Citation: | Bo Feng, Xinzhuan Guo. Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure. Journal of Earth Science, 2022, 33(3): 770-777. doi: 10.1007/s12583-021-1574-0 |
Orthopyroxene is an important constitutive mineral in the crust and the upper mantle. Its thermal properties play a key role in constructing the thermal structure of the crust and the upper mantle. In this study, we developed a new method to synthesize polycrystalline ferrosilite, one end-member of orthopyroxene, via the reaction of FeO + SiO2 → FeSiO3. We found that the
Akimoto, S. I., Fujisawa, H., Katsura, T., 1964. Synthesis of FeSiO3 Pyroxene (Ferrosilite) at High Pressures. Proceedings of the Japan Academy, 40(4): 272-275. https://doi.org/10.2183/pjab1945.40.272 |
Bowen, N. L., Schairer, J. F., 1935. The System MgO-FeO-SiO2. American Journal of Science, 29(170): 151-217. https://doi.org/10.2475/ajs.s5-29.170.151 |
Chang, Y. Y., Hsieh, W. P., Tan, E., et al., 2017. Hydration-Reduced Lattice Thermal Conductivity of Olivine in Earth's Upper Mantle. PNAS, 114(16): 4078-4081. https://doi.org/10.1073/pnas.1616216114 |
Clauser, C., 2011. Thermal Storage and Transport Properties of Rocks, Ⅰ: Heat Capacity and Latent Heat. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. 1423-1431. https://doi.org/10.1007/978-90-481-8702-7_238 |
Dzhavadov, L. N., 1975. Measurement of Thermophysical Properties of Dielectrics under Pressure. High Temperatures-High Pressures, 7(1): 49-54 |
Fu, H. F., Zhang, B. H., Ge, J. H., et al., 2019. Thermal Diffusivity and Thermal Conductivity of Granitoids at 283-988 K and 0.3-1.5 GPa. American Mineralogist, 104(11): 1533-1545. https://doi.org/10.2138/am-2019-7099 |
Gaul, O. F., Griffin, W. L., O'Reilly, S. Y., et al., 2000. Mapping Olivine Composition in the Lithospheric Mantle. Earth and Planetary Science Letters, 182(3/4): 223-235. https://doi.org/10.1016/s0012-821x(00)00243-0 |
Gibert, B., Seipold, U., Tommasi, A., et al., 2003. Thermal Diffusivity of Upper Mantle Rocks: Influence of Temperature, Pressure, and the Deformation Fabric. Journal of Geophysical Research: Solid Earth, 108(B8): 2359. https://doi.org/10.1029/2002jb002108 |
Giuli, G., Paris, E., Wu, Z. Y., et al., 2002. Fe and Mg Local Environment in the Synthetic Enstatite-Ferrosilite Join: An Experimental and Theoretical XANES and XRD Study. European Journal of Mineralogy, 14(2): 429-436. https://doi.org/10.1127/0935-1221/2002/0014-0429 |
Hofmeister, A. M., 2007. Pressure Dependence of Thermal Transport Properties. PNAS, 104(22): 9192-9197. https://doi.org/10.1073/pnas.0610734104 |
Hofmeister, A. M., 2012. Thermal Diffusivity of Orthopyroxenes and Proto-enstatite as a Function of Temperature and Chemical Composition. Euro-pean Journal of Mineralogy, 24(4): 669-681. https://doi.org/10.1127/0935-1221/2012/0024-2204 |
Hofmeister, A. M., Pertermann, M., 2008. Thermal Diffusivity of Clinopy-roxenes at Elevated Temperature. European Journal of Mineralogy, 20(4): 537-549. https://doi.org/10.1127/0935-1221/2008/0020-1814 |
Hugh-Jones, D. A., Angel, R. J., 1997. Effect of Ca2+ and Fe2+ on the Equation of State of MgSiO3 Orthopyroxene. Journal of Geophysical Research: Solid Earth, 102(B6): 12333-12340. https://doi.org/10.1029/96jb03485 |
Hunt, S. A., Walker, A. M., McCormack, R. J., et al., 2011. The Effect of Pressure on Thermal Diffusivity in Pyroxenes. Mineralogical Magazine, 75(5): 2597-2610. https://doi.org/10.1180/minmag.2011.075.5.2597 |
Khan, A., Liebske, C., Rozel, A., et al., 2018. A Geophysical Perspective on the Bulk Composition of Mars. Journal of Geophysical Research: Planets, 123(2): 575-611. https://doi.org/10.1002/2017je005371 |
Kung, J., Li, B. S., 2014. Lattice Dynamic Behavior of Orthoferrosilite (FeSiO3) Toward Phase Transition under Compression. The Journal of Physical Chemistry C, 118(23): 12410-12419. https://doi.org/10.1021/jp4112926 |
Lindsley, D. H., Davis, B. T., MacGregor, I. D., 1964. Ferrosilite (FeSiO3): Synthesis at High Pressures and Temperatures. Science, 144(3614): 73-74. https://doi.org/10.1126/science.144.3614.73 |
