Citation: | Fan Zhang, Zhenxue Jiang, Yuanhao Zhang, Bin Hu, Zaiquan Yang, Yuhua Yang, Xianglu Tang, Hanmin Xiao, Lin Zhu, Yunhao Han. A New Method for Converting T2 Spectrum into Pore Radius. Journal of Earth Science, 2023, 34(4): 966-974. doi: 10.1007/s12583-021-1576-y |
In this paper, a new method for converting the
Al Hinai, A., Rezaee, R., Esteban, L., et al., 2014. Comparisons of Pore Size Distribution: A Case from the Western Australian Gas Shale Formations. Journal of Unconventional Oil and Gas Resources, 8: 1–13. https://doi.org/10.1016/j.juogr.2014.06.002 |
Al-Mahrooqi, S. H., Grattoni, C. A., Moss, A. K., et al., 2003. An Investigation of the Effect of Wettability on NMR Characteristics of Sandstone Rock and Fluid Systems. Journal of Petroleum Science and Engineering, 39(3/4): 389–398. https://doi.org/10.1016/S0920-4105(03)00077-9 |
Daigle, H., Johnson, A., 2016. Combining Mercury Intrusion and Nuclear Magnetic Resonance Measurements Using Percolation Theory. Transport in Porous Media, 111(3): 669–679. https://doi.org/10.1007/s11242-015-0619-1 |
Daigle, H., Thomas, B., Rowe, H., et al., 2014. Nuclear Magnetic Resonance Characterization of Shallow Marine Sediments from the Nankai Trough, Integrated Ocean Drilling Program Expedition 333. Journal of Geophysical Research: Solid Earth, 119(4): 2631–2650. https://doi.org/10.1002/2013JB010784 |
Davy, C. A., Adler, P. M., 2017. Three-Scale Analysis of the Permeability of a Natural Shale. Physical Review E, 96(6): 063116. https://doi.org/10.1103/physreve.96.063116 |
De Silva, G. P. D., Ranjith, P. G., Perera, M. S. A., et al., 2016. Effect of Bedding Planes, Their Orientation and Clay Depositions on Effective re-Injection of Produced Brine into Clay Rich Deep Sandstone Formations: Implications for Deep Earth Energy Extraction. Applied Energy, 161: 24–40. https://doi.org/10.1016/j.apenergy.2015.09.079 |
Du, S. H., Shi, Y. M., 2020. Rapid Determination of Complete Distribution of Pore and Throat in Tight Oil Sandstone of Triassic Yanchang Formation in Ordos Basin, China. Acta Geologica Sinica: English Edition, 94(3): 822–830. https://doi.org/10.1111/1755-6724.13881 |
Du, S. H., Zhao, Y. P., Jin, J., et al., 2019. Significance of the Secondary Pores in Perthite for Oil Storage and Flow in Tight Sandstone Reservoir. Marine and Petroleum Geology, 110: 178–188. https://doi.org/10.1016/j.marpetgeo.2019.07.006 |
Dunn, K. J., Bergman, D. J., Latorraca, G. A., 2002. Seismic Exploration: Nuclear Magnetic Resonance: Petrophysical and Logging Applications. Elsevier, Amsterdam |
Fu, J. H., Li, S. X., Xu, L. M., et al., 2018. Paleo-Sedimentary Environmental Restoration and Its Significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45(6): 998–1008. https://doi.org/10.1016/S1876-3804(18)30104-6 |
Gao, F. L., Song, Y., Li, Z., et al., 2018. Quantitative Characterization of Pore Connectivity Using NMR and MIP: A Case Study of the Wangyinpu and Guanyintang Shales in the Xiuwu Basin, Southern China. International Journal of Coal Geology, 197: 53–65. https://doi.org/10.1016/j.coal.2018.07.007 |
Grathoff, G. H., Peltz, M., Enzmann, F., et al., 2016. Porosity and Permeability Determination of Organic-Rich Posidonia Shales Based on 3-D Analyses by FIB-SEM Microscopy. Solid Earth, 7(4): 1145–1156. https://doi.org/10.5194/se-7-1145-2016 |
Huang, H. X., Li, R. X., Chen, W. T., et al., 2021. Revisiting Movable Fluid Space in Tight Fine-Grained Reservoirs: A Case Study from Shahejie Shale in the Bohai Bay Basin, NE China. Journal of Petroleum Science and Engineering, 207: 109170. https://doi.org/10.1016/j.petrol.2021.109170 |
Huang, H. X., Li, R. X., Xiong, F. Y., et al., 2020. A Method to Probe the Pore-Throat Structure of Tight Reservoirs Based on Low-Field NMR: Insights from a Cylindrical Pore Model. Marine and Petroleum Geology, 117: 104344. https://doi.org/10.1016/j.marpetgeo.2020.104344 |
