481-0 |
Douglas, J., 2003. Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Science Reviews, 61(1-2): 43–104. https://doi.org/10.1016/S0012-8252(02)00112-5 |
Friedman, J. H., 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5): 1189–1232. https://doi.org/10.1214/aos/1013203451 |
Gandomi, A. H., Alavi, A. H., Mousavi, M., et al., 2011. A hybrid computational approach to derive new ground-motion prediction equations. Engineering Application of Artificial Intelligence, 24(4): 717-732. https://doi.org/10.1016/j.engappai.2011.01.005 |
Heath, D., Wald, D. J., Worden, C. B., et al., 2020. A Global Hybrid Vs30 Map with a Topographic-Slope-Based Default and Regional Map Insets. Earthquake Spectra, 36(3): 1570-1584. https://doi.org/10.1177/8755293020911137 |
Idriss, I. M., 2013. NGA-West2 model for estimating average horizontal values of pseudo-absolute spectral accelerations generated by crustal earthquakes. In: PEER Report No. 2013. Pacific Earthquake Engineering Research Center, University of California, Berkeley, California. |
Jafariavval, Y., Derakhshani, A., 2020. New formulae for capacity energy-based assessment of liquefaction triggering. Marine Georesources & Geotechnology, 38(2): 214-222. https://doi.org/10.1080/1064119X.2019.1566297 |
Kayabali, K., Beyaz, T., 2011. Strong motion attenuation relationship for Turkey-a different perspective. Bulletin of Engineering Geology & the Environment, 70: 467-481. https://doi.org/10.1007/s10064-010-0335-6 |
Ke, G.L., Meng, Q., Finley, T., et al., 2017. LightGBM: A highly efficient gradient boosting decision tree. In: NIPS’17: Proceeding of the 31st International Conference on Neural Information Processing Systems. December 2017. New York. |
Mohammadnejad, A. K., Mousavi, S. M., Torabi, M., et al., 2012. Robust attenuation relations for peak time-domain parameters of strong ground motions. Environmental Earth Science, 67: 53–70. https://doi.org/10.1007/s12665-011-1479-9 |
Molnar, C., 2019. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, Leanpub. |
Nagelkerke, N. J. D., 1991. A note on a general definition of the coefficient of determination. Biometrika, 78(3). https://doi.org/10.1093/biomet/78.3.691 |
Sen, Z., 2011. Supervised fuzzy logic modeling for building earthquake hazard assessment. Expert Systems with Application, 38(12): 14564-14573. https://doi.org/10.1016/j.eswa.2011.05.026 |
Shiuly, A., Roy, N., Sahu, R. B., 2020. Prediction of peak ground acceleration for himalayan region using artificial neural network and genetic algorithm. Arabian Journal of Geoscience, 13(5): 1-10. https://doi.org/10.1007/s12517-020-5211-5 |
Sonia, T., Pillai, G. N., Pal, K., 2016. Prediction of peak ground acceleration using ϵ-svr, ν-svr and ls-svr algorithm. Geomatics Natural Hazards & Risk, 8(2): 1-17. https://doi.org/10.1080/19475705.2016.1176604 |
Tobler, W. R., 1970. A computer movie simulating urban growth in the detroit region. Economic Geography, 46: 234–240. |
Tuv, E., Borisov, A., Runger, G., et al., 2009. Feature selection with ensembles, artificial variables, and redundancy elimination. Journal of Machine Learning Research, 10(3): 1341-1366. https://doi.org/10.1145/1577069.1755828 |
Wen, R., Xu, P., Y. Ren, P., et al., 2017. Development of the strong-motin Flatfile. Earthquake Engineering and Engineering Dynamics, 37(3): 38-47. (in Chinese with English abstract) |
Worden, C. B., Wald, D. J., Allen, T. I., et al., 2010. A revised ground-motion and intensity interpolation scheme for shakemap. Bulletin of the Seismological Society of America, 100(6): 3083-3096. https://doi.org/10.1785/0120100101 |
Yenier, E., Erdoğan, Ö., Akkar, S., 2008. Empirical relationships for magnitude and source-to-site distance conversions using recently compiled Turkish strong-ground motion database. In: The 14th World Conference on Earthquake Engineering. October 12-17, 2008. Beijing. |
Youngs, R. R., Day, S. M., Stevens, J. L., 1988. Near field ground motions on rock for large subduction earthquakes. In: Thun, J. L. V., ed., Earthquake Engineering and Soil Dynamics II: Recent Advances in Ground-Motion Evaluation. American Society of Civil Engineers, Reston. 445–462. |
Youngs, R. R., Chiou, B., Silva, W. J., et al., 1997. Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68(1): 58–73. https://doi.org/10.1785/gssrl.68.1.58 |