Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 6
Dec 2022
Turn off MathJax
Article Contents
Johann Hohenegger, Ana Ivis Torres-Silva, Wolfgang Eder. Interpreting Morphologically Homogeneous (Paleo-)Populations as Ecological Species Enables Comparison of Living and Fossil Organism Groups, Exemplified by Nummulitid Foraminifera. Journal of Earth Science, 2022, 33(6): 1362-1377. doi: 10.1007/s12583-021-1567-z
Citation: Johann Hohenegger, Ana Ivis Torres-Silva, Wolfgang Eder. Interpreting Morphologically Homogeneous (Paleo-)Populations as Ecological Species Enables Comparison of Living and Fossil Organism Groups, Exemplified by Nummulitid Foraminifera. Journal of Earth Science, 2022, 33(6): 1362-1377. doi: 10.1007/s12583-021-1567-z

Interpreting Morphologically Homogeneous (Paleo-)Populations as Ecological Species Enables Comparison of Living and Fossil Organism Groups, Exemplified by Nummulitid Foraminifera

doi: 10.1007/s12583-021-1567-z
More Information
  • Corresponding author: Johann Hohenegger, johann.hohenegger@univie.ac.at
  • Received Date: 04 Aug 2021
  • Accepted Date: 19 Oct 2021
  • Issue Publish Date: 30 Dec 2022
  • Morphologically homogeneous groups, either living populations or fossil paleo-populations, must be regarded as ecological species, independent of their molecular genetic resemblance in living forms. Morphology is always expressed during development by structure genes initiated from a network of regulator genes acting at different times and intensities, additionally being subjected to epigenetic controls. Therefore, homogeneous populations influenced by the environment represent species better than the reproduction (biological species) or molecular-genetic approach using ancestral sequences like rDNA. Living and fossil representatives of nummulitid foraminifera were chosen to demonstrate complete reconstruction of morphology using metrical growth-invariant and growth-independent characters. Using these characters, 6 models were established to define ecological species in living and fossil species. Furthermore, a distinction between evolutionary and environmental effects in fossil forms was possible using discriminant analysis showing characters that are responsible for differentiating between evolutionary and environmental trends.

     

  • Electronic Supplementary Materials: Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s12583-021-1567-z.
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
  • loading
  • Andersson, L., 1990. The Driving Force: Species Concepts and Ecology. Taxon, 39(3): 375–382. https://doi.org/10.2307/1223084
    Banner, F. T., Hodgkinson, R. L., 1991. A Revision of the Foraminiferal Subfamily Heterostegininae. Revista Espanola de Micropaleontologica, 13(2): 101–140
    Barker, R. W., 1939. Species of the Foraminiferal Family Camerinidae in the Tertiary and Cretaceous of Mexico. Proceedings of the United States National Museum, 86(3052): 305–330. https://doi.org/10.5479/si.00963801.86-3052.305
    Bossdorf, O., Richards, C. L., Pigliucci, M., 2008. Epigenetics for Ecologists. Ecology Letters, 11(2): 106–115. https://doi.org/10.1111/j.1461-0248.2007.01130.x
    Briguglio, A., Hohenegger, J., 2011. How to React to Shallow Water Hydrodynamics: The Larger Benthic Foraminifera Solution. Marine Micropaleontology, 81(1/2): 63–76. https://doi.org/10.1016/j.marmicro.2011.07.004
    Butterlin, J., 1961. Grandes Foraminıferos del pozo Palizada num. 2, Municipio de Palizada, Estado de Campeche. Paleontologıa Mexicana, 10: 1–59
    Butterlin, J., 1981. Claves Para La Determinacion de Macroforaminiferos de Mexico y Del Caribe, Del Cretacico Superior Al Mioceno Medio. Instituto Mexicano del Petroleo, Mexico. 219
    Caudri, C. M. B., 1996. The Larger Foraminifera of Trinidad (West Indies). Eclogae Geologicae Helvetiae, 89: 1137–1310
    Chase, J. M., Leibold, M. A., 2003. Ecological Niches: Linking Classical and Contemporary Approaches. Chicago University Press, Chicago. 222
    Cockburn, A., 1991. An Introduction to Evolutionary Ecology. Blackwell Scientific Publications, Oxford. 370
    Cohan, F. M., 2002. What are Bacterial Species? Annual Review of Microbiology, 56: 457–487. https://doi.org/10.1146/annurev.micro.56.012302.160634
    Cole, W. S., 1941. Stratigraphic and Paleontologic Studies of Wells in Florida. Florida Geological Survey Bulletin, 19: 1–53
    de Queiroz, K., 2007. Species Concepts and Species Delimitation. Systematic Biology, 56(6): 879–886. https://doi.org/10.1080/10635150701701083
    Debenay, J. -P., 2012. A Guide to 1, 000 Foraminifera from Southwestern Pacific, New Caledonia. IRD Editions Marseille/Publications Scientifiques du Muséu, Paris. 378
    Eder, W., Briguglio, A., Hohenegger, J., 2016. Growth of Heterostegina Depressa under Natural and Laboratory Conditions. Marine Micropaleontology, 122: 27–43. https://doi.org/10.1016/j.marmicro.2015.11.005
    Eder, W., Hohenegger, J., Briguglio, A., 2018. Test Flattening in the Larger Foraminifer Heterostegina depressa: Predicting Bathymetry from Axial Sections. Paleobiology, 44(1): 76–88. https://doi.org/10.1017/pab.2017.24
    Eichhorn, M. P., 2016. Natural Systems. The Organization of Life. Wiley Blackwell, Chichester, UK. 368
    Förderer, M., Langer, M. R., 2018. Atlas of Benthic Foraminifera from Coral Reefs of the Raja Ampat Archipelago (Irian Jaya, Indonesia). Micro-paleontology, 64(1/2): 1–170. https://doi.org/10.47894/mpal.64.1.01
    Förderer, M., Langer, M. R., 2019. Exceptionally Species-Rich Assemblages of Modern Larger Benthic Foraminifera from Nearshore Reefs in Northern Palawan (Philippines). Revue de Micropaléontologie, 65: 100387. https://doi.org/10.1016/j.revmic.2019.100387
    Frost, S. H., Langenheim, R. L., 1974. Cenozoic Reef Biofacies; Tertiary Larger Foraminifera and Scleractinian Corals from Chiapas, Mexico. Northern Illinois University Press, DeKalb. 387
    Hartl, D. L., Clark, A. G., 2007. Principles of Population Genetics, 4th Edition. Sinauer, Sunderland, MA. 652
    Hayward, B. W., Holzmann, M., Pawlowski, J., et al., 2021. Molecular and Morphological Taxonomy of Living Ammonia and Related Taxa (Foraminifera) and Their Biogeography. Micropaleontology, 67(2/3): 109–274. https://doi.org/10.47894/mpal.67.3.01
    Hohenegger, J., 1986. Weighted Standardization—A General Data Transfor-mation Method Proceeding Classification Procedures. Biometrical Journal, 28(3): 295–303. https://doi.org/10.1002/bimj.4710280307
    Hohenegger, J., 1988. Klassifikation von Organismen und das "Natürliche" System. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Abteilung I, 197: 135–181
    Hohenegger, J., 1990. On the Way to the Optimal Suprageneric Classification of Agglutinating Foraminifera: Paleoecology, Biostratigraphy, Paleo-ceanography and Taxonomy of Agglutinated Foraminifera. Kluwer Academic Publishers, Amsterdam. 77–104. https://doi.org/10.1007/978-94-011-3350-0_7
    Hohenegger, J., 1992. Species as the Basic Units in Taxonomy and Nomenclature. Proceedings of the 3rd Infoterm Symposium, 1991, Vienna. 15–30
    Hohenegger, J., 1996. Remarks on the Distribution of Larger Foraminifera (Protozoa) from Belau (Western Carolines). Kagoshima University Research Center South Pacific, Occasional Papers, 30: 85–90
    Hohenegger, J., 2000. Coenoclines of Larger Foraminifera. Micropaleontology, 46(Suppl. 1): 127–151
    Hohenegger, J., 2004. Depth Coenoclines and Environmental Considerations of Western Pacific Larger Foraminifera. The Journal of Foraminiferal Research, 34(1): 9–33. https://doi.org/10.2113/0340009
    Hohenegger, J., 2011. Growth-Invariant Meristic Characters Tools to Reveal Phylogenetic Relationships in Nummulitidae (Foraminifera). Turkish Journal of Earth Sciences, 20: 655–681
    Hohenegger, J., 2014. Species as the Basic Units in Evolution and Biodiversity: Recognition of Species in the Recent and Geological Past as Exemplified by Larger Foraminifera. Gondwana Research, 25(2): 707–728. https://doi.org/10.1016/j.gr.2013.09.009
    Hohenegger, J., 2015. The Species and Genus Categories in Biological Systematics Reconsidered. Grzybowski Foundation Special Publication, 21: 42–44
    Hohenegger, J., Torres-Silva, A. I., 2017. Growth Invariant and Growth-Independent Characters in Equatorial Sections of Heterostegina Shells Relieve Phylogenetic and Paleobiogeographic Interpretation. PALAIOS, 32(1): 30–43. https://doi.org/10.2110/palo.2015.092
    Hohenegger, J., Torres-Silva, A. I., 2020. Methods for Testing Ontogenetic Changes of Neanic Chamberlets in Lepidocyclinids. Journal of Foraminiferal Research, 50(2): 182–194. https://doi.org/10.2113/gsjfr.50.2.182
    Hohenegger, J., Yordanova, E., Hatta, A., 2000. Remarks on West Pacific Nummulitidae (Foraminifera). The Journal of Foraminiferal Research, 30(1): 3–28. https://doi.org/10.2113/0300003
    Hohenegger, J., Kinoshita, S., Briguglio, A., et al., 2019. Lunar Cycles and Rainy Seasons Drive Growth and Reproduction in Nummulitid Foraminifera, Important Producers of Carbonate Buildups. Scientific Reports, 9: 8286. https://doi.org/10.1038/s41598-019-44646-w
    Holzmann, M., Berney, C., Hohenegger, J., 2006. Molecular Identification of Diatom Endosymbionts in Nummulitid Foraminifera. Symbiosis, 42: 93–101
    Holzmann, M., Hohenegger, J., Apothéloz-Perret-Gentil, L., et al., 2022. Operculina and Neoassilina: A Revision of Recent Nummulitid Genera Based on Molecular and Morphological Data Reveals a New Genus. Journal of Earth Science, 33(6): 1411–1424. https://doi.org/10.1007/s12583-021-1595-8
    Hottinger, L., 2006. The Depth-Depending Ornamentation of some Lamellar-Perforate Foraminifera. Symbiosis, 42(3): 141–151
    Hutchinson, G. E., 1957. Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22: 415–427. https://doi.org/10.1101/sqb.1957.022.01.039
    Kruskal, J. B., 1964. Nonmetric Multidimensional Scaling: A Numerical Method. Psychometrika, 29(2): 115–129. https://doi.org/10.1007/bf02289694
    Langer, M., Hottinger, L., 2000. Biogeography of Selected "Larger" Foraminifera. Micropaleontology, 46(Suppl. 1): 105–126
    Leffler, E. M., Bullaughey, K., Matute, D. R., et al., 2012. Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species? PLoS Biology, 10(9): e1001388. https://doi.org/10.1371/journal.pbio.1001388
    MacArthur, R. H., 1968. The Theory of the Niche. In: Lewontin, R. C., ed., Population Biology and Evolution. Syracuse University Press, Syracuse, NY. 159–176
    Martini, E., 1971. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. In: Farinacci, A., ed., Proceedings of the Second Planktonic Conference, 1970, Roma. 739–785
    Mayden, R. L., 1997. A Hierarchy of Species Concepts: The Denouement in the Saga of the Species Problem. In: Claridge, M. F., Dawah, H. A., Wilson, M. R., eds., Species: The Units of Diversity. Chapman & Hall. 381–423
    Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York. 372
    Meyer, C. P., Paulay, G., 2005. DNA Barcoding: Error Rates Based on Comprehensive Sampling. PLoS Biology, 3(12): e422. https://doi.org/10.1371/journal.pbio.0030422
    Narayan, G. R., Reymond, C. E., Stuhr, M., et al., 2022. Response of Large Benthic Foraminifera to Climate and Local Changes: Implications for Future Carbonate Production. Sedimentology, 69(1): 121–161. https://doi.org/10.1111/sed.12858
    Oron, S., Abramovich, S., Almogi-Labin, A., et al., 2018. Depth Related Adaptations in Symbiont Bearing Benthic Foraminifera: New Insights from a Field Experiment on Operculina Ammonoides. Scientific Reports, 8: 9560. https://doi.org/10.1038/s41598-018-27838-8
    Parker, J., 2009. Taxonomy of Foraminifera from Ningaloo Reef, Western Australia. Memoires of the Association of Australasian Paleontologists, 36: 1–810
    Pawlowski, J., Holzmann, M., Tyszka, J., 2013. New Supraordinal Classification of Foraminifera: Molecules Meet Morphology. Marine Micropaleontology, 100: 1–10. https://doi.org/10.1016/j.marmicro.2013.04.002
    Pecheux, M. J. F., 1995. Ecomorphology of a Recent Largeforaminifer, Operculina Ammonoides. Geobios, 28(5): 529–566. https://doi.org/10.1016/s0016-6995(95)80209-6
    Pigliucci, M., Kaplan, J., 2006. Making Sense of Evolution: The Conceptual Foundations of Evolutionary Biology. The University of Chicago Press, Chicago, MI. 300
