Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Yiwen Lü, Sheng-Ao Liu. Cu and Zn Isotopic Evidence for the Magnitude of Organic Burial in the Mesoproterozoic Ocean. Journal of Earth Science, 2022, 33(1): 92-99. doi: 10.1007/s12583-021-1561-5
Citation: Yiwen Lü, Sheng-Ao Liu. Cu and Zn Isotopic Evidence for the Magnitude of Organic Burial in the Mesoproterozoic Ocean. Journal of Earth Science, 2022, 33(1): 92-99. doi: 10.1007/s12583-021-1561-5

Cu and Zn Isotopic Evidence for the Magnitude of Organic Burial in the Mesoproterozoic Ocean

doi: 10.1007/s12583-021-1561-5
More Information
  • Corresponding author: Sheng-Ao Liu, lsa@cugb.edu.cn
  • Received Date: 30 Apr 2021
  • Accepted Date: 09 Jul 2021
  • Publish Date: 28 Feb 2022
  • The rate of net primary production in the Proterozoic ocean was suggested to be no more than 10% of its modern value (Laakso and Schrag, 2019), however, in the Mesoproterozoic Xiamaling Formation, the export production values could reach 20%-150% of the present-day Equatorial Atlantic average values (Zhang et al., 2016). Here, we report Zn and Cu isotope data for black shales from the Xiamaling Formation to illustrate the biogeochemical cycling of Zn and Cu in the Mesoproterozoic ocean. The 65Cu-enriched signature in the authigenic fraction is similar to that in bioauthigenic Cu of the modern marine sediments. The Zn isotope ratios of sediments deposited in euxinic conditions are commonly higher than those of clastic sediments, indicating light Zn sinks in the coeval ocean. Combined with previously reported Mo isotope data, the proportion of organic carbon to total carbon burial in the Mesoproterozoic was about as half as that at present, which is larger than the previous estimation-a quarter of today's value (e.g., Ozaki et al., 2019) and is evidenced by a wide distribution of black shales. The organic burial may be ascribed to the increasing phosphorus inputs from large igneous provinces and consequently high primary productivity, which has spurred the hypothesized atmosphere-ocean oxygenation at ~1.4 Ga.

     

  • loading
  • Andersen, M. B., Vance, D., Archer, C., et al., 2011. The Zn Abundance and Isotopic Composition of Diatom Frustules, a Proxy for Zn Availability in Ocean Surface Seawater. Earth and Planetary Science Letters, 301(1/2): 137-145. https://doi.org/10.1016/j.epsl.2010.10.032
    Bjerrum, C. J., Canfield, D. E., 2004. New Insights into the Burial History of Organic Carbon on the Early Earth. Geochemistry, Geophysics, Geosystems, 5(8): Q08001. https://doi.org/10.1029/2004gc000713
    Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6: 7142. https://doi.org/10.1038/ncomms8142
    Conway, T. M., John, S. G., 2014. The Biogeochemical Cycling of Zinc and Zinc Isotopes in the North Atlantic Ocean. Global Biogeochemical Cycles, 28(10): 1111-1128. https://doi.org/10.1002/2014gb004862
    Derry, L. A., 2015. Causes and Consequences of Mid-Proterozoic Anoxia. Geophysical Research Letters, 42(20): 8538-8546. https://doi.org/10.1002/2015gl065333
    Diamond, C. W., Planavsky, N. J., Wang, C., et al., 2018. What the ~1.4 Ga Xiamaling Formation can and Cannot Tell us about the Mid-Proterozoic Ocean. Geobiology, 16(3): 219-236. https://doi.org/10.1111/gbi.12282
    Fernandez, A., Borrok, D. M., 2009. Fractionation of Cu, Fe, and Zn Isotopes during the Oxidative Weathering of Sulfide-Rich Rocks. Chemical Geology, 264(1/2/3/4): 1-12. https://doi.org/10.1016/j.chemgeo.2009.01.024
    Isson, T. T., Love, G. D., Dupont, C. L., et al., 2018. Tracking the Rise of Eukaryotes to Ecological Dominance with Zinc Isotopes. Geobiology, 16(4): 341-352. https://doi.org/10.1111/gbi.12289
    Kah, L. C., Riding, R., 2007. Mesoproterozoic Carbon Dioxide Levels Inferred from Calcified Cyanobacteria. Geology, 35(9): 799-802. https://doi.org/10.1130/g23680a.1
    Kaufman, A. J., Xiao, S. H., 2003. High CO2 Levels in the Proterozoic Atmosphere Estimated from Analyses of Individual Microfossils. Nature, 425(6955): 279-282. https://doi.org/10.1038/nature01902
    Laakso, T. A., Schrag, D. P., 2019. A Small Marine Biosphere in the Proterozoic. Geobiology, 17(2): 161-171. https://doi.org/10.1111/gbi.12323
