Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Bo Feng, Xinzhuan Guo. Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure. Journal of Earth Science, 2022, 33(3): 770-777. doi: 10.1007/s12583-021-1574-0
Citation: Bo Feng, Xinzhuan Guo. Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure. Journal of Earth Science, 2022, 33(3): 770-777. doi: 10.1007/s12583-021-1574-0

Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure

doi: 10.1007/s12583-021-1574-0
More Information
  • Corresponding author: Xinzhuan Guo,
  • Received Date: 21 Aug 2021
  • Accepted Date: 29 Oct 2021
  • Orthopyroxene is an important constitutive mineral in the crust and the upper mantle. Its thermal properties play a key role in constructing the thermal structure of the crust and the upper mantle. In this study, we developed a new method to synthesize polycrystalline ferrosilite, one end-member of orthopyroxene, via the reaction of FeO + SiO2 → FeSiO3. We found that the P-T condition of 3 GPa and 1 273 K is suitable to synthesize dense ferrosilite samples with low porosity. We employed the transient plane-source method to investigate the thermal conductivity κ and thermal diffusivity D of synthetic ferrosilite at 1 GPa and 293–873 K, of which, κ = 1.786 + 1.048 × 103T-1 – 9.269 × 104T-2 and D = 0.424 + 0.223 × 103T-1 + 1.64 × 104T-2. Our results suggest phonon conduction should be the dominant mechanism at P-T conditions of interest since the thermal conductivity and the thermal diffusivity of ferrosilite both decrease with increasing temperature. The calculated heat capacity of ferrosilite at 1 GPa increases with temperature, which increases with increasing temperature with about 10% per 100 K (< 500 K) and 4% per 100 K (> 500 K). Iron content of an asteroid significantly influences its thermal evolution history and temperature distribution inside. It is expected that the mantle temperature of the Fe-rich asteroid will be higher and the Fe-rich asteroid's cooling history will be longer.