Ji, L. M., Wang, S. F., Xu, J. L., 2006. Acritarch Assemblage in Yanchang Formation in Eastern Gansu Province and Its Environmental Implications. Earth Science–Journal of China University of Geosciences, 31(6): 789–807 (in Chinese with English Abstract) |
Jia, C. Z., Zou, C. N., Tao, S. Z., et al., 2012. Assessment Criteria, Main Types, Basic Features and Resource Prospects of the Tight Oil in China. Acta Petrolei Sinica, 33(3): 343–350 (in Chinese with English Abstract) |
Jiang, Z, X., Tang, X, L., Li. Z., et al., 2018. Pore Structure and Gas Content Ability of Typical Marine and Continental Shale Reservoirs in China. Science Press, Beijing (in Chinese) |
Kleinberg, R. L., Kenyon, W. E., Mitra, P. P., 1994. Mechanism of NMR Relaxation of Fluids in Rock. Journal of Magnetic Resonance, Series A, 108(2): 206–214. |
Lai, J., Wang, G. W., Wang, Z. Y., et al., 2018. A Review on Pore Structure Characterization in Tight Sandstones. Earth-Science Reviews, 177: 436–457. https://doi.org/10.1016/j.earscirev.2017.12.003 |
Law, B. E., Curtis, J. B., 2002. Introduction to Unconventional Petroleum Systems. AAPG Bulletin, 86: 1851–1852. https://doi.org/10.1306/61eedda0-173e-11d7-8645000102c1865d |
Li, A. F., Ren, X. X., Wang, G. J., et al., 2015. Characterization of Pore Structure of Low Permeability Reservoirs Using a Nuclear Magnetic Resonance Method. Journal of China University of Petroleum, 39(6): 92–98 (in Chinese with English Abstract) |
Li, P., Jia, C. Z., Jin, Z. J., et al., 2019. The Characteristics of Movable Fluid in the Triassic Lacustrine Tight Oil Reservoir: A Case Study of the Chang 7 Member of Xin'anbian Block, Ordos Basin, China. Marine and Petroleum Geology, 102: 126–137. https://doi.org/10.1016/j.marpetgeo.2018.11.019 |
Li, X. C., Gao, J. X., Zhang, S., et al., 2022. Combined Characterization of Scanning Electron Microscopy, Pore and Crack Analysis System, and Gas Adsorption on Pore Structure of Coal with Different Volatilizatione. Earth Science, 47(5): 1876–1889 (in Chinese with English Abstract) |
Liu, D. K., Sun, W., Ren, D. Z., et al., 2019. Quartz Cement Origins and Impact on Storage Performance in Permian Upper Shihezi Formation Tight Sandstone Reservoirs in the Northern Ordos Basin, China. Journal of Petroleum Science and Engineering, 178: 485–496. https://doi.org/10.1016/j.petrol.2019.03.061 |
Loren, J. D., Robinson, J. D., 1970. Relations between Pore Size Fluid and Matrix Properties, and NML Measurements. Society of Petroleum Engineers Journal, 10(3): 268–278 doi: 10.2118/2529-PA |
Mao, Z. Q., He, Y. D., Ren, X. J., 2005. An Improved Method of Using NMR T2 Distribution to Evaluate Pore Size Distribution. Chinese Journal of Geophysics, 48(2): 412–418. https://doi.org/10.1002/cjg2.668 |
Müller-Huber, E., Schön, J., Börner, F., 2016. Pore Space Characterization in Carbonate Rocks—Approach to Combine Nuclear Magnetic Resonance and Elastic Wave Velocity Measurements. Journal of Applied Geophysics, 127: 68–81. https://doi.org/10.1016/j.jappgeo.2016.02.011 |
Nagykáldi, A., Rácz, I., Kovács, B., 1984. A High-Pressure Mercury Method in the Study of Porosity and Pore Radius Distribution in Model Tablets Prepared with Various Binding Material Concentrations and under Various Pressures. Acta Pharmaceutica Hungarica, 54(1): 30–43 |
Ning, C., Jiang, Z., Gao, Z., et al., 2017. Quantitative Evaluation of Pore Connectivity with Nuclear Magnetic Resonance and High Pressure Mercury Injection: A Case Study of the Lower Section of Es3 in Zhanhua Sag. Journal of China University of Mining & Technology, 46(3): 578–585 (in Chinese with English Abstract) |
