Citation: | Weidong Sun, Lipeng Zhang, Xi Liu. The Rotation of the Pacific Plate Induced by the Ontong Java Large Igneous Province. Journal of Earth Science, 2022, 33(3): 544-551. doi: 10.1007/s12583-021-1582-0 |
The eruption of large igneous provinces usually has major geodynamic influences on overriding plates. Seamount chains indicate that the drifting direction of the Pacific Plate changed by ~80° in the Early Cretaceous when the Ontong Java Plateau formed. This, however, is not fully consistent with the magnetic anomalies. Here we show that there is an angle of ~25° between the magnetic anomaly lines M0 and 34 of both the Japanese and the Hawaiian lineations, suggesting that the orientations of both spreading ridges changed by roughly the same angle towards the same direction. The configurations of the Shatsky Rise, the Papanin Ridge and the Osbourn Trough suggest that the eruption of the Ontong Java plume head uplifted the southeastern corner of the Pacific Plate, and pushed its east part northward by ~700 km within 2 Ma. Meanwhile, the west part of the Pacific Plate was subducting southwestward underneath the eastern Asian Continent. These two forces together rotated the Pacific Plate anticlockwisely by ca 50°. Consequently, the drifting direction of the Pacific Plate also changed from southwestward to northwestward, which plausibly explains the ca 80° bending of the Shatsky Rise and the Papanin Ridge. The ridge between the Pacific and the Izanagi/Kula plates was pointed towards the ~300° orientation, whereas the Pacific Plate was subducting towards the ~250° orientation before ~125 Ma, and towards ~280° afterward.
Benyshek, E. K., Wessel, P., Taylor, B., 2019. Tectonic Reconstruction of the Ellice Basin. Tectonics, 38(11): 3854–3865. https://doi.org/10.1029/2019tc005650 |
Campbell, I. H., Griffiths, R. W., 1990. Implications of Mantle Plume Structure for the Evolution of Flood Basalts. Earth and Planetary Science Letters, 99(1/2): 79–93. https://doi.org/10.1016/0012-821x(90)90072-6 |
Campbell, I. H., 2005. Large Igneous Provinces and the Mantle Plume Hypothesis. Elements, 1(5): 265–269. https://doi.org/10.2113/gselements.1.5.265 |
Campbell, I. H., 2007. Testing the Plume Theory. Chemical Geology, 241(3/4): 153–176. https://doi.org/10.1016/j.chemgeo.2007.01.024 |
Chen, Y. X., Li, H., Sun, W. D., et al., 2016. Generation of Late Mesozoic Qianlishan A2-Type Granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn Mineralization and Tectonic Evolution. Lithos, 266/267: 435–452. https://doi.org/10.1016/j.lithos.2016.10.010 |
Coffin, M. F., Eldholm, O., 1993. Scratching the Surface: Estimating Dimensions of Large Igneous Provinces. Geology, 21(6): 515–518.https://doi.org/10.1130/0091-7613(1993)0210515:stsedo>2.3.co;2 doi: 10.1130/0091-7613(1993)0210515:stsedo>2.3.co;2 |
Courtillot, V., Olson, P., 2007. Mantle Plumes Link Magnetic Superchrons to Phanerozoic Mass Depletion Events. Earth and Planetary Science Letters, 260(3/4): 495–504. https://doi.org/10.1016/j.epsl.2007.06.003 |
Gee, J. S., Kent, D. V., 2007. Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale. Treatise on Geophysics. Elsevier, Amsterdam. 455–507. https://doi.org/10.1016/b978-044452748-6.00097-3 |
Griffiths, R. W., Campbell, I. H., 1991. Interaction of Mantle Plume Heads with the Earth's Surface and Onset of Small-Scale Convection. Journal of Geophysical Research: Solid Earth, 96(B11): 18295–18310. https://doi.org/10.1029/91jb01897 |
Heller, P. L., Anderson, D. L., Angevine, C. L., 1996. Is the Middle Cretaceous Pulse of Rapid Sea-Floor Spreading Real or Necessary? Geology, 24(6): 491–494.https://doi.org/10.1130/0091-7613(1996)0240491:itmcpo>2.3.co;2 doi: 10.1130/0091-7613(1996)0240491:itmcpo>2.3.co;2 |
Ingle, S., Coffin, M. F., 2004. Impact Origin for the Greater Ontong Java Plateau? Earth and Planetary Science Letters, 218(1/2): 123–134. https://doi.org/10.1016/s0012-821x(03)00629-0 |