  • loading
  • Akimoto, S. I., Fujisawa, H., Katsura, T., 1964. Synthesis of FeSiO3 Pyroxene (Ferrosilite) at High Pressures. Proceedings of the Japan Academy, 40(4): 272-275.
    Bowen, N. L., Schairer, J. F., 1935. The System MgO-FeO-SiO2. American Journal of Science, 29(170): 151-217.
    Chang, Y. Y., Hsieh, W. P., Tan, E., et al., 2017. Hydration-Reduced Lattice Thermal Conductivity of Olivine in Earth's Upper Mantle. PNAS, 114(16): 4078-4081.
    Clauser, C., 2011. Thermal Storage and Transport Properties of Rocks, Ⅰ: Heat Capacity and Latent Heat. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. 1423-1431.
    Dzhavadov, L. N., 1975. Measurement of Thermophysical Properties of Dielectrics under Pressure. High Temperatures-High Pressures, 7(1): 49-54
    Fu, H. F., Zhang, B. H., Ge, J. H., et al., 2019. Thermal Diffusivity and Thermal Conductivity of Granitoids at 283-988 K and 0.3-1.5 GPa. American Mineralogist, 104(11): 1533-1545.
    Gaul, O. F., Griffin, W. L., O'Reilly, S. Y., et al., 2000. Mapping Olivine Composition in the Lithospheric Mantle. Earth and Planetary Science Letters, 182(3/4): 223-235.
    Gibert, B., Seipold, U., Tommasi, A., et al., 2003. Thermal Diffusivity of Upper Mantle Rocks: Influence of Temperature, Pressure, and the Deformation Fabric. Journal of Geophysical Research: Solid Earth, 108(B8): 2359.
    Giuli, G., Paris, E., Wu, Z. Y., et al., 2002. Fe and Mg Local Environment in the Synthetic Enstatite-Ferrosilite Join: An Experimental and Theoretical XANES and XRD Study. European Journal of Mineralogy, 14(2): 429-436.
    Hofmeister, A. M., 2007. Pressure Dependence of Thermal Transport Properties. PNAS, 104(22): 9192-9197.
    Hofmeister, A. M., 2012. Thermal Diffusivity of Orthopyroxenes and Proto-enstatite as a Function of Temperature and Chemical Composition. Euro-pean Journal of Mineralogy, 24(4): 669-681.
    Hofmeister, A. M., Pertermann, M., 2008. Thermal Diffusivity of Clinopy-roxenes at Elevated Temperature. European Journal of Mineralogy, 20(4): 537-549.
    Hugh-Jones, D. A., Angel, R. J., 1997. Effect of Ca2+ and Fe2+ on the Equation of State of MgSiO3 Orthopyroxene. Journal of Geophysical Research: Solid Earth, 102(B6): 12333-12340.
    Hunt, S. A., Walker, A. M., McCormack, R. J., et al., 2011. The Effect of Pressure on Thermal Diffusivity in Pyroxenes. Mineralogical Magazine, 75(5): 2597-2610.
    Khan, A., Liebske, C., Rozel, A., et al., 2018. A Geophysical Perspective on the Bulk Composition of Mars. Journal of Geophysical Research: Planets, 123(2): 575-611.
    Kung, J., Li, B. S., 2014. Lattice Dynamic Behavior of Orthoferrosilite (FeSiO3) Toward Phase Transition under Compression. The Journal of Physical Chemistry C, 118(23): 12410-12419.
    Lindsley, D. H., Davis, B. T., MacGregor, I. D., 1964. Ferrosilite (FeSiO3): Synthesis at High Pressures and Temperatures. Science, 144(3614): 73-74.
    Newnham, R. E., 1975. Structure-Property Relations. Springer-Verlag, Berlin. 60-64
    Ono, S., Oganov, A. R., 2005. In situ Observations of Phase Transition between Perovskite and CaIrO3-Type Phase in MgSiO3 and Pyrolitic Mantle Composition. Earth and Planetary Science Letters, 236(3/4): 914-932.
    Osako, M., Ito, E., Yoneda, A., 2004. Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity for Garnet and Olivine under High Pressure. Physics of the Earth and Planetary Interiors, 143/144: 311-320.
    Ringwood, A. E., 1975. Composition and Petrology of the Earth's Mantle. McGraw-Hill, New York
    Ringwood, A. E., 1991. Phase Transformations and Their Bearing on the Constitution and Dynamics of the Mantle. Geochimica et Cosmochimica Acta, 55(8): 2083-2110.
    Sanchez, J. A., Reddy, V., Kelley, M. S., et al., 2014. Olivine-Dominated Asteroids: Mineralogy and Origin. Icarus, 228(2): 288-300.
    Saxena, S. K., Shen, G. Y., 1992. Assessed Data on Heat Capacity, Thermal Expansion, and Compressibility for some Oxides and Silicates. Journal of Geophysical Research: Solid Earth, 97(B13): 19813-19825.
    Schatz, J. F., Simmons, G., 1972. Thermal Conductivity of Earth Materials at High Temperatures. Journal of Geophysical Research, 77(35): 6966-6983.
    Stalder, R., 2004. Influence of Fe, Cr and Al on Hydrogen Incorporation in Orthopyroxene. European Journal of Mineralogy, 16(5): 703-711.
    Stalder, R., Kronz, A., Schmidt, B. C., 2009. Raman Spectroscopy of Synthetic (Mg, Fe)SiO3 Single Crystals: An Analytical Tool for Natural Orthopyroxenes. European Journal of Mineralogy, 21(1): 27-32.
    Sunshine, J. M., Bus, S. J., Corrigan, C. M., et al., 2007. Olivine-Dominated Asteroids and Meteorites: Distinguishing Nebular and Igneous Histories. Meteoritics & Planetary Science, 42(2): 155-170.
    Wang, C., Yoneda, A., Osako, M., et al., 2014. Measurement of Thermal Conductivity of Omphacite, Jadeite, and Diopside up to 14 GPa and 1 000 K: Implication for the Role of Eclogite in Subduction Slab. Journal of Geophysical Research: Solid Earth, 119(8): 6277-6287.
    Xiong, J., Lin, H. Y., Ding, H. S., et al., 2020. Investigation on Thermal Property Parameters Characteristics of Rocks and Its Influence Factors. Natural Gas Industry B, 7(3): 298-308.
    Xu, J. G., Fan, D. W., Zhang, D. Z., et al., 2020. Phase Transition of Enstatite-Ferrosilite Solid Solutions at High Pressure and High Temperature: Constraints on Metastable Orthopyroxene in Cold Subduction. Geophysical Research Letters, 47(12): 1-10.
    Yoneda, A., Osako, M., Ito, E., 2009. Heat Capacity Measurement under High Pressure: A Finite Element Method Assessment. Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 309-314.
    Zhang, B. H., Ge, J. H., Xiong, Z. L., et al., 2019. Effect of Water on the Thermal Properties of Olivine with Implications for Lunar Internal Temperature. Journal of Geophysical Research: Planets, 124(12): 3469-3481.
    Zhang, B. H., Yoshino, T., 2016. Effect of Temperature, Pressure and Iron Content on the Electrical Conductivity of Orthopyroxene. Contributions to Mineralogy and Petrology, 171(12): 1-12.
    Zhang, Y. Y., Yoshino, T., Yoneda, A., et al., 2019. Effect of Iron Content on Thermal Conductivity of Olivine with Implications for Cooling History of Rocky Planets. Earth and Planetary Science Letters, 519: 109-119.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views(21) PDF downloads(14) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint