Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Yangyang Wang, Sijia Li, Shiyuan Wang, Deyang Shi, Weibing Shen. Comparative Mineralogical and Geochemical Compositions within the Fault Gouge in the Surface Exposures of the Mw7.9 Wenchuan Earthquake Fault and Their Implications for Mass Removal and Fluid-Rock Interactions. Journal of Earth Science, 2025, 36(1): 266-274. doi: 10.1007/s12583-021-1572-2
Citation: Yangyang Wang, Sijia Li, Shiyuan Wang, Deyang Shi, Weibing Shen. Comparative Mineralogical and Geochemical Compositions within the Fault Gouge in the Surface Exposures of the Mw7.9 Wenchuan Earthquake Fault and Their Implications for Mass Removal and Fluid-Rock Interactions. Journal of Earth Science, 2025, 36(1): 266-274. doi: 10.1007/s12583-021-1572-2

Comparative Mineralogical and Geochemical Compositions within the Fault Gouge in the Surface Exposures of the Mw7.9 Wenchuan Earthquake Fault and Their Implications for Mass Removal and Fluid-Rock Interactions

doi: 10.1007/s12583-021-1572-2
More Information
  • Corresponding author: Yangyang Wang, wyy871217@126.com; Weibing Shen, swb560316@126.com
  • Received Date: 31 Jul 2021
  • Accepted Date: 24 Oct 2021
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • Geochemistry of the fault gouge record information on fault behaviors and environmental conditions. We investigated variations in the mineralogical and geochemical compositions of the fault gouge sampled from the margin zone (MZ) to the slip central zone (CZ) of the fault gouge in the Beichuan-Yingxiu surface rupture zone of the Wenchuan Earthquake.Results show that the clay minerals contents increase from the MZ to CZ, and the quartz and plagioclase contents slight decrease. An increasing enrichment in Al2O3, Fe2O3, and K2O are observed toward the CZ; the decomposition of quartz and plagioclase, as well as the depletion of SiO2, CaO, Na2O, and P2O5 suggest that the alkaline-earth elements are carried away by the fluids. It can be explained that the stronger coseismic actions in the CZ allow more clay minerals to form, decompose quartz and plagioclase, and alter plagioclase to chlorite. The mass loss in the CZ is larger than that in MZ, which is maybe due to the more concentrated stress in the strongly deformed CZ, however other causes will not be excluded.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Anderson, J. L., Osborne, R. H., Palmer, D. F., 1983. Cataclastic Rocks of the San Gabriel Fault—An Expression of Deformation at Deeper Crustal Levels in the San Andreas Fault Zone. Tectonophysics, 98(3/4): 209–251. https://doi.org/10.1016/0040-1951(83)90296-2
    Boulton, C., Carpenter, B. M., Toy, V., et al., 2012. Physical Properties of Surface Outcrop Cataclastic Fault Rocks, Alpine Fault, New Zealand. Geochemistry, Geophysics, Geosystems, 13(1): Q01018. https://doi.org/10.1029/2011GC003872
    Bradbury, K. K., Davis, C. R., Shervais, J. W., et al., 2015. Composition, Alteration, and Texture of Fault-Related Rocks from SAFOD Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions. Pure and Applied Geophysics, 172(5): 1053–1078. https://doi.org/10.1007/s00024-014-0896-6
    Chen, J. Y., Yang, X. S., Duan, Q. B., et al., 2013a. Importance of Thermochemical Pressurization in the Dynamic Weakening of the Longmenshan Fault during the 2008 Wenchuan Earthquake: Inferences from Experiments and Modeling. Journal of Geophysical Research: Solid Earth, 118(8): 4145–4169. https://doi.org/10.1002/jgrb.50260
    Chen, J. Y., Yang, X. S., Duan, Q. B., et al., 2015. Integrated Measurements of Permeability, Effective Porosity, and Specific Storage of Core Samples Using Water as the Pore Fluid. International Journal of Rock Mechanics and Mining Sciences, 79: 55–62. https://doi.org/10.1016/j.ijrmms.2015.08.007
    Chen, J. Y., Yang, X. S., Ma, S. L., et al., 2013b. Mass Removal and Clay Mineral Dehydration/Rehydration in Carbonate-Rich Surface Exposures of the 2008 Wenchuan Earthquake Fault: Geochemical Evidence and Implications for Fault Zone Evolution and Coseismic Slip. Journal of Geophysical Research: Solid Earth, 118(2): 474–496. https://doi.org/10.1002/jgrb.50089
    Chen, W. M. D., Tanaka, H., Huang, H. J., et al., 2007. Fluid Infiltration Associated with Seismic Faulting: Examining Chemical and Mineralogical Compositions of Fault Rocks from the Active Chelungpu Fault. Tectonophysics, 443(3/4): 243–254. https://doi.org/10.1016/j.tecto.2007.01.025
