Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Yangfan Deng, Yun Chen, Pengfei Li, Zhou Zhang, José Badal. A Synthesis of Geophysical Data in Southeastern North China Craton: Implications for the Formation of the Arcuate Xuhuai Thrust Belt. Journal of Earth Science, 2022, 33(3): 552-566. doi: 10.1007/s12583-021-1584-y
Citation: Yangfan Deng, Yun Chen, Pengfei Li, Zhou Zhang, José Badal. A Synthesis of Geophysical Data in Southeastern North China Craton: Implications for the Formation of the Arcuate Xuhuai Thrust Belt. Journal of Earth Science, 2022, 33(3): 552-566. doi: 10.1007/s12583-021-1584-y

A Synthesis of Geophysical Data in Southeastern North China Craton: Implications for the Formation of the Arcuate Xuhuai Thrust Belt

doi: 10.1007/s12583-021-1584-y
More Information
  • Corresponding author: Yangfan Deng, Yangfandeng@gig.ac.cn
  • Received Date: 08 Oct 2021
  • Accepted Date: 18 Nov 2021
  • The Xuhuai fold thrust belt (XHTB) is a curved structure in the southeastern margin of the North China Craton (NCC) that has attracted great attentions due to its tectonic and petrological characteristics. However, few geophysical studies have focused on the deep structure of this belt. In this study, we carry out a systematic demonstration of the main geophysical features that characterize the XHTB and surrounding areas. The results reveal small negative gravity and magnetic anomalies, thin crust and lithosphere, lower shear velocity and shallower earthquake epicenters relative to other areas of the NCC, collectively indicating a lithospheric-scale rheological anomaly at this belt. The magnetic alignments show a trend similar to that of geological units in southeastern NCC and adjacent areas, although they differ from the SKS-splitting fast polarization directions, except in the Qinling-Dabie orogen where a vertical coherent deformation of the crust and mantle may be involved there. Based on the geophysical data, we propose a detachment-controlled model, which was caused by the different detachment depth/strength, for the formation of XHTB to explain its arcuate shape as well as the magnetic alignments, thus providing new insight into the deep processes of southeastern NCC.

     

