Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Weidong Sun, Lipeng Zhang, Xi Liu. The Rotation of the Pacific Plate Induced by the Ontong Java Large Igneous Province. Journal of Earth Science, 2022, 33(3): 544-551. doi: 10.1007/s12583-021-1582-0
Citation: Weidong Sun, Lipeng Zhang, Xi Liu. The Rotation of the Pacific Plate Induced by the Ontong Java Large Igneous Province. Journal of Earth Science, 2022, 33(3): 544-551. doi: 10.1007/s12583-021-1582-0

The Rotation of the Pacific Plate Induced by the Ontong Java Large Igneous Province

doi: 10.1007/s12583-021-1582-0
More Information
  • Corresponding author: Weidong Sun, weidongsun@qdio.ac.cn
  • Received Date: 30 Apr 2021
  • Accepted Date: 12 Jul 2021
  • The eruption of large igneous provinces usually has major geodynamic influences on overriding plates. Seamount chains indicate that the drifting direction of the Pacific Plate changed by ~80° in the Early Cretaceous when the Ontong Java Plateau formed. This, however, is not fully consistent with the magnetic anomalies. Here we show that there is an angle of ~25° between the magnetic anomaly lines M0 and 34 of both the Japanese and the Hawaiian lineations, suggesting that the orientations of both spreading ridges changed by roughly the same angle towards the same direction. The configurations of the Shatsky Rise, the Papanin Ridge and the Osbourn Trough suggest that the eruption of the Ontong Java plume head uplifted the southeastern corner of the Pacific Plate, and pushed its east part northward by ~700 km within 2 Ma. Meanwhile, the west part of the Pacific Plate was subducting southwestward underneath the eastern Asian Continent. These two forces together rotated the Pacific Plate anticlockwisely by ca 50°. Consequently, the drifting direction of the Pacific Plate also changed from southwestward to northwestward, which plausibly explains the ca 80° bending of the Shatsky Rise and the Papanin Ridge. The ridge between the Pacific and the Izanagi/Kula plates was pointed towards the ~300° orientation, whereas the Pacific Plate was subducting towards the ~250° orientation before ~125 Ma, and towards ~280° afterward.

     

  • loading
  • Benyshek, E. K., Wessel, P., Taylor, B., 2019. Tectonic Reconstruction of the Ellice Basin. Tectonics, 38(11): 3854–3865. https://doi.org/10.1029/2019tc005650
    Campbell, I. H., Griffiths, R. W., 1990. Implications of Mantle Plume Structure for the Evolution of Flood Basalts. Earth and Planetary Science Letters, 99(1/2): 79–93. https://doi.org/10.1016/0012-821x(90)90072-6
    Campbell, I. H., 2005. Large Igneous Provinces and the Mantle Plume Hypothesis. Elements, 1(5): 265–269. https://doi.org/10.2113/gselements.1.5.265
    Campbell, I. H., 2007. Testing the Plume Theory. Chemical Geology, 241(3/4): 153–176. https://doi.org/10.1016/j.chemgeo.2007.01.024
    Chen, Y. X., Li, H., Sun, W. D., et al., 2016. Generation of Late Mesozoic Qianlishan A2-Type Granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn Mineralization and Tectonic Evolution. Lithos, 266/267: 435–452. https://doi.org/10.1016/j.lithos.2016.10.010
    Coffin, M. F., Eldholm, O., 1993. Scratching the Surface: Estimating Dimensions of Large Igneous Provinces. Geology, 21(6): 515–518.https://doi.org/10.1130/0091-7613(1993)0210515:stsedo>2.3.co;2 doi: 10.1130/0091-7613(1993)0210515:stsedo>2.3.co;2
    Courtillot, V., Olson, P., 2007. Mantle Plumes Link Magnetic Superchrons to Phanerozoic Mass Depletion Events. Earth and Planetary Science Letters, 260(3/4): 495–504. https://doi.org/10.1016/j.epsl.2007.06.003
    Gee, J. S., Kent, D. V., 2007. Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale. Treatise on Geophysics. Elsevier, Amsterdam. 455–507. https://doi.org/10.1016/b978-044452748-6.00097-3
    Griffiths, R. W., Campbell, I. H., 1991. Interaction of Mantle Plume Heads with the Earth's Surface and Onset of Small-Scale Convection. Journal of Geophysical Research: Solid Earth, 96(B11): 18295–18310. https://doi.org/10.1029/91jb01897
    Heller, P. L., Anderson, D. L., Angevine, C. L., 1996. Is the Middle Cretaceous Pulse of Rapid Sea-Floor Spreading Real or Necessary? Geology, 24(6): 491–494.https://doi.org/10.1130/0091-7613(1996)0240491:itmcpo>2.3.co;2 doi: 10.1130/0091-7613(1996)0240491:itmcpo>2.3.co;2