Radlinski, A. P., Mastalerz, M., Hinde, A. L., et al., 2004. Application of SAXS and SANS in Evaluation of Porosity, Pore Size Distribution and Surface Area of Coal. International Journal of Coal Geology, 59(3/4): 245–271. https://doi.org/10.1016/j.coal.2004.03.002 |
Rathnaweera, T. D., Ranjith, P. G., Perera, M. S. A., et al., 2017. An Experimental Investigation of Coupled Chemico-Mineralogical and Mechanical Changes in Varyingly-Cemented Sandstones Upon CO2 Injection in Deep Saline Aquifer Environments. Energy, 133: 404–414. https://doi.org/10.1016/j.energy.2017.05.154 |
Ren, D. Z., Zhou, D. S., Liu, D. K., et al., 2019. Formation Mechanism of the Upper Triassic Yanchang Formation Tight Sandstone Reservoir in Ordos Basin—Take Chang 6 Reservoir in Jiyuan Oil Field as an Example. Journal of Petroleum Science and Engineering, 178: 497–505. https://doi.org/10.1016/j.petrol.2019.03.021 |
Sigal, R. F., 2015. Pore-Size Distributions for Organic-Shale-Reservoir Rocks from Nuclear-Magnetic-Resonance Spectra Combined with Adsorption Measurements. SPE Journal, 20(4): 824–830. https://doi.org/10.2118/174546-pa |
Tahmasebi, P., 2018. Nanoscale and Multiresolution Models for Shale Samples. Fuel, 217: 218–225. https://doi.org/10.1016/j.fuel.2017.12.107 |
Vilcáez, J., Morad, S., Shikazono, N., 2017. Pore-Scale Simulation of Transport Properties of Carbonate Rocks Using FIB-SEM 3D Microstructure: Implications for Field Scale Solute Transport Simulations. Journal of Natural Gas Science and Engineering, 42: 13–22. https://doi.org/10.1016/j.jngse.2017.02.044 |
Wang, L. A., Zhao, N., Sima, L. Q., et al., 2018. Pore Structure Characterization of the Tight Reservoir: Systematic Integration of Mercury Injection and Nuclear Magnetic Resonance. Energy & Fuels, 32(7): 7471–7484. https://doi.org/10.1021/acs.energyfuels.8b01369 |
Wang, Z. M., Jiang, Y. Q., Fu, Y. H., et al., 2022. Characterization of Pore Structure and Heterogeneity of Shale Reservoir from Wufeng Formation⁃Sublayers Long⁃11 in Western Chongqing Based on Nuclear Magnetic Resonance. Earth Science, 2022, 47(2): 490–504 (in Chinese with English Abstract) |
Washburn, E. W., 1921. The Dynamics of Capillary Flow. Physical Review, 17(3): 273–283. https://doi.org/10.1103/physrev.17.273 |
Yao, Y. B., Liu, D. M., 2012. Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals. Fuel, 95: 152–158. https://doi.org/10.1016/j.fuel.2011.12.039 |
Zhang, F., Jiang, Z. X., Sun, W., et al., 2019. A Multiscale Comprehensive Study on Pore Structure of Tight Sandstone Reservoir Realized by Nuclear Magnetic Resonance, High Pressure Mercury Injection and Constant-Rate Mercury Injection Penetration Test. Marine and Petroleum Geology, 109: 208–222. https://doi.org/10.1016/j.marpetgeo.2019.06.019 |
Zhang, F., Jiang, Z. X., Sun, W., et al., 2020. Effect of Microscopic Pore-Throat Heterogeneity on Gas-Phase Percolation Capacity of Tight Sandstone Reservoirs. Energy & Fuels, 34(10): 12399–12416. https://doi.org/10.1021/acs.energyfuels.0c02393 |
Zhang, F., Xiao, H. M., Jiang, Z. X., et al., 2021. Influence of Pore Throat Structure and the Multiphases Fluid Seepage on Mobility of Tight Oil Reservoir. Lithosphere, Special 1: 5525670. |
Zhao, J. Z., Bai, Y. B., Qing, C., 2012. Quasi-Continuous Hydrocarbon Accumulation: A New Pattern for Large Tight Sand Oilfields in Ordos Basin. Oil and Gas Geology, 33(6): 811–827 |
Zhao, X. L., Yang, Z. M., Lin, W., et al., 2019. Study on Pore Structures of Tight Sandstone Reservoirs Based on Nitrogen Adsorption, High-Pressure Mercury Intrusion, and Rate-Controlled Mercury Intrusion. Journal of Energy Resources Technology, 141(11): 112903. https://doi.org/10.1115/1.4043695 |
Zou, C. N., Zhu, R. K., Bai, B., et al., 2011. First Discovery of Nano-Pore Throat in Oil and Gas Reservoir in China and Its Scientific Value. Acta Petrologica Sinica, 27(6): 1857–1864 (in Chinese with English Abstract) |