    Li, H. K., Lu, S. N., Li, H. M., et al., 2009. Zircon and Beddeleyite U-Pb Precision Dating of Basic Rock Sills Intruding Xiamaling Formation, North China. Geological Bulletin of China, 28(10): 1396-1404 (in Chinese with English Abstract)
    Li, Z. J., Cole, D. B., Newby, S. M., et al., 2021. New Constraints on Mid-Proterozoic Ocean Redox from Stable Thallium Isotope Systematics of Black Shales. Geochimica et Cosmochimica Acta, 315: 185-206. https://doi.org/10.1016/j.gca.2021.09.006
    Liang, L. L., Liu, C. Q., Zhu, X. K., et al., 2020. Zinc Isotope Characteristics in the Biogeochemical Cycle as Revealed by Analysis of Suspended Particulate Matter (SPM) in Aha Lake and Hongfeng Lake, Guizhou, China. Journal of Earth Science, 31(1): 126-140. https://doi.org/10.1007/s12583-017-0957-8
    Little, S. H., Sherman, D. M., Vance, D., et al., 2014a. Molecular Controls on Cu and Zn Isotopic Fractionation in Fe-Mn Crusts. Earth and Planetary Science Letters, 396: 213-222. https://doi.org/10.1016/j.epsl.2014.04.021
    Little, S. H., Vance, D., Walker-Brown, C., et al., 2014b. The Oceanic Mass Balance of Copper and Zinc Isotopes, Investigated by Analysis of Their Inputs, and Outputs to Ferromanganese Oxide Sediments. Geochimica et Cosmochimica Acta, 125: 673-693. https://doi.org/10.1016/j.gca.2013.07.046
    Little, S. H., Vance, D., Lyons, T. W., et al., 2015. Controls on Trace Metal Authigenic Enrichment in Reducing Sediments: Insights from Modern Oxygen-Deficient Settings. American Journal of Science, 315(2): 77-119. https://doi.org/10.2475/02.2015.01
    Little, S. H., Vance, D., McManus, J., et al., 2016. Key Role of Continental Margin Sediments in the Oceanic Mass Balance of Zn and Zn Isotopes. Geology, 44(3): 207-210. https://doi.org/10.1130/g37493.1
    Little, S. H., Vance, D., McManus, J., et al., 2017. Copper Isotope Signatures in Modern Marine Sediments. Geochimica et Cosmochimica Acta, 212: 253-273. https://doi.org/10.1016/j.gca.2017.06.019
    Liu, S. -A., Li, D. D., Li, S. G., et al., 2014. High-Precision Copper and Iron Isotope Analysis of Igneous Rock Standards by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(1): 122-133. https://doi.org/10.1039/c3ja50232e
    Liu, S. -A., Wu, H. C., Shen, S. Z., et al., 2017. Zinc Isotope Evidence for Intensive Magmatism Immediately before the End-Permian Mass Extinction. Geology, 45(4): 343-346. https://doi.org/10.1130/g38644.1
    Lü, Y. W., Liu, S. -A., Teng, F. Z., et al., 2020. Contrasting Zinc Isotopic Fractionation in Two Mafic-Rock Weathering Profiles Induced by Adsorption onto Fe (Hydr)Oxides. Chemical Geology, 539: 119504. https://doi.org/10.1016/j.chemgeo.2020.119504
    Lü, Y. W., Liu, S. -A., Wu, H. C., et al., 2018. Zn-Sr Isotope Records of the Ediacaran Doushantuo Formation in South China: Diagenesis Assessment and Implications. Geochimica et Cosmochimica Acta, 239: 330-345. https://doi.org/10.1016/j.gca.2018.08.003
    Lü, Y. W., Liu, S. -A., Zhu, J. M., et al., 2016. Copper and Zinc Isotope Fractionation during Deposition and Weathering of Highly Metalliferous Black Shales in Central China. Chemical Geology, 445: 24-35. https://doi.org/10.1016/j.chemgeo.2016.01.016
    McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Geological Society of America: Special Papers, 1: 21-40. https://doi.org/10.1130/spe284-p21
    Moffett, J. W., 1995. Temporal and Spatial Variability of Copper Complexation by Strong Chelators in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers, 42(8): 1273-1295. https://doi.org/10.1016/0967-0637(95)00060-j
    Nägler, T. F., Neubert, N., Böttcher, M. E., et al., 2011. Molybdenum Isotope Fractionation in Pelagic Euxinia: Evidence from the Modern Black and Baltic Seas. Chemical Geology, 289(1/2): 1-11. https://doi.org/10.1016/j.chemgeo.2011.07.001
    Ozaki, K., Reinhard, C. T., Tajika, E., 2019. A Sluggish Mid-Proterozoic Biosphere and Its Effect on Earth's Redox Balance. Geobiology, 17(1): 3-11. https://doi.org/10.1111/gbi.12317
    Petit, J. C. J., Schäfer, J., Coynel, A., et al., 2013. Anthropogenic Sources and Biogeochemical Reactivity of Particulate and Dissolved Cu Isotopes in the Turbidity Gradient of the Garonne River (France). Chemical Geology, 359: 125-135. https://doi.org/10.1016/j.chemgeo.2013.09.019
    Pichat, S., Douchet, C., Albarède, F., 2003. Zinc Isotope Variations in Deep-Sea Carbonates from the Eastern Equatorial Pacific over the last 175 Ka. Earth and Planetary Science Letters, 210(1/2): 167-178. https://doi.org/10.1016/s0012-821x(03)00106-7
    Pons, M. L., Quitté, G., Fujii, T., et al., 2011. Early Archean Serpentine Mud Volcanoes at Isua, Greenland, as a Niche for Early Life. Proceedings of the National Academy of Sciences, 108(43): 17639-17643. https://doi.org/10.1073/pnas.1108061108
    Qiu, Z., Zou, C. N., 2020a. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38(1): 1-29 (in Chinese with English Abstract)
    Qiu, Z., Zou, C. N., 2020b. Controlling Factors on the Formation and Distribution of "Sweet-Spot Areas" of Marine Gas Shales in South China and a Preliminary Discussion on Unconventional Petroleum Sedimentology. Journal of Asian Earth Sciences, 194: 103989. https://doi.org/10.1016/j.jseaes.2019.103989
    Qu, Y., Lü, Y. W., Liu, S. -A., 2021. Zinc Isotope Geochemistry of Marine Sediments and Its Applications: A Review. Earth Science, 46(11): 4097-4106 (in Chinese with English Abstract)
    Ryan, B. M., Kirby, J. K., Degryse, F., et al., 2014. Copper Isotope Fractionation during Equilibration with Natural and Synthetic Ligands. Environmental Science & Technology, 48(15): 8620-8626. https://doi.org/10.1021/es500764x
    Scott, C., Planavsky, N. J., Dupont, C. L., et al., 2013. Bioavailability of Zinc in Marine Systems through Time. Nature Geoscience, 6(2): 125-128. https://doi.org/10.1038/ngeo1679
    Takano, S., Tanimizu, M., Hirata, T., et al., 2014. Isotopic Constraints on Biogeochemical Cycling of Copper in the Ocean. Nature Communications, 5(1): 1-7. https://doi.org/10.1038/ncomms6663
    Vance, D., Archer, C., Bermin, J., et al., 2008. The Copper Isotope Geochemistry of Rivers and the Oceans. Earth and Planetary Science Letters, 274(1/2): 204-213. https://doi.org/10.1016/j.epsl.2008.07.026
    Vance, D., Little, S. H., Archer, C., et al., 2016. The Oceanic Budgets of Nickel and Zinc Isotopes: The Importance of Sulfidic Environments as Illustrated by the Black Sea. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2081): 20150294. https://doi.org/10.1098/rsta.2015.0294
    Wang, X. M., Zhang, S. C., Wang, H. J., et al., 2017. Oxygen, Climate and the Chemical Evolution of a 1400 Million Year Old Tropical Marine Setting. American Journal of Science, 317(8): 861-900. https://doi.org/10.2475/08.2017.01
    Wang, Z., Liu, S. -A., Li, M. L., et al., 2020. Advances on Application of Zinc Isotope as a Tracer for Deep Carbon Cycles. Earth Science, 45(6): 1967-1976. https://doi.org/10.3799/dqkx.2020.159 (in Chinese with English Abstract)
    Weber, T., John, S., Tagliabue, A., et al., 2018. Biological Uptake and Reversible Scavenging of Zinc in the Global Ocean. Science, 361(6397): 72-76. https://doi.org/10.1126/science.aap8532
    Wildaman, R. A., Berner, R. A., Petsch, S. T., et al., 2004. The Weathering of Sedimentary Organic Matter as a Control on Athmospheric O2: I. Analysis of a Black Shale. American Journal of Science, 304(3): 234-249 doi: 10.2475/ajs.304.3.234
    Zhang, S. C., Wang, X. M., Hammarlund, E. U., et al., 2015. Orbital Forcing of Climate 1.4 Billion Years Ago. Proceedings of the National Academy of Sciences of the United States of America, 112(12): E1406-E1413. https://doi.org/10.1073/pnas.1502239112
    Zhang, S. H., Ernst, R. E., Pei, J. L., et al., 2018. A Temporal and Causal Link between ca. 1 380 Ma Large Igneous Provinces and Black Shales: Implications for the Mesoproterozoic Time Scale and Paleoenvironment. Geology, 46(11): 963-966. https://doi.org/10.1130/g45210.1
    Zhang, S. H., Li, Z. X., Evans, D. A. D., et al., 2012. Pre-Rodinia Supercontinent Nuna Shaping Up: A Global Synthesis with New Paleomagnetic Results from North China. Earth and Planetary Science Letters, 353/354: 145-155. https://doi.org/10.1016/j.epsl.2012.07.034
    Zhang, S., Wang, X., Wang, H., et al., 2016. Sufficient Oxygen for Animal Respiration 1 400 Million Years Ago. Proceedings of the National Academy of Sciences of the United States of America, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(300) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return