    Ingle, S., Coffin, M. F., 2004. Impact Origin for the Greater Ontong Java Plateau? Earth and Planetary Science Letters, 218(1/2): 123–134. https://doi.org/10.1016/s0012-821x(03)00629-0
    Jiang, X. Y., Li, H., Ding, X., et al., 2018. Formation of A-Type Granites in the Lower Yangtze River Belt: A Perspective from Apatite Geochemistry. Lithos, 304–307: 125–134. https://doi.org/10.1016/j.lithos.2018.02.005
    Jiang, X. Y., Deng, J. H., Luo, J. C., et al., 2020. Petrogenesis of Early Cretaceous Adakites in Tongguanshan Cu-Au Polymetallic Deposit, Tongling Region, Eastern China. Ore Geology Reviews, 126: 103717. https://doi.org/10.1016/j.oregeorev.2020.103717
    Kinoshita, O., 1995. Migration of Igneous Activities Related to Ridge Subduction in Southwest Japan and the East Asian Continental Margin from the Mesozoic to the Paleogene. Tectonophysics, 245(1/2): 25–35. https://doi.org/10.1016/0040-1951(94)00211-q
    Li, H., Ling, M. X., Li, C. Y., et al., 2012. A-Type Granite Belts of Two Chemical Subgroups in Central Eastern China: Indication of Ridge Subduction. Lithos, 150: 26–36. https://doi.org/10.1016/j.lithos.2011.09.021
    Li, H., Ling, M. X., Ding, X., et al., 2014. The Geochemical Characteristics of Haiyang A-Type Granite Complex in Shandong, Eastern China. Lithos, 200/201(1): 142–156. https://doi.org/10.1016/j.lithos.2014.04.014
    Li, H., Arculus, R. J., Ishizuka, O., et al., 2021. Basalt Derived from Highly Refractory Mantle Sources during Early Izu-Bonin-Mariana Arc Development. Nature Communications, 12(1): 1723. https://doi.org/10.1038/s41467-021-21980-0
    Li, H. Y., Taylor, R. N., Prytulak, J., et al., 2019. Radiogenic Isotopes Document the Start of Subduction in the Western Pacific. Earth and Planetary Science Letters, 518: 197–210. https://doi.org/10.1016/j.epsl.2019.04.041
    Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1
    Ling, M. X., Wang, F. Y., Ding, X., et al., 2009. Cretaceous Ridge Subduction along the Lower Yangtze River Belt, Eastern China. Economic Geology, 104(2): 303–321. https://doi.org/10.2113/gsecongeo.104.2.303
    Ling, M. X., Li, Y., Ding, X., et al., 2013. Destruction of the North China Craton Induced by Ridge Subductions. The Journal of Geology, 121(2): 197–213. https://doi.org/10.1086/669248
    Liu, G. X., Deng, Y. F., Yuan, F., et al., 2021. Rb-Sr Dating and S-Sr-Nd Isotopic Constraints on the Genesis of the Hehuashan Pb-Zn Deposit in the Middle-Lower Yangtze River Metallogenic Belt, China. Solid Earth Sciences, 6(2): 57–69. https://doi.org/10.1016/j.sesci.2021.04.003
    Liu, L., Gurnis, M., Seton, M., et al., 2010. The Role of Oceanic Plateau Subduction in the Laramide Orogeny. Nature Geoscience, 3(5): 353–357. https://doi.org/10.1038/ngeo829
    Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743
    Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Stratabound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294–314. https://doi.org/10.1016/j.oregeorev.2011.07.010
    Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. Island Arc, 6(1): 121–142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
    Maunder, B., Prytulak, J., Goes, S., et al., 2020. Rapid Subduction Initiation and Magmatism in the Western Pacific Driven by Internal Vertical Forces. Nature Communications, 11(1): 1874. https://doi.org/10.1038/s41467-020-15737-4
    Nakanishi, M., Sager, W. W., Korenaga, J., et al., 2015. Reorganization of the Pacific-Izanagi-Farallon Triple Junction in the Late Jurassic: Tectonic Events before the Formation of the Shatsky Rise. In: Neal, C. R., Sager, W. W., Sano, T., et al., eds., The Origin, Evolution, and Environmental Impact of Oceanic Large Igneous Provinces. Geological Society of America, Boulder, Colorado. 511: 85–101. https://doi.org/10.1130/2015.2511(05)
    Norton, I. O., 2007. Speculations on Cretaceous Tectonic History of the Northwest Pacific and a Tectonic Origin for the Hawaii Hotspot. Special Paper 430: Plates, Plumes and Planetary Processes. Special Paper of the Geological Society of America, 451–470. https://doi.org/10.1130/2007.2430(22)