    Rebeiz, M., Patel, N. H., Hinman, V. F., 2015. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annual Review of Genomics and Human Genetics, 16: 103–131. https://doi.org/10.1146/annurev-genom-091212-153423
    Renema, W., 2006a. Habitat Variables Determining the Occurrence of Large Benthic Foraminifera in the Berau Area (East Kalimantan, Indonesia). Coral Reefs, 25(3): 351–359. https://doi.org/10.1007/s00338-006-0119-4
    Renema, W., 2006b. Large Benthic Foraminifera from the Deep Photic Zone of a Mixed Siliciclastic-Carbonate Shelf off East Kalimantan, Indonesia. Marine Micropaleontology, 58(2): 73–82. https://doi.org/10.1016/j.marmicro.2005.10.004
    Renema, W., 2018. Terrestrial Influence as a Key Driver of Spatial Variability in Large Benthic Foraminiferal Assemblage Composition in the Central Indo-Pacific. Earth-Science Reviews, 177: 514–544. https://doi.org/10.1016/j.earscirev.2017.12.013
    Shepard, R. N., 1962. The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance Function. I. Psychometrika, 27(2): 125–140. https://doi.org/10.1007/bf02289630
    Simpson, G. G., 1951. The Species Concept. Evolution, 5(4): 285–298. https://doi.org/10.1111/j.1558-5646.1951.tb02788.x
    Skinner, M. K., 2015. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution. Genome Biology and Evolution, 7(5): 1296–1302. https://doi.org/10.1093/gbe/evv073
    Sneath, P. H. A., Sokal, R. R., 1973. Numerical Taxonomy. Freeman, San Francisco, CA. 573
    Torres-Silva, A. I., Hohenegger, J., Ćorić, S., et al., 2017. Biostratigraphy and Evolutionary Tendencies of Eocene Heterostegines in Western and Central Cuba Based on Morphometric Analyses. PALAIOS, 32(1): 44–60. https://doi.org/10.2110/palo.2016.004
    Torres-Silva, A. I., Eder, W., Hohenegger, J., et al., 2019. Morphometric Analysis of Eocene Nummulitids in Western and Central Cuba: Taxonomy, Biostratigraphy and Evolutionary Trends. Journal of Systematic Palaeontology, 17(7): 557–595. https://doi.org/10.1080/14772019.2018.1446462
    van Valen, L., 1976. Ecological Species, Multispecies, and Oaks. Taxon, 25(2/3): 233–239. https://doi.org/10.2307/1219444
    Vaughan, T. W., Cole, W. S., 1941. Preliminary Report on the Cretaceous and Tertiary Larger Foraminifera of Trinidad British West Indies. Geological Society of America Special Papers, 30: 1–85. https://doi.org/10.1130/spe30-p1
    Weber, A. A. T., Pawlowski, J., 2014. Wide Occurrence of SSU rDNA Intragenomic Polymorphism in Foraminifera and Its Implications for Molecular Species Identification. Protist, 165(5): 645–661. https://doi.org/10.1016/j.protis.2014.07.006
    Westoll, T. S., 1956. The Nature of Fossil Species. In: Sylvester-Bradley, P. C., ed., The Species Concept in Palaeontology. The Systematics Association, London. 53–62
    Whittaker, R. H., Levin, S. A., 1975. Introduction. In: Whittaker, R. H., Levin, S. A., eds., Niche, Theory and Applications. Benchmark Papers in Ecology 3. Dowden, Hutchinson and Ross, Stroudsburg, PA. 1–8
    Wiley, E. O., 1978. The Evolutionary Species Concept Reconsidered. Systematic Biology, 27(1): 17–26. https://doi.org/10.2307/2412809
    Yordanova, E. K., Hohenegger, J., 2002. Taphonomy of Larger Foraminifera: Relationships between Living Individuals and Empty Tests on Flat Reef Slopes (Sesoko Island, Japan). Facies, 46(1): 169–203. https://doi.org/10.1007/bf02668080
    Yordanova, E. K., Hohenegger, J., 2004. Morphoclines of Living Operculinid Foraminifera Based on Quantitative Characters. Micropaleontology, 50(2): 149–177. https://doi.org/10.2113/50.2.149
    Yordanova, E. K., Hohenegger, J., 2007. Studies on Settling, Traction and Entrainment of Larger Benthic Foraminiferal Tests: Implications for Accumulation in Shallow Marine Sediments. Sedimentology, 54(6): 1273–1306. https://doi.org/10.1111/j.1365-3091.2007.00881.x
    Zheng, S. Y., 1979. The Recent Foraminifera of the Xisha Island, Guadong Province, China. Ⅱ. Studia Marina Sinica, 15: 1–27 (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(205) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return