Jiang, X. Y., Li, H., Ding, X., et al., 2018. Formation of A-Type Granites in the Lower Yangtze River Belt: A Perspective from Apatite Geochemistry. Lithos, 304–307: 125–134. https://doi.org/10.1016/j.lithos.2018.02.005 |
Jiang, X. Y., Deng, J. H., Luo, J. C., et al., 2020. Petrogenesis of Early Cretaceous Adakites in Tongguanshan Cu-Au Polymetallic Deposit, Tongling Region, Eastern China. Ore Geology Reviews, 126: 103717. https://doi.org/10.1016/j.oregeorev.2020.103717 |
Kinoshita, O., 1995. Migration of Igneous Activities Related to Ridge Subduction in Southwest Japan and the East Asian Continental Margin from the Mesozoic to the Paleogene. Tectonophysics, 245(1/2): 25–35. https://doi.org/10.1016/0040-1951(94)00211-q |
Li, H., Ling, M. X., Li, C. Y., et al., 2012. A-Type Granite Belts of Two Chemical Subgroups in Central Eastern China: Indication of Ridge Subduction. Lithos, 150: 26–36. https://doi.org/10.1016/j.lithos.2011.09.021 |
Li, H., Ling, M. X., Ding, X., et al., 2014. The Geochemical Characteristics of Haiyang A-Type Granite Complex in Shandong, Eastern China. Lithos, 200/201(1): 142–156. https://doi.org/10.1016/j.lithos.2014.04.014 |
Li, H., Arculus, R. J., Ishizuka, O., et al., 2021. Basalt Derived from Highly Refractory Mantle Sources during Early Izu-Bonin-Mariana Arc Development. Nature Communications, 12(1): 1723. https://doi.org/10.1038/s41467-021-21980-0 |
Li, H. Y., Taylor, R. N., Prytulak, J., et al., 2019. Radiogenic Isotopes Document the Start of Subduction in the Western Pacific. Earth and Planetary Science Letters, 518: 197–210. https://doi.org/10.1016/j.epsl.2019.04.041 |
Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1 |
Ling, M. X., Wang, F. Y., Ding, X., et al., 2009. Cretaceous Ridge Subduction along the Lower Yangtze River Belt, Eastern China. Economic Geology, 104(2): 303–321. https://doi.org/10.2113/gsecongeo.104.2.303 |
Ling, M. X., Li, Y., Ding, X., et al., 2013. Destruction of the North China Craton Induced by Ridge Subductions. The Journal of Geology, 121(2): 197–213. https://doi.org/10.1086/669248 |
Liu, G. X., Deng, Y. F., Yuan, F., et al., 2021. Rb-Sr Dating and S-Sr-Nd Isotopic Constraints on the Genesis of the Hehuashan Pb-Zn Deposit in the Middle-Lower Yangtze River Metallogenic Belt, China. Solid Earth Sciences, 6(2): 57–69. https://doi.org/10.1016/j.sesci.2021.04.003 |
Liu, L., Gurnis, M., Seton, M., et al., 2010. The Role of Oceanic Plateau Subduction in the Laramide Orogeny. Nature Geoscience, 3(5): 353–357. https://doi.org/10.1038/ngeo829 |
Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743 |
Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Stratabound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294–314. https://doi.org/10.1016/j.oregeorev.2011.07.010 |
Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. Island Arc, 6(1): 121–142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x |
Maunder, B., Prytulak, J., Goes, S., et al., 2020. Rapid Subduction Initiation and Magmatism in the Western Pacific Driven by Internal Vertical Forces. Nature Communications, 11(1): 1874. https://doi.org/10.1038/s41467-020-15737-4 |
Nakanishi, M., Sager, W. W., Korenaga, J., et al., 2015. Reorganization of the Pacific-Izanagi-Farallon Triple Junction in the Late Jurassic: Tectonic Events before the Formation of the Shatsky Rise. In: Neal, C. R., Sager, W. W., Sano, T., et al., eds., The Origin, Evolution, and Environmental Impact of Oceanic Large Igneous Provinces. Geological Society of America, Boulder, Colorado. 511: 85–101. https://doi.org/10.1130/2015.2511(05) |
Norton, I. O., 2007. Speculations on Cretaceous Tectonic History of the Northwest Pacific and a Tectonic Origin for the Hawaii Hotspot. Special Paper 430: Plates, Plumes and Planetary Processes. Special Paper of the Geological Society of America, 451–470. https://doi.org/10.1130/2007.2430(22) |
O'Connor, J. M., Hoernle, K., Müller, R. D., et al., 2015. Deformation-Related Volcanism in the Pacific Ocean Linked to the Hawaiian-Emperor Bend. Nature Geoscience, 8(5): 393–397. https://doi.org/10.1038/ngeo2416 |
Reagan, M. K., Heaton, D. E., Schmitz, M. D., et al., 2019. Forearc Ages Reveal Extensive Short-Lived and Rapid Seafloor Spreading Following Subduction Initiation. Earth and Planetary Science Letters, 506: 520–529. https://doi.org/10.1016/j.epsl.2018.11.020 |
Regelous, M., Hofmann, A. W., Abouchami, W., et al., 2003. Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma. Journal of Petrology, 44(1): 113–140. https://doi.org/10.1093/petrology/44.1.113 |
Sager, W. W., 2005. What Built Shatsky Rise, a Mantle Plume or Ridge Tectonics? Special Paper of the Geological Society of America, 388: 721–733. https://doi.org/10.1130/0-8137-2388-4.721 |
Sager, W. W., Huang, Y., Tominaga, M., et al., 2019. Oceanic Plateau Formation by Seafloor Spreading Implied by Tamu Massif Magnetic Anomalies. Nature Geoscience, 12(8): 661–666. https://doi.org/10.1038/s41561-019-0390-y |
Sano, T., Hanyu, T., Tejada, M. L. G., et al., 2020. Two-Stages of Plume Tail Volcanism Formed Ojin Rise Seamounts Adjoining Shatsky Rise. Lithos, 372/373: 105652. https://doi.org/10.1016/j.lithos.2020.105652 |
Seton, M., Müller, R. D., Zahirovic, S., et al., 2012. Global Continental and Ocean Basin Reconstructions since 200 Ma. Earth-Science Reviews, 113(3/4): 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002 |
Sun, S. J., Yang, X. Y., Wang, G. J., et al., 2019. In Situ Elemental and Sr-O Isotopic Studies on Apatite from the Xu-Huai Intrusion at the Southern Margin of the North China Craton: Implications for Petrogenesis and Metallogeny. Chemical Geology, 510: 200–214. https://doi.org/10.1016/j.chemgeo.2019.02.010 |
Sun, W. D., 2019. The Magma Engine and the Driving Force of Plate Tectonics. Chinese Science Bulletin, 64(28/29): 2988–3006. https://doi.org/10.1360/n972019-00274 |
Sun, W. D., Langmuir, C. H., Ribe, N. M., et al., 2021. Plume-Ridge Interaction Induced Migration of the Hawaiian-Emperor Seamounts. Science Bulletin, 66(16): 1691–1697. https://doi.org/10.1016/j.scib.2021.04.028 |
Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4): 533–542. https://doi.org/10.1016/j.epsl.2007.08.021 |
Sun, W. D., Yang, X. Y., Fan, W. M., et al., 2012. Mesozoic Large Scale Magmatism and Mineralization in South China: Preface. Lithos, 150: 1–5. https://doi.org/10.1016/j.lithos.2012.06.028 |
Sun, W. D., Li, S., Yang, X. Y., et al., 2013. Large-Scale Gold Mineralization in Eastern China Induced by an Early Cretaceous Clockwise Change in Pacific Plate Motions. International Geology Review, 55(3): 311–321. https://doi.org/10.1080/00206814.2012.698920 |
Sun, W. D., Zhang, L. P., Li, H., et al., 2020a. The Synchronic Cenozoic Subduction Initiations in the West Pacific Induced by the Closure of the Neo-Tethys Ocean. Science Bulletin, 65(24): 2068–2071. https://doi.org/10.1016/j.scib.2020.09.001 |
Sun, W. D., Zhang, L. P., Liao, R. Q., et al., 2020b. Plate Convergence in the Indo-Pacific Region. Journal of Oceanology and Limnology, 38(4): 1008–1017. https://doi.org/10.1007/s00343-020-0146-y |
Sutherland, R., Dickens, G. R., Blum, P., et al., 2020. Continental-Scale Geographic Change across Zealandia during Paleogene Subduction Initiation. Geology, 48(5): 419–424. https://doi.org/10.1130/g47008.1 |
Taylor, B., 2006. The Single Largest Oceanic Plateau: Ontong Java-Manihiki-Hikurangi. Earth and Planetary Science Letters, 241(3/4): 372–380. https://doi.org/10.1016/j.epsl.2005.11.049 |
Tejada, M. L. G., Mahoney, J. J., Neal, C. R., et al., 2002. Basement Geochemistry and Geochronology of Central Malaita, Solomon Islands, with Implications for the Origin and Evolution of the Ontong Java Plateau. Journal of Petrology, 43(3): 449–484. https://doi.org/10.1093/petrology/43.3.449 |
Tejada, M. L. G., Geldmacher, J., Hauff, F., et al., 2016. Geochemistry and Age of Shatsky, Hess, and Ojin Rise Seamounts: Implications for a Connection between the Shatsky and Hess Rises. Geochimica et Cosmochimica Acta, 185: 302–327. https://doi.org/10.1016/j.gca.2016.04.006 |
Wang, F. Y., Ling, M. X., Ding, X., et al., 2011. Mesozoic Large Magmatic Events and Mineralization in SE China: Oblique Subduction of the Pacific Plate. International Geology Review, 53(5/6): 704–726. https://doi.org/10.1080/00206814.2010.503736 |
Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173–195. https://doi.org/10.1146/annurev-earth-053018-060342 |
Wu, J. T. -J., Wu, J., 2019. Izanagi-Pacific Ridge Subduction Revealed by a 56 to 46 Ma Magmatic Gap along the Northeast Asian Margin. Geology, 47(10): 953–957. https://doi.org/10.1130/g46778.1 |
Wu, K., Ling, M. X., Sun, W. D., et al., 2017. Major Transition of Continental Basalts in the Early Cretaceous: Implications for the Destruction of the North China Craton. Chemical Geology, 470: 93–106. https://doi.org/10.1016/j.chemgeo.2017.08.025 |
Xie, J. C., Ge, L. K., Qian, L., et al., 2020. Trace Element Characteristics of Pyrite in Dongguashan Cu (Au) Deposit, Tongling Region, China. Solid Earth Sciences, 5(4): 233–246. https://doi.org/10.1016/j.sesci.2020.09.002 |
Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. Geology, 32(10): 917–920. https://doi.org/10.1130/g20602.1 |
Xu, Y. G., Li, H. Y., Pang, C. J., et al., 2009. On the Timing and Duration of the Destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3379–3396. https://doi.org/10.1007/s11434-009-0346-5 |
Yan, H. B., Ding, X., Ling, M. X., et al., 2021. Three Late-Mesozoic Fluorite Deposit Belts in Southeast China and Links to Subduction of the (Paleo-) Pacific Plate. Ore Geology Reviews, 129: 103865. https://doi.org/10.1016/j.oregeorev.2020.103865 |
Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., et al., 1994. Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, far Western Aleutians. Journal of Petrology, 35(1): 163–204. https://doi.org/10.1093/petrology/35.1.163 |
Zhang, C. C., Sun, W. D., Wang, J. T., et al., 2017. Oxygen Fugacity and Porphyry Mineralization: a Zircon Perspective of Dexing Porphyry Cu Deposit, China. Geochimica et Cosmochimica Acta, 206: 343–363. https://doi.org/10.1016/j.gca.2017.03.013 |
Zhang, G. L., Li, C., 2016. Interactions of the Greater Ontong Java Mantle Plume Component with the Osbourn Trough. Scientific Reports, 6(1): 37561. https://doi.org/10.1038/srep37561 |
Zhang, S. S., Yang, X. Y., Wang, K. Y., et al., 2021. Geochronological and Geochemical Constraints on the Origin of the Mesozoic Granitoids in the Fanchang Volcanic Basin, the Middle-Lower Yangtze Metallogenic Belt. Solid Earth Sciences, 6(2): 178–204. https://doi.org/10.1016/j.sesci.2020.12.002 |
Zhang, Z. K., Ling, M. X., Lin, W., et al., 2020a. "Yanshanian Movement" Induced by the Westward Subduction of the Paleo-Pacific Plate. Solid Earth Sciences, 5(2): 103–114.https://doi.org/10.1016/j.sesci.2020. 04.002 doi: 10.1016/j.sesci.2020.04.002 |
Zhang, Z. K., Ling, M. X., Zhang, L. P., et al., 2020b. High Oxygen Fugacity Magma: Implication for the Destruction of the North China Craton. Acta Geochimica, 39(2): 161–171. https://doi.org/10.1007/s11631-020-00394-7 |
Zhang, Z. Z., Ning, Y. Y., Lu, Y. Y., et al., 2021. Geological Characteristics and Metallogenic Age of Tengshanʼao Sn Deposit in Dayishan of South Hunan and Its Prospecting Significance. Solid Earth Sciences, 6(1): 37–49. https://doi.org/10.1016/j.sesci.2021.01.002 |
Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353–385. https://doi.org/10.1007/s11430-017-9160-3 |
Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269–287. https://doi.org/10.1016/s0040-1951(00)00120-7 |
Zhu, R. X., Fan, H. R., Li, J. W., et al., 2015. Decratonic Gold Deposits. Science China Earth Sciences, 58(9): 1523–1537. https://doi.org/10.1007/s11430-015-5139-x |
Zhu, R. X., Sun, W. D., 2021. The Big Mantle Wedge and Decratonic Gold Deposits. Science China Earth Sciences, 64(9): 1451–1462. https://doi.org/10.1007/s11430-020-9733-1 |