Newnham, R. E., 1975. Structure-Property Relations. Springer-Verlag, Berlin. 60-64 |
Ono, S., Oganov, A. R., 2005. In situ Observations of Phase Transition between Perovskite and CaIrO3-Type Phase in MgSiO3 and Pyrolitic Mantle Composition. Earth and Planetary Science Letters, 236(3/4): 914-932. https://doi.org/10.1016/j.epsl.2005.06.001 |
Osako, M., Ito, E., Yoneda, A., 2004. Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity for Garnet and Olivine under High Pressure. Physics of the Earth and Planetary Interiors, 143/144: 311-320. https://doi.org/10.1016/j.pepi.2003.10.010 |
Ringwood, A. E., 1975. Composition and Petrology of the Earth's Mantle. McGraw-Hill, New York |
Ringwood, A. E., 1991. Phase Transformations and Their Bearing on the Constitution and Dynamics of the Mantle. Geochimica et Cosmochimica Acta, 55(8): 2083-2110. https://doi.org/10.1016/0016-7037(91)90090-r |
Sanchez, J. A., Reddy, V., Kelley, M. S., et al., 2014. Olivine-Dominated Asteroids: Mineralogy and Origin. Icarus, 228(2): 288-300. https://doi.org/10.1016/j.icarus.2013.10.006 |
Saxena, S. K., Shen, G. Y., 1992. Assessed Data on Heat Capacity, Thermal Expansion, and Compressibility for some Oxides and Silicates. Journal of Geophysical Research: Solid Earth, 97(B13): 19813-19825. https://doi.org/10.1029/92jb01555 |
Schatz, J. F., Simmons, G., 1972. Thermal Conductivity of Earth Materials at High Temperatures. Journal of Geophysical Research, 77(35): 6966-6983. https://doi.org/10.1029/jb077i035p06966 |
Stalder, R., 2004. Influence of Fe, Cr and Al on Hydrogen Incorporation in Orthopyroxene. European Journal of Mineralogy, 16(5): 703-711. https://doi.org/10.1127/0935-1221/2004/0016-0703 |
Stalder, R., Kronz, A., Schmidt, B. C., 2009. Raman Spectroscopy of Synthetic (Mg, Fe)SiO3 Single Crystals: An Analytical Tool for Natural Orthopyroxenes. European Journal of Mineralogy, 21(1): 27-32. https://doi.org/10.1127/0935-1221/2009/0021-1846 |
Sunshine, J. M., Bus, S. J., Corrigan, C. M., et al., 2007. Olivine-Dominated Asteroids and Meteorites: Distinguishing Nebular and Igneous Histories. Meteoritics & Planetary Science, 42(2): 155-170. https://doi.org/10.1111/j.1945-5100.2007.tb00224.x |
Wang, C., Yoneda, A., Osako, M., et al., 2014. Measurement of Thermal Conductivity of Omphacite, Jadeite, and Diopside up to 14 GPa and 1 000 K: Implication for the Role of Eclogite in Subduction Slab. Journal of Geophysical Research: Solid Earth, 119(8): 6277-6287. https://doi.org/10.1002/2014jb011208 |
Xiong, J., Lin, H. Y., Ding, H. S., et al., 2020. Investigation on Thermal Property Parameters Characteristics of Rocks and Its Influence Factors. Natural Gas Industry B, 7(3): 298-308. https://doi.org/10.1016/j.ngib.2020.04.001 |
Xu, J. G., Fan, D. W., Zhang, D. Z., et al., 2020. Phase Transition of Enstatite-Ferrosilite Solid Solutions at High Pressure and High Temperature: Constraints on Metastable Orthopyroxene in Cold Subduction. Geophysical Research Letters, 47(12): 1-10. https://doi.org/10.1029/2020gl087363 |
Yoneda, A., Osako, M., Ito, E., 2009. Heat Capacity Measurement under High Pressure: A Finite Element Method Assessment. Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 309-314. https://doi.org/10.1016/j.pepi.2008.10.004 |
Zhang, B. H., Ge, J. H., Xiong, Z. L., et al., 2019. Effect of Water on the Thermal Properties of Olivine with Implications for Lunar Internal Temperature. Journal of Geophysical Research: Planets, 124(12): 3469-3481. https://doi.org/10.1029/2019je006194 |
Zhang, B. H., Yoshino, T., 2016. Effect of Temperature, Pressure and Iron Content on the Electrical Conductivity of Orthopyroxene. Contributions to Mineralogy and Petrology, 171(12): 1-12. https://doi.org/10.1007/s00410-016-1315-z |
Zhang, Y. Y., Yoshino, T., Yoneda, A., et al., 2019. Effect of Iron Content on Thermal Conductivity of Olivine with Implications for Cooling History of Rocky Planets. Earth and Planetary Science Letters, 519: 109-119. https://doi.org/10.1016/j.epsl.2019.04.048 |