    Duan, Q. B., Yang, X. S., Ma, S. L., et al., 2016. Fluid-Rock Interactions in Seismic Faults: Implications from the Structures and Mineralogical and Geochemical Compositions of Drilling Cores from the Rupture of the 2008 Wenchuan Earthquake, China. Tectonophysics, 666: 260–280. https://doi.org/10.1016/j.tecto.2015.11.008
    Fu, B. H., Shi, P. L., Guo, H. D., et al., 2011. Surface Deformation Related to the 2008 Wenchuan Earthquake, and Mountain Building of the Longmen Shan, Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 40(4): 805–824. https://doi.org/10.1016/j.jseaes.2010.11.011
    Goddard, J. V., Evans, J. P., 1995. Chemical Changes and Fluid-Rock Interaction in Faults of Crystalline Thrust Sheets, Northwestern Wyoming, U. S. A. Journal of Structural Geology, 17(4): 533–547. https://doi.org/10.1016/0191-8141(94)00068-B
    Grant, J. A., 1986. The Isocon Diagram: A Simple Solution to Gresens' Equation for Metasomatic Alteration. Economic Geology, 81(8): 1976–1982. https://doi.org/10.2113/gsecongeo.81.8.1976
    Grant, J. A., 2005. Isocon Analysis: A Brief Review of the Method and Applications. Physics and Chemistry of the Earth, Parts A/B/C, 30(17/18): 997–1004. https://doi.org/10.1016/j.pce.2004.11.003
    Gresens, R. L., 1967. Composition-Volume Relationships of Metasomatism. Chemical Geology, 2: 47–65. https://doi.org/10.1016/0009-2541(67)90004-6
    Guo, S., Ye, K., Chen, Y., et al., 2009. A Normalization Solution to Mass Transfer Illustration of Multiple Progressively Altered Samples Using the Isocon Diagram. Economic Geology, 104(6): 881–886. https://doi.org/10.2113/gsecongeo.104.6.881
    Guo, S., Ye, K., Chen, Y., et al., 2013. Introduction of Mass Balance Calculation Method for Component Transfer during the Opening of a Geological System. Acta Petrologica Sinica, 5: 1486–1498 (in Chinese with English Abstract)
    Haines, S. H., van der Pluijm, B. A., 2012. Patterns of Mineral Transformations in Clay Gouge, with Examples from Low-Angle Normal Fault Rocks in the Western USA. Journal of Structural Geology, 43: 2–32. https://doi.org/10.1016/j.jsg.2012.05.004
    Hirono, T., Fujimoto, K., Yokoyama, T., et al., 2008. Clay Mineral Reactions Caused by Frictional Heating during an Earthquake: An Example from the Taiwan Chelungpu Fault. Geophysical Research Letters, 35(16): L16303. https://doi.org/10.1029/2008gl034476
    Holdsworth, R. E., van Diggelen, E. W. E., Spiers, C. J., et al., 2011. Fault Rocks from the SAFOD Core Samples: Implications for Weakening at Shallow Depths along the San Andreas Fault, California. Journal of Structural Geology, 33(2): 132–144. https://doi.org/10.1016/j.jsg.2010.11.010
    Kusky, T. M., Ghulam, A., Wang, L., et al., 2010. Focusing Seismic Energy along Faults through Time-Variable Rupture Modes: Wenchuan Earthquake, China. Journal of Earth Science, 21(6): 910–922. https://doi.org/10.1007/s12583-010-0144-7
    Li, H. B., Fu, X. F., Si, J. L., et al., 2008. Coseismic Surface Rupture and Dextral-Slip Oblique Thrusting of the Ms 8.0 Wenchuan Earthquake. Acta Petrologica Sinica, 82: 1623–1643 (in Chinese with English Abstract)
    Li, H. B., Wang, H., Xu, Z. Q., et al., 2013. Characteristics of the Fault-Related Rocks, Fault Zones and the Principal Slip Zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584: 23–42. https://doi.org/10.1016/j.tecto.2012.08.021
    Ma, S. Y., Xu, C., 2019. Applicability of Two Newmark Models in the Assessment of Coseismic Landslide Hazard and Estimation of Slope-Failure Probability: An Example of the 2008 Wenchuan Mw 7.9 Earthquake Affected Area. Journal of Earth Science, 30(5): 1020–1030. https://doi.org/10.1007/s12583-019-0874-0
    Matsuda, T., Omura, K., Ikeda, R., et al., 2004. Fracture-Zone Conditions on a Recently Active Fault: Insights from Mineralogical and Geochemical Analyses of the Hirabayashi NIED Drill Core on the Nojima Fault, Southwest Japan, which Ruptured in the 1995 Kobe Earthquake. Tectonophysics, 378(3/4): 143–163. https://doi.org/10.1016/j.tecto.2003.09.005
    O'Hara, K., Blackburn, W. H., 1989. Volume-Loss Model for Trace-Element Enrichments in Mylonites. Geology, 17(6): 524–527. https://doi.org/10.1130/0091-7613(1989)0170<524:vlmfte>2.3.co;2 doi: 10.1130/0091-7613(1989)0170<524:vlmfte>2.3.co;2
    Ran, Y. K., Chen, L. C., Chen, G. H., et al., 2008. Primary Analyses of in-situ Recurrence of Large Earthquake along Seismogenic Fault of the Ms 8.0 Wenchuan Earthquake. Seismology and Geology, 30(3): 630–643. https://doi.org/10.3969/j.issn.0253-4967.2008.03.004 (in Chinese with English Abstract)