    O'Connor, J. M., Hoernle, K., Müller, R. D., et al., 2015. Deformation-Related Volcanism in the Pacific Ocean Linked to the Hawaiian-Emperor Bend. Nature Geoscience, 8(5): 393–397. https://doi.org/10.1038/ngeo2416
    Reagan, M. K., Heaton, D. E., Schmitz, M. D., et al., 2019. Forearc Ages Reveal Extensive Short-Lived and Rapid Seafloor Spreading Following Subduction Initiation. Earth and Planetary Science Letters, 506: 520–529. https://doi.org/10.1016/j.epsl.2018.11.020
    Regelous, M., Hofmann, A. W., Abouchami, W., et al., 2003. Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma. Journal of Petrology, 44(1): 113–140. https://doi.org/10.1093/petrology/44.1.113
    Sager, W. W., 2005. What Built Shatsky Rise, a Mantle Plume or Ridge Tectonics? Special Paper of the Geological Society of America, 388: 721–733. https://doi.org/10.1130/0-8137-2388-4.721
    Sager, W. W., Huang, Y., Tominaga, M., et al., 2019. Oceanic Plateau Formation by Seafloor Spreading Implied by Tamu Massif Magnetic Anomalies. Nature Geoscience, 12(8): 661–666. https://doi.org/10.1038/s41561-019-0390-y
    Sano, T., Hanyu, T., Tejada, M. L. G., et al., 2020. Two-Stages of Plume Tail Volcanism Formed Ojin Rise Seamounts Adjoining Shatsky Rise. Lithos, 372/373: 105652. https://doi.org/10.1016/j.lithos.2020.105652
    Seton, M., Müller, R. D., Zahirovic, S., et al., 2012. Global Continental and Ocean Basin Reconstructions since 200 Ma. Earth-Science Reviews, 113(3/4): 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002
    Sun, S. J., Yang, X. Y., Wang, G. J., et al., 2019. In Situ Elemental and Sr-O Isotopic Studies on Apatite from the Xu-Huai Intrusion at the Southern Margin of the North China Craton: Implications for Petrogenesis and Metallogeny. Chemical Geology, 510: 200–214. https://doi.org/10.1016/j.chemgeo.2019.02.010
    Sun, W. D., 2019. The Magma Engine and the Driving Force of Plate Tectonics. Chinese Science Bulletin, 64(28/29): 2988–3006. https://doi.org/10.1360/n972019-00274
    Sun, W. D., Langmuir, C. H., Ribe, N. M., et al., 2021. Plume-Ridge Interaction Induced Migration of the Hawaiian-Emperor Seamounts. Science Bulletin, 66(16): 1691–1697. https://doi.org/10.1016/j.scib.2021.04.028
    Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4): 533–542. https://doi.org/10.1016/j.epsl.2007.08.021
    Sun, W. D., Yang, X. Y., Fan, W. M., et al., 2012. Mesozoic Large Scale Magmatism and Mineralization in South China: Preface. Lithos, 150: 1–5. https://doi.org/10.1016/j.lithos.2012.06.028
    Sun, W. D., Li, S., Yang, X. Y., et al., 2013. Large-Scale Gold Mineralization in Eastern China Induced by an Early Cretaceous Clockwise Change in Pacific Plate Motions. International Geology Review, 55(3): 311–321. https://doi.org/10.1080/00206814.2012.698920
    Sun, W. D., Zhang, L. P., Li, H., et al., 2020a. The Synchronic Cenozoic Subduction Initiations in the West Pacific Induced by the Closure of the Neo-Tethys Ocean. Science Bulletin, 65(24): 2068–2071. https://doi.org/10.1016/j.scib.2020.09.001
    Sun, W. D., Zhang, L. P., Liao, R. Q., et al., 2020b. Plate Convergence in the Indo-Pacific Region. Journal of Oceanology and Limnology, 38(4): 1008–1017. https://doi.org/10.1007/s00343-020-0146-y
    Sutherland, R., Dickens, G. R., Blum, P., et al., 2020. Continental-Scale Geographic Change across Zealandia during Paleogene Subduction Initiation. Geology, 48(5): 419–424. https://doi.org/10.1130/g47008.1
    Taylor, B., 2006. The Single Largest Oceanic Plateau: Ontong Java-Manihiki-Hikurangi. Earth and Planetary Science Letters, 241(3/4): 372–380. https://doi.org/10.1016/j.epsl.2005.11.049
    Tejada, M. L. G., Mahoney, J. J., Neal, C. R., et al., 2002. Basement Geochemistry and Geochronology of Central Malaita, Solomon Islands, with Implications for the Origin and Evolution of the Ontong Java Plateau. Journal of Petrology, 43(3): 449–484. https://doi.org/10.1093/petrology/43.3.449
    Tejada, M. L. G., Geldmacher, J., Hauff, F., et al., 2016. Geochemistry and Age of Shatsky, Hess, and Ojin Rise Seamounts: Implications for a Connection between the Shatsky and Hess Rises. Geochimica et Cosmochimica Acta, 185: 302–327. https://doi.org/10.1016/j.gca.2016.04.006
