Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Bo Feng, Xinzhuan Guo. Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure. Journal of Earth Science, 2022, 33(3): 770-777. doi: 10.1007/s12583-021-1574-0
Citation: Bo Feng, Xinzhuan Guo. Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure. Journal of Earth Science, 2022, 33(3): 770-777. doi: 10.1007/s12583-021-1574-0

Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure

doi: 10.1007/s12583-021-1574-0
More Information
  • Corresponding author: Xinzhuan Guo, gxzhuan@mail.gyig.ac.cn
  • Received Date: 21 Aug 2021
  • Accepted Date: 29 Oct 2021
  • Orthopyroxene is an important constitutive mineral in the crust and the upper mantle. Its thermal properties play a key role in constructing the thermal structure of the crust and the upper mantle. In this study, we developed a new method to synthesize polycrystalline ferrosilite, one end-member of orthopyroxene, via the reaction of FeO + SiO2 → FeSiO3. We found that the P-T condition of 3 GPa and 1 273 K is suitable to synthesize dense ferrosilite samples with low porosity. We employed the transient plane-source method to investigate the thermal conductivity κ and thermal diffusivity D of synthetic ferrosilite at 1 GPa and 293–873 K, of which, κ = 1.786 + 1.048 × 103T-1 – 9.269 × 104T-2 and D = 0.424 + 0.223 × 103T-1 + 1.64 × 104T-2. Our results suggest phonon conduction should be the dominant mechanism at P-T conditions of interest since the thermal conductivity and the thermal diffusivity of ferrosilite both decrease with increasing temperature. The calculated heat capacity of ferrosilite at 1 GPa increases with temperature, which increases with increasing temperature with about 10% per 100 K (< 500 K) and 4% per 100 K (> 500 K). Iron content of an asteroid significantly influences its thermal evolution history and temperature distribution inside. It is expected that the mantle temperature of the Fe-rich asteroid will be higher and the Fe-rich asteroid's cooling history will be longer.

     

