Citation: | Johann Hohenegger, Ana Ivis Torres-Silva, Wolfgang Eder. Interpreting Morphologically Homogeneous (Paleo-)Populations as Ecological Species Enables Comparison of Living and Fossil Organism Groups, Exemplified by Nummulitid Foraminifera. Journal of Earth Science, 2022, 33(6): 1362-1377. doi: 10.1007/s12583-021-1567-z |
Morphologically homogeneous groups, either living populations or fossil paleo-populations, must be regarded as ecological species, independent of their molecular genetic resemblance in living forms. Morphology is always expressed during development by structure genes initiated from a network of regulator genes acting at different times and intensities, additionally being subjected to epigenetic controls. Therefore, homogeneous populations influenced by the environment represent species better than the reproduction (biological species) or molecular-genetic approach using ancestral sequences like rDNA. Living and fossil representatives of nummulitid foraminifera were chosen to demonstrate complete reconstruction of morphology using metrical growth-invariant and growth-independent characters. Using these characters, 6 models were established to define ecological species in living and fossil species. Furthermore, a distinction between evolutionary and environmental effects in fossil forms was possible using discriminant analysis showing characters that are responsible for differentiating between evolutionary and environmental trends.
Andersson, L., 1990. The Driving Force: Species Concepts and Ecology. Taxon, 39(3): 375–382. https://doi.org/10.2307/1223084 |
Banner, F. T., Hodgkinson, R. L., 1991. A Revision of the Foraminiferal Subfamily Heterostegininae. Revista Espanola de Micropaleontologica, 13(2): 101–140 |
Barker, R. W., 1939. Species of the Foraminiferal Family Camerinidae in the Tertiary and Cretaceous of Mexico. Proceedings of the United States National Museum, 86(3052): 305–330. https://doi.org/10.5479/si.00963801.86-3052.305 |
Bossdorf, O., Richards, C. L., Pigliucci, M., 2008. Epigenetics for Ecologists. Ecology Letters, 11(2): 106–115. https://doi.org/10.1111/j.1461-0248.2007.01130.x |
Briguglio, A., Hohenegger, J., 2011. How to React to Shallow Water Hydrodynamics: The Larger Benthic Foraminifera Solution. Marine Micropaleontology, 81(1/2): 63–76. https://doi.org/10.1016/j.marmicro.2011.07.004 |
Butterlin, J., 1961. Grandes Foraminıferos del pozo Palizada num. 2, Municipio de Palizada, Estado de Campeche. Paleontologıa Mexicana, 10: 1–59 |
Butterlin, J., 1981. Claves Para La Determinacion de Macroforaminiferos de Mexico y Del Caribe, Del Cretacico Superior Al Mioceno Medio. Instituto Mexicano del Petroleo, Mexico. 219 |
Caudri, C. M. B., 1996. The Larger Foraminifera of Trinidad (West Indies). Eclogae Geologicae Helvetiae, 89: 1137–1310 |
Chase, J. M., Leibold, M. A., 2003. Ecological Niches: Linking Classical and Contemporary Approaches. Chicago University Press, Chicago. 222 |
Cockburn, A., 1991. An Introduction to Evolutionary Ecology. Blackwell Scientific Publications, Oxford. 370 |
Cohan, F. M., 2002. What are Bacterial Species? Annual Review of Microbiology, 56: 457–487. https://doi.org/10.1146/annurev.micro.56.012302.160634 |
Cole, W. S., 1941. Stratigraphic and Paleontologic Studies of Wells in Florida. Florida Geological Survey Bulletin, 19: 1–53 |
de Queiroz, K., 2007. Species Concepts and Species Delimitation. Systematic Biology, 56(6): 879–886. https://doi.org/10.1080/10635150701701083 |
Debenay, J. -P., 2012. A Guide to 1, 000 Foraminifera from Southwestern Pacific, New Caledonia. IRD Editions Marseille/Publications Scientifiques du Muséu, Paris. 378 |
Eder, W., Briguglio, A., Hohenegger, J., 2016. Growth of Heterostegina Depressa under Natural and Laboratory Conditions. Marine Micropaleontology, 122: 27–43. https://doi.org/10.1016/j.marmicro.2015.11.005 |
Eder, W., Hohenegger, J., Briguglio, A., 2018. Test Flattening in the Larger Foraminifer Heterostegina depressa: Predicting Bathymetry from Axial Sections. Paleobiology, 44(1): 76–88. https://doi.org/10.1017/pab.2017.24 |
Eichhorn, M. P., 2016. Natural Systems. The Organization of Life. Wiley Blackwell, Chichester, UK. 368 |
Förderer, M., Langer, M. R., 2018. Atlas of Benthic Foraminifera from Coral Reefs of the Raja Ampat Archipelago (Irian Jaya, Indonesia). Micro-paleontology, 64(1/2): 1–170. https://doi.org/10.47894/mpal.64.1.01 |
Förderer, M., Langer, M. R., 2019. Exceptionally Species-Rich Assemblages of Modern Larger Benthic Foraminifera from Nearshore Reefs in Northern Palawan (Philippines). Revue de Micropaléontologie, 65: 100387. https://doi.org/10.1016/j.revmic.2019.100387 |
Frost, S. H., Langenheim, R. L., 1974. Cenozoic Reef Biofacies; Tertiary Larger Foraminifera and Scleractinian Corals from Chiapas, Mexico. Northern Illinois University Press, DeKalb. 387 |
Hartl, D. L., Clark, A. G., 2007. Principles of Population Genetics, 4th Edition. Sinauer, Sunderland, MA. 652 |
Hayward, B. W., Holzmann, M., Pawlowski, J., et al., 2021. Molecular and Morphological Taxonomy of Living Ammonia and Related Taxa (Foraminifera) and Their Biogeography. Micropaleontology, 67(2/3): 109–274. https://doi.org/10.47894/mpal.67.3.01 |
Hohenegger, J., 1986. Weighted Standardization—A General Data Transfor-mation Method Proceeding Classification Procedures. Biometrical Journal, 28(3): 295–303. https://doi.org/10.1002/bimj.4710280307 |
Hohenegger, J., 1988. Klassifikation von Organismen und das "Natürliche" System. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Abteilung I, 197: 135–181 |
Hohenegger, J., 1990. On the Way to the Optimal Suprageneric Classification of Agglutinating Foraminifera: Paleoecology, Biostratigraphy, Paleo-ceanography and Taxonomy of Agglutinated Foraminifera. Kluwer Academic Publishers, Amsterdam. 77–104. https://doi.org/10.1007/978-94-011-3350-0_7 |
Hohenegger, J., 1992. Species as the Basic Units in Taxonomy and Nomenclature. Proceedings of the 3rd Infoterm Symposium, 1991, Vienna. 15–30 |
Hohenegger, J., 1996. Remarks on the Distribution of Larger Foraminifera (Protozoa) from Belau (Western Carolines). Kagoshima University Research Center South Pacific, Occasional Papers, 30: 85–90 |
Hohenegger, J., 2000. Coenoclines of Larger Foraminifera. Micropaleontology, 46(Suppl. 1): 127–151 |
Hohenegger, J., 2004. Depth Coenoclines and Environmental Considerations of Western Pacific Larger Foraminifera. The Journal of Foraminiferal Research, 34(1): 9–33. https://doi.org/10.2113/0340009 |
Hohenegger, J., 2011. Growth-Invariant Meristic Characters Tools to Reveal Phylogenetic Relationships in Nummulitidae (Foraminifera). Turkish Journal of Earth Sciences, 20: 655–681 |
Hohenegger, J., 2014. Species as the Basic Units in Evolution and Biodiversity: Recognition of Species in the Recent and Geological Past as Exemplified by Larger Foraminifera. Gondwana Research, 25(2): 707–728. https://doi.org/10.1016/j.gr.2013.09.009 |
Hohenegger, J., 2015. The Species and Genus Categories in Biological Systematics Reconsidered. Grzybowski Foundation Special Publication, 21: 42–44 |
Hohenegger, J., Torres-Silva, A. I., 2017. Growth Invariant and Growth-Independent Characters in Equatorial Sections of Heterostegina Shells Relieve Phylogenetic and Paleobiogeographic Interpretation. PALAIOS, 32(1): 30–43. https://doi.org/10.2110/palo.2015.092 |
Hohenegger, J., Torres-Silva, A. I., 2020. Methods for Testing Ontogenetic Changes of Neanic Chamberlets in Lepidocyclinids. Journal of Foraminiferal Research, 50(2): 182–194. https://doi.org/10.2113/gsjfr.50.2.182 |
Hohenegger, J., Yordanova, E., Hatta, A., 2000. Remarks on West Pacific Nummulitidae (Foraminifera). The Journal of Foraminiferal Research, 30(1): 3–28. https://doi.org/10.2113/0300003 |
Hohenegger, J., Kinoshita, S., Briguglio, A., et al., 2019. Lunar Cycles and Rainy Seasons Drive Growth and Reproduction in Nummulitid Foraminifera, Important Producers of Carbonate Buildups. Scientific Reports, 9: 8286. https://doi.org/10.1038/s41598-019-44646-w |
Holzmann, M., Berney, C., Hohenegger, J., 2006. Molecular Identification of Diatom Endosymbionts in Nummulitid Foraminifera. Symbiosis, 42: 93–101 |
Holzmann, M., Hohenegger, J., Apothéloz-Perret-Gentil, L., et al., 2022. Operculina and Neoassilina: A Revision of Recent Nummulitid Genera Based on Molecular and Morphological Data Reveals a New Genus. Journal of Earth Science, 33(6): 1411–1424. https://doi.org/10.1007/s12583-021-1595-8 |
Hottinger, L., 2006. The Depth-Depending Ornamentation of some Lamellar-Perforate Foraminifera. Symbiosis, 42(3): 141–151 |
Hutchinson, G. E., 1957. Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22: 415–427. https://doi.org/10.1101/sqb.1957.022.01.039 |
Kruskal, J. B., 1964. Nonmetric Multidimensional Scaling: A Numerical Method. Psychometrika, 29(2): 115–129. https://doi.org/10.1007/bf02289694 |
Langer, M., Hottinger, L., 2000. Biogeography of Selected "Larger" Foraminifera. Micropaleontology, 46(Suppl. 1): 105–126 |
Leffler, E. M., Bullaughey, K., Matute, D. R., et al., 2012. Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species? PLoS Biology, 10(9): e1001388. https://doi.org/10.1371/journal.pbio.1001388 |
MacArthur, R. H., 1968. The Theory of the Niche. In: Lewontin, R. C., ed., Population Biology and Evolution. Syracuse University Press, Syracuse, NY. 159–176 |
Martini, E., 1971. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. In: Farinacci, A., ed., Proceedings of the Second Planktonic Conference, 1970, Roma. 739–785 |
Mayden, R. L., 1997. A Hierarchy of Species Concepts: The Denouement in the Saga of the Species Problem. In: Claridge, M. F., Dawah, H. A., Wilson, M. R., eds., Species: The Units of Diversity. Chapman & Hall. 381–423 |
Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York. 372 |
Meyer, C. P., Paulay, G., 2005. DNA Barcoding: Error Rates Based on Comprehensive Sampling. PLoS Biology, 3(12): e422. https://doi.org/10.1371/journal.pbio.0030422 |
Narayan, G. R., Reymond, C. E., Stuhr, M., et al., 2022. Response of Large Benthic Foraminifera to Climate and Local Changes: Implications for Future Carbonate Production. Sedimentology, 69(1): 121–161. https://doi.org/10.1111/sed.12858 |
Oron, S., Abramovich, S., Almogi-Labin, A., et al., 2018. Depth Related Adaptations in Symbiont Bearing Benthic Foraminifera: New Insights from a Field Experiment on Operculina Ammonoides. Scientific Reports, 8: 9560. https://doi.org/10.1038/s41598-018-27838-8 |
Parker, J., 2009. Taxonomy of Foraminifera from Ningaloo Reef, Western Australia. Memoires of the Association of Australasian Paleontologists, 36: 1–810 |
Pawlowski, J., Holzmann, M., Tyszka, J., 2013. New Supraordinal Classification of Foraminifera: Molecules Meet Morphology. Marine Micropaleontology, 100: 1–10. https://doi.org/10.1016/j.marmicro.2013.04.002 |
Pecheux, M. J. F., 1995. Ecomorphology of a Recent Largeforaminifer, Operculina Ammonoides. Geobios, 28(5): 529–566. https://doi.org/10.1016/s0016-6995(95)80209-6 |
Pigliucci, M., Kaplan, J., 2006. Making Sense of Evolution: The Conceptual Foundations of Evolutionary Biology. The University of Chicago Press, Chicago, MI. 300 |
Rebeiz, M., Patel, N. H., Hinman, V. F., 2015. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annual Review of Genomics and Human Genetics, 16: 103–131. https://doi.org/10.1146/annurev-genom-091212-153423 |