    Schleicher, A. M., Sutherland, R., Townend, J., et al., 2015. Clay Mineral Formation and Fabric Development in the DFDP-1B Borehole, Central Alpine Fault, New Zealand. New Zealand Journal of Geology and Geophysics, 58(1): 13–21. https://doi.org/10.1080/00288306.2014.979841
    Schleicher, A. M., Tourscher, S. N., van der Pluijm, B. A., et al., 2009. Constraints on Mineralization, Fluid-Rock Interaction, and Mass Transfer during Faulting at 2–3 km Depth from the SAFOD Drill Hole. Journal of Geophysical Research: Solid Earth, 114(B4): B04202. https://doi.org/10.1029/2008jb006092
    Shao, C. J., Yan, Z. K., Li, Y., et al., 2023. Dynamic Mechanism of Formation of Basin-Mountain System in Southern Segment of Longmenshan and Frontal Area in Late Miocene. Earth Science, 48(4): 1379–1388 (in Chinese with English Abstract)
    Shi, X., Ran, Y. K., Chen, L. C., et al., 2009. Preliminary Study on Paleoearthquake at beichuan-Dengjia Segment along the Central Fault of Longmen Mountain. Quaternary Sciences, 29(3): 494–501 (in Chinese with English Abstract)
    Solum, J. G., van der Pluijm, B. A., Peacor, D. R., 2005. Neocrystallization, Fabrics and Age of Clay Minerals from an Exposure of the Moab Fault, Utah. Journal of Structural Geology, 27(9): 1563–1576. https://doi.org/10.1016/j.jsg.2005.05.002
    Wang, W. F., Zhu, C. H., Zhang, X. J., et al., 2016. Genetic Types and Geological Significances of Transverse Faults at Longmenshan Fault Zone. Earth Science, 41(5): 729–741 (in Chinese with English Abstract)
    Wang, Y. Y., Chen, J. F., Li, S. J., et al., 2022. Coseismic Fluid–Rock Interactions in the Yingxiu-Beichuan Surface Rupture Zone of the Mw 7.9 Wenchuan Earthquake and Their Implications for the Structural Diagenesis of Fault Rocks. Journal of Structural Geology, 159: 104603. https://doi.org/10.1016/j.jsg.2022.104603
    Wang, Y. Y., Gao, X. Q., Li, S. J., et al., 2021. Element Enrichment/Depletion during Faulting in Shale-Rich Surface Exposures of the 2008 Wenchuan Earthquake (Mw 7.9) and Implications for Coseismic Temperature. Australian Journal of Earth Sciences, 68(5): 731–745. https://doi.org/10.1080/08120099.2021.1847734
    Wibberley, C. A. J., Shimamoto, T., 2005. Earthquake Slip Weakening and Asperities Explained by Thermal Pressurization. Nature, 436(7051): 689–692. https://doi.org/10.1038/nature03901
    Wu, F. T., 1978. Mineralogy and Physical Nature of Clay Gouge. Pure and Applied Geophysics, 116(4): 655–689. https://doi.org/10.1007/BF00876531
    Xu, Q., Dong, X. J., 2011. Genetic Types of Large-Scale Landslides Induced by Wenchuan Earthquake. Earth Science, 36(6): 1134–1142. https://doi.org/10.3799/dqkx.2011.119 (in Chinese with English Abstract)
    Xu, X. W., Wen, X. Z., Ye, J. Q., et al., 2008. The Ms 8.0 Wenchuan Earthquake Surface Ruptures and Its Seismogenic Structure. Seismology and Geology, 30(3): 597–629 (in Chinese with English Abstract)
    Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009. Coseismic Reverse- and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515–518. https://doi.org/10.1130/g25462a.1
    Yang, T., Chen, J. Y., Yang, X. S., et al., 2013. Differences in Magnetic Properties of Fragments and Matrix of Breccias from the Rupture of the 2008 Wenchuan Earthquake, China: Relationship to Faulting. Tectonophysics, 601(5): 112–124. https://doi.org/10.1016/j.tecto.2013.05.002
    Yao, L., Ma, S. L., Shimamoto, T., et al., 2013. Structures and High-Velocity Frictional Properties of the Pingxi Fault Zone in the Longmenshan Fault System, Sichuan, China, Activated during the 2008 Wenchuan Earthquake. Tectonophysics, 599: 135–156. https://doi.org/10.1016/j.tecto.2013.04.011
    Yuan, R. M., Zhang, B. L., Xu, X. W., et al., 2013. Microstructural Features and Mineralogy of Clay-Rich Fault Gouge at the Northern Segment of the Yingxiu-Beichuan Fault, China. Seismology and Geology, 35(4): 685–700. https://doi.org/10.3969/j.issn.0253-4967.2013.04.001 (in Chinese with English Abstract)
    Zhu, H., Wen, X. Z., 2010. Static Stress Triggering Effects Related with Ms 8.0 Wenchuan Earthquake. Journal of Earth Science, 21(1): 32–41. https://doi.org/10.1007/s12583-010-0001-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(11) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return