  • loading
  • Akimoto, S. I., Fujisawa, H., Katsura, T., 1964. Synthesis of FeSiO3 Pyroxene (Ferrosilite) at High Pressures. Proceedings of the Japan Academy, 40(4): 272-275. https://doi.org/10.2183/pjab1945.40.272
    Bowen, N. L., Schairer, J. F., 1935. The System MgO-FeO-SiO2. American Journal of Science, 29(170): 151-217. https://doi.org/10.2475/ajs.s5-29.170.151
    Chang, Y. Y., Hsieh, W. P., Tan, E., et al., 2017. Hydration-Reduced Lattice Thermal Conductivity of Olivine in Earth's Upper Mantle. PNAS, 114(16): 4078-4081. https://doi.org/10.1073/pnas.1616216114
    Clauser, C., 2011. Thermal Storage and Transport Properties of Rocks, Ⅰ: Heat Capacity and Latent Heat. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. 1423-1431. https://doi.org/10.1007/978-90-481-8702-7_238
    Dzhavadov, L. N., 1975. Measurement of Thermophysical Properties of Dielectrics under Pressure. High Temperatures-High Pressures, 7(1): 49-54
    Fu, H. F., Zhang, B. H., Ge, J. H., et al., 2019. Thermal Diffusivity and Thermal Conductivity of Granitoids at 283-988 K and 0.3-1.5 GPa. American Mineralogist, 104(11): 1533-1545. https://doi.org/10.2138/am-2019-7099
    Gaul, O. F., Griffin, W. L., O'Reilly, S. Y., et al., 2000. Mapping Olivine Composition in the Lithospheric Mantle. Earth and Planetary Science Letters, 182(3/4): 223-235. https://doi.org/10.1016/s0012-821x(00)00243-0
    Gibert, B., Seipold, U., Tommasi, A., et al., 2003. Thermal Diffusivity of Upper Mantle Rocks: Influence of Temperature, Pressure, and the Deformation Fabric. Journal of Geophysical Research: Solid Earth, 108(B8): 2359. https://doi.org/10.1029/2002jb002108
    Giuli, G., Paris, E., Wu, Z. Y., et al., 2002. Fe and Mg Local Environment in the Synthetic Enstatite-Ferrosilite Join: An Experimental and Theoretical XANES and XRD Study. European Journal of Mineralogy, 14(2): 429-436. https://doi.org/10.1127/0935-1221/2002/0014-0429
    Hofmeister, A. M., 2007. Pressure Dependence of Thermal Transport Properties. PNAS, 104(22): 9192-9197. https://doi.org/10.1073/pnas.0610734104
    Hofmeister, A. M., 2012. Thermal Diffusivity of Orthopyroxenes and Proto-enstatite as a Function of Temperature and Chemical Composition. Euro-pean Journal of Mineralogy, 24(4): 669-681. https://doi.org/10.1127/0935-1221/2012/0024-2204
    Hofmeister, A. M., Pertermann, M., 2008. Thermal Diffusivity of Clinopy-roxenes at Elevated Temperature. European Journal of Mineralogy, 20(4): 537-549. https://doi.org/10.1127/0935-1221/2008/0020-1814
    Hugh-Jones, D. A., Angel, R. J., 1997. Effect of Ca2+ and Fe2+ on the Equation of State of MgSiO3 Orthopyroxene. Journal of Geophysical Research: Solid Earth, 102(B6): 12333-12340. https://doi.org/10.1029/96jb03485
    Hunt, S. A., Walker, A. M., McCormack, R. J., et al., 2011. The Effect of Pressure on Thermal Diffusivity in Pyroxenes. Mineralogical Magazine, 75(5): 2597-2610. https://doi.org/10.1180/minmag.2011.075.5.2597
    Khan, A., Liebske, C., Rozel, A., et al., 2018. A Geophysical Perspective on the Bulk Composition of Mars. Journal of Geophysical Research: Planets, 123(2): 575-611. https://doi.org/10.1002/2017je005371
    Kung, J., Li, B. S., 2014. Lattice Dynamic Behavior of Orthoferrosilite (FeSiO3) Toward Phase Transition under Compression. The Journal of Physical Chemistry C, 118(23): 12410-12419. https://doi.org/10.1021/jp4112926
    Lindsley, D. H., Davis, B. T., MacGregor, I. D., 1964. Ferrosilite (FeSiO3): Synthesis at High Pressures and Temperatures. Science, 144(3614): 73-74. https://doi.org/10.1126/science.144.3614.73
    Newnham, R. E., 1975. Structure-Property Relations. Springer-Verlag, Berlin. 60-64
    Ono, S., Oganov, A. R., 2005. In situ Observations of Phase Transition between Perovskite and CaIrO3-Type Phase in MgSiO3 and Pyrolitic Mantle Composition. Earth and Planetary Science Letters, 236(3/4): 914-932. https://doi.org/10.1016/j.epsl.2005.06.001
    Osako, M., Ito, E., Yoneda, A., 2004. Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity for Garnet and Olivine under High Pressure. Physics of the Earth and Planetary Interiors, 143/144: 311-320. https://doi.org/10.1016/j.pepi.2003.10.010
    Ringwood, A. E., 1975. Composition and Petrology of the Earth's Mantle. McGraw-Hill, New York
    Ringwood, A. E., 1991. Phase Transformations and Their Bearing on the Constitution and Dynamics of the Mantle. Geochimica et Cosmochimica Acta, 55(8): 2083-2110. https://doi.org/10.1016/0016-7037(91)90090-r
    Sanchez, J. A., Reddy, V., Kelley, M. S., et al., 2014. Olivine-Dominated Asteroids: Mineralogy and Origin. Icarus, 228(2): 288-300. https://doi.org/10.1016/j.icarus.2013.10.006
    Saxena, S. K., Shen, G. Y., 1992. Assessed Data on Heat Capacity, Thermal Expansion, and Compressibility for some Oxides and Silicates. Journal of Geophysical Research: Solid Earth, 97(B13): 19813-19825. https://doi.org/10.1029/92jb01555
    Schatz, J. F., Simmons, G., 1972. Thermal Conductivity of Earth Materials at High Temperatures. Journal of Geophysical Research, 77(35): 6966-6983. https://doi.org/10.1029/jb077i035p06966
    Stalder, R., 2004. Influence of Fe, Cr and Al on Hydrogen Incorporation in Orthopyroxene. European Journal of Mineralogy, 16(5): 703-711. https://doi.org/10.1127/0935-1221/2004/0016-0703
    Stalder, R., Kronz, A., Schmidt, B. C., 2009. Raman Spectroscopy of Synthetic (Mg, Fe)SiO3 Single Crystals: An Analytical Tool for Natural Orthopyroxenes. European Journal of Mineralogy, 21(1): 27-32. https://doi.org/10.1127/0935-1221/2009/0021-1846
    Sunshine, J. M., Bus, S. J., Corrigan, C. M., et al., 2007. Olivine-Dominated Asteroids and Meteorites: Distinguishing Nebular and Igneous Histories. Meteoritics & Planetary Science, 42(2): 155-170. https://doi.org/10.1111/j.1945-5100.2007.tb00224.x
    Wang, C., Yoneda, A., Osako, M., et al., 2014. Measurement of Thermal Conductivity of Omphacite, Jadeite, and Diopside up to 14 GPa and 1 000 K: Implication for the Role of Eclogite in Subduction Slab. Journal of Geophysical Research: Solid Earth, 119(8): 6277-6287. https://doi.org/10.1002/2014jb011208
    Xiong, J., Lin, H. Y., Ding, H. S., et al., 2020. Investigation on Thermal Property Parameters Characteristics of Rocks and Its Influence Factors. Natural Gas Industry B, 7(3): 298-308. https://doi.org/10.1016/j.ngib.2020.04.001
    Xu, J. G., Fan, D. W., Zhang, D. Z., et al., 2020. Phase Transition of Enstatite-Ferrosilite Solid Solutions at High Pressure and High Temperature: Constraints on Metastable Orthopyroxene in Cold Subduction. Geophysical Research Letters, 47(12): 1-10. https://doi.org/10.1029/2020gl087363
    Yoneda, A., Osako, M., Ito, E., 2009. Heat Capacity Measurement under High Pressure: A Finite Element Method Assessment. Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 309-314. https://doi.org/10.1016/j.pepi.2008.10.004
    Zhang, B. H., Ge, J. H., Xiong, Z. L., et al., 2019. Effect of Water on the Thermal Properties of Olivine with Implications for Lunar Internal Temperature. Journal of Geophysical Research: Planets, 124(12): 3469-3481. https://doi.org/10.1029/2019je006194
    Zhang, B. H., Yoshino, T., 2016. Effect of Temperature, Pressure and Iron Content on the Electrical Conductivity of Orthopyroxene. Contributions to Mineralogy and Petrology, 171(12): 1-12. https://doi.org/10.1007/s00410-016-1315-z
    Zhang, Y. Y., Yoshino, T., Yoneda, A., et al., 2019. Effect of Iron Content on Thermal Conductivity of Olivine with Implications for Cooling History of Rocky Planets. Earth and Planetary Science Letters, 519: 109-119. https://doi.org/10.1016/j.epsl.2019.04.048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views(21) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return