Renema, W., 2006a. Habitat Variables Determining the Occurrence of Large Benthic Foraminifera in the Berau Area (East Kalimantan, Indonesia). Coral Reefs, 25(3): 351–359. https://doi.org/10.1007/s00338-006-0119-4 |
Renema, W., 2006b. Large Benthic Foraminifera from the Deep Photic Zone of a Mixed Siliciclastic-Carbonate Shelf off East Kalimantan, Indonesia. Marine Micropaleontology, 58(2): 73–82. https://doi.org/10.1016/j.marmicro.2005.10.004 |
Renema, W., 2018. Terrestrial Influence as a Key Driver of Spatial Variability in Large Benthic Foraminiferal Assemblage Composition in the Central Indo-Pacific. Earth-Science Reviews, 177: 514–544. https://doi.org/10.1016/j.earscirev.2017.12.013 |
Shepard, R. N., 1962. The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance Function. I. Psychometrika, 27(2): 125–140. https://doi.org/10.1007/bf02289630 |
Simpson, G. G., 1951. The Species Concept. Evolution, 5(4): 285–298. https://doi.org/10.1111/j.1558-5646.1951.tb02788.x |
Skinner, M. K., 2015. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution. Genome Biology and Evolution, 7(5): 1296–1302. https://doi.org/10.1093/gbe/evv073 |
Sneath, P. H. A., Sokal, R. R., 1973. Numerical Taxonomy. Freeman, San Francisco, CA. 573 |
Torres-Silva, A. I., Hohenegger, J., Ćorić, S., et al., 2017. Biostratigraphy and Evolutionary Tendencies of Eocene Heterostegines in Western and Central Cuba Based on Morphometric Analyses. PALAIOS, 32(1): 44–60. https://doi.org/10.2110/palo.2016.004 |
Torres-Silva, A. I., Eder, W., Hohenegger, J., et al., 2019. Morphometric Analysis of Eocene Nummulitids in Western and Central Cuba: Taxonomy, Biostratigraphy and Evolutionary Trends. Journal of Systematic Palaeontology, 17(7): 557–595. https://doi.org/10.1080/14772019.2018.1446462 |
van Valen, L., 1976. Ecological Species, Multispecies, and Oaks. Taxon, 25(2/3): 233–239. https://doi.org/10.2307/1219444 |
Vaughan, T. W., Cole, W. S., 1941. Preliminary Report on the Cretaceous and Tertiary Larger Foraminifera of Trinidad British West Indies. Geological Society of America Special Papers, 30: 1–85. https://doi.org/10.1130/spe30-p1 |
Weber, A. A. T., Pawlowski, J., 2014. Wide Occurrence of SSU rDNA Intragenomic Polymorphism in Foraminifera and Its Implications for Molecular Species Identification. Protist, 165(5): 645–661. https://doi.org/10.1016/j.protis.2014.07.006 |
Westoll, T. S., 1956. The Nature of Fossil Species. In: Sylvester-Bradley, P. C., ed., The Species Concept in Palaeontology. The Systematics Association, London. 53–62 |
Whittaker, R. H., Levin, S. A., 1975. Introduction. In: Whittaker, R. H., Levin, S. A., eds., Niche, Theory and Applications. Benchmark Papers in Ecology 3. Dowden, Hutchinson and Ross, Stroudsburg, PA. 1–8 |
Wiley, E. O., 1978. The Evolutionary Species Concept Reconsidered. Systematic Biology, 27(1): 17–26. https://doi.org/10.2307/2412809 |
Yordanova, E. K., Hohenegger, J., 2002. Taphonomy of Larger Foraminifera: Relationships between Living Individuals and Empty Tests on Flat Reef Slopes (Sesoko Island, Japan). Facies, 46(1): 169–203. https://doi.org/10.1007/bf02668080 |
Yordanova, E. K., Hohenegger, J., 2004. Morphoclines of Living Operculinid Foraminifera Based on Quantitative Characters. Micropaleontology, 50(2): 149–177. https://doi.org/10.2113/50.2.149 |
Yordanova, E. K., Hohenegger, J., 2007. Studies on Settling, Traction and Entrainment of Larger Benthic Foraminiferal Tests: Implications for Accumulation in Shallow Marine Sediments. Sedimentology, 54(6): 1273–1306. https://doi.org/10.1111/j.1365-3091.2007.00881.x |
Zheng, S. Y., 1979. The Recent Foraminifera of the Xisha Island, Guadong Province, China. Ⅱ. Studia Marina Sinica, 15: 1–27 (in Chinese) |