    Wang, F. Y., Ling, M. X., Ding, X., et al., 2011. Mesozoic Large Magmatic Events and Mineralization in SE China: Oblique Subduction of the Pacific Plate. International Geology Review, 53(5/6): 704–726. https://doi.org/10.1080/00206814.2010.503736
    Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173–195. https://doi.org/10.1146/annurev-earth-053018-060342
    Wu, J. T. -J., Wu, J., 2019. Izanagi-Pacific Ridge Subduction Revealed by a 56 to 46 Ma Magmatic Gap along the Northeast Asian Margin. Geology, 47(10): 953–957. https://doi.org/10.1130/g46778.1
    Wu, K., Ling, M. X., Sun, W. D., et al., 2017. Major Transition of Continental Basalts in the Early Cretaceous: Implications for the Destruction of the North China Craton. Chemical Geology, 470: 93–106. https://doi.org/10.1016/j.chemgeo.2017.08.025
    Xie, J. C., Ge, L. K., Qian, L., et al., 2020. Trace Element Characteristics of Pyrite in Dongguashan Cu (Au) Deposit, Tongling Region, China. Solid Earth Sciences, 5(4): 233–246. https://doi.org/10.1016/j.sesci.2020.09.002
    Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. Geology, 32(10): 917–920. https://doi.org/10.1130/g20602.1
    Xu, Y. G., Li, H. Y., Pang, C. J., et al., 2009. On the Timing and Duration of the Destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3379–3396. https://doi.org/10.1007/s11434-009-0346-5
    Yan, H. B., Ding, X., Ling, M. X., et al., 2021. Three Late-Mesozoic Fluorite Deposit Belts in Southeast China and Links to Subduction of the (Paleo-) Pacific Plate. Ore Geology Reviews, 129: 103865. https://doi.org/10.1016/j.oregeorev.2020.103865
    Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., et al., 1994. Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, far Western Aleutians. Journal of Petrology, 35(1): 163–204. https://doi.org/10.1093/petrology/35.1.163
    Zhang, C. C., Sun, W. D., Wang, J. T., et al., 2017. Oxygen Fugacity and Porphyry Mineralization: a Zircon Perspective of Dexing Porphyry Cu Deposit, China. Geochimica et Cosmochimica Acta, 206: 343–363. https://doi.org/10.1016/j.gca.2017.03.013
    Zhang, G. L., Li, C., 2016. Interactions of the Greater Ontong Java Mantle Plume Component with the Osbourn Trough. Scientific Reports, 6(1): 37561. https://doi.org/10.1038/srep37561
    Zhang, S. S., Yang, X. Y., Wang, K. Y., et al., 2021. Geochronological and Geochemical Constraints on the Origin of the Mesozoic Granitoids in the Fanchang Volcanic Basin, the Middle-Lower Yangtze Metallogenic Belt. Solid Earth Sciences, 6(2): 178–204. https://doi.org/10.1016/j.sesci.2020.12.002
    Zhang, Z. K., Ling, M. X., Lin, W., et al., 2020a. "Yanshanian Movement" Induced by the Westward Subduction of the Paleo-Pacific Plate. Solid Earth Sciences, 5(2): 103–114.https://doi.org/10.1016/j.sesci.2020. 04.002 doi: 10.1016/j.sesci.2020.04.002
    Zhang, Z. K., Ling, M. X., Zhang, L. P., et al., 2020b. High Oxygen Fugacity Magma: Implication for the Destruction of the North China Craton. Acta Geochimica, 39(2): 161–171. https://doi.org/10.1007/s11631-020-00394-7
    Zhang, Z. Z., Ning, Y. Y., Lu, Y. Y., et al., 2021. Geological Characteristics and Metallogenic Age of Tengshanʼao Sn Deposit in Dayishan of South Hunan and Its Prospecting Significance. Solid Earth Sciences, 6(1): 37–49. https://doi.org/10.1016/j.sesci.2021.01.002
    Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353–385. https://doi.org/10.1007/s11430-017-9160-3
    Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269–287. https://doi.org/10.1016/s0040-1951(00)00120-7
    Zhu, R. X., Fan, H. R., Li, J. W., et al., 2015. Decratonic Gold Deposits. Science China Earth Sciences, 58(9): 1523–1537. https://doi.org/10.1007/s11430-015-5139-x
    Zhu, R. X., Sun, W. D., 2021. The Big Mantle Wedge and Decratonic Gold Deposits. Science China Earth Sciences, 64(9): 1451–1462. https://doi.org/10.1007/s11430-020-9733-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(508) PDF downloads(149) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return