  • Electronic Supplementary Material: Supplementary material (Fig. S1) is available in the online version of this article at https://doi.org/10.1007/s12583-021-1584-y.
  • loading
  • Bem, T. S., Yao, H. J., Luo, S., et al., 2020. High-Resolution 3-D Crustal Shear-Wave Velocity Model Reveals Structural and Seismicity Segmentation of the Central-Southern Tanlu Fault Zone, Eastern China. Tectonophysics, 778: 228372. https://doi.org/10.1016/j.tecto.2020.228372
    Bokelmann, G. H. R., Wüstefeld, A., 2009. Comparing Crustal and Mantle Fabric from the North American Craton Using Magnetics and Seismic Anisotropy. Earth and Planetary Science Letters, 277(3/4): 355–364. https://doi.org/10.1016/j.epsl.2008.10.032
    Chang, L. J., Ding, Z. F., Wang, C. Y., et al., 2017. Vertical Coherence of Deformation in Lithosphere in the NE Margin of the Tibetan Plateau Using GPS and Shear-Wave Splitting Data. Tectonophysics, 699: 93–101. https://doi.org/10.1016/j.tecto.2017.01.025
    Chen, B., 2016. Research of Structural Characteristics and Deformation Mechanism in the Xuhuai Region: [Dissertation]. Hefei University of Technology, Hefei (in Chinese with English Abstract)
    Chen, L., 2010. Concordant Structural Variations from the Surface to the Base of the Upper Mantle in the North China Craton and Its Tectonic Implications. Lithos, 120(1/2): 96–115. https://doi.org/10.1016/j.lithos. 2009.12.007 doi: 10.1016/j.lithos.2009.12.007
    Chen, L., Zheng, T. Y., Xu, W. W., 2006. A Thinned Lithospheric Image of the Tanlu Fault Zone, Eastern China: Constructed from Wave Equation Based Receiver Function Migration. Journal of Geophysical Research: Solid Earth, 111(B9): B09312. https://doi.org/10.1029/2005jb003974
    Chen, Y., Cui, T., Ding, W. W., et al., 2019. New Progress on the Onshore-Offshore Seismic Survey in East China Continental Margin. Solid Earth Sciences, 4(3): 85–91. https://doi.org/10.1016/j.sesci.2019.05.001
    Chen, Y., Li, W., Yuan, X. H., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13–24. https://doi.org/10.1016/j.epsl.2014.12.041
    Chen, Y., Zhang, Z. J., Sun, C. Q., et al., 2013. Crustal Anisotropy from Moho Converted Ps Wave Splitting Analysis and Geodynamic Implications beneath the Eastern Margin of Tibet and Surrounding Regions. Gondwana Research, 24(3/4): 946–957. https://doi.org/10.1016/j.gr.2012.04.003
    Deng, Y. F., Chen, Y., Wang, P., et al., 2016. Magmatic Underplating beneath the Emeishan Large Igneous Province (South China) Revealed by the COMGRA-ELIP Experiment. Tectonophysics, 672/673: 16–23. https://doi.org/10.1016/j.tecto.2016.01.039
    Deng, Y. F., Fan, W. M., Zhang, Z. J., et al., 2013. Geophysical Evidence on Segmentation of the Tancheng-Lujiang Fault and Its Implications on the Lithosphere Evolution in East China. Journal of Asian Earth Sciences, 78: 263–276. https://doi.org/10.1016/j.jseaes.2012.11.006
    Deng, Y. F., Levandowski, W., 2018. Lithospheric Alteration, Intraplate Crustal Deformation, and Topography in Eastern China. Tectonics, 37(11): 4120–4134. https://doi.org/10.1029/2018tc005079
    Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002
    Dong, S. W., Li, T. D., Lü, Q. T., et al., 2013. Progress in Deep Lithospheric Exploration of the Continental China: A Review of the SinoProbe. Tectonophysics, 606: 1–13. https://doi.org/10.1016/j.tecto.2013.05.038
    Fang, H. J., Yao, H. J., Zhang, H. J., et al., 2015. Direct Inversion of Surface Wave Dispersion for Three-Dimensional Shallow Crustal Structure Based on Ray Tracing: Methodology and Application. Geophysical Journal International, 201(3): 1251–1263. https://doi.org/10.1093/gji/ggv080
    Gray, M. B., Stamatakos, J., 1997. New Model for Evolution of Fold and Thrust Belt Curvature Based on Integrated Structural and Paleomagnetic Results from the Pennsylvania Salient. Geology, 25(12): 1067–1070. https://doi.org/10.1130/0091-7613(1997)025<1067:nmfeof>2.3.co;2 doi: 10.1130/0091-7613(1997)025<1067:nmfeof>2.3.co;2
    Gu, N., Wang, K. D., Gao, J., et al., 2019. Shallow Crustal Structure of the Tanlu Fault Zone near Chao Lake in Eastern China by Direct Surface Wave Tomography from Local Dense Array Ambient Noise Analysis. Pure and Applied Geophysics, 176(3): 1193–1206. https://doi.org/10.1007/s00024-018-2041-4
    Guan, Z. N., 2005. Geomagnetic Field and Magnetic Exploration. Geological Publishing House, Beijing (in Chinese)
    Guo, G. H., Wu, C. L., Tang, G. B., et al., 2019. Seismic Anisotropy of the Northeastern Margin of the Tibetan Plateau Derived from Analysis of SKS and Pms Seismic Phases. Chinese Journal of Geophysics, 62(5): 1650–1662 https://doi.org/10.6038/cjg2019n0093 (in Chinese with English Abstract)
    Guo, Z. K., Tao, C. H., 2020. Potential Field Continuation in Spatial Domain: A New Kernel Function and Its Numerical Scheme. Computers & Geosciences, 136: 104405. https://doi.org/10.1016/j.cageo.2020.104405
    Guy, A., Schulmann, K., Munschy, M., et al., 2014. Geophysical Constraints for Terrane Boundaries in Southern Mongolia. Journal of Geophysical Research: Solid Earth, 119(10): 7966–7991. https://doi.org/10.1002/2014jb011026
    Hong, D. Q., Huang, X. L., Yang, Y., et al., 2021. Lateral Variation in Moho Depth around the Southern Tanlu Fault Zone and Its Adjacent Area. Earthquake Science, 34(1): 77–87. https://doi.org/10.29382/eqs-2020-0063
    Hu, J. F., Badal, J., Yang, H. Y., et al., 2018. Comprehensive Crustal Structure and Seismological Evidence for Lower Crustal Flow in the Southeastern Margin of Tibet Revealed by Receiver Functions. Gondwana Research, 55: 42–59. https://doi.org/10.1016/j.gr.2017.11.007
    Hu, N., Li, Y. H., Xu, L. X., 2020. Crustal Seismic Anisotropy of the Northeastern Tibetan Plateau and the Adjacent Areas from Shear-Wave Splitting Measurements. Geophysical Journal International, 220(3): 1491–1503. https://doi.org/10.1093/gji/ggz489
    Huang, H., Xu, M. J., Wang, L. S., et al., 2013. Distinct Lateral Variations of Upper Mantle Anisotropy beneath Eastern China Revealed by Shear-Wave Splitting. Geochemistry, Geophysics, Geosystems, 14(6): 1842–1855. https://doi.org/10.1002/ggge.20126
    Jiang, G. M., Zhang, G. B., Lü, Q. T., et al., 2013. 3-D Velocity Model beneath the Middle-Lower Yangtze River and Its Implication to the Deep Geodynamics. Tectonophysics, 606: 36–47. https://doi.org/10.1016/j.tecto.2013.03.026
    Kong, F. S., Wu, J., Liu, K. H., et al., 2016. Crustal Anisotropy and Ductile Flow beneath the Eastern Tibetan Plateau and Adjacent Areas. Earth and Planetary Science Letters, 442: 72–79. https://doi.org/10.1016/j.epsl.2016.03.003
    Li, C., Yao, H. J., Yang, Y., et al., 2020. 3-D Shear Wave Velocity Structure in the Shallow Crust of the Tan-Lu Fault Zone in Lujiang, Anhui, and Adjacent Areas, and Its Tectonic Implications. Earth and Planetary Physics, 4(3): 317–328. https://doi.org/10.26464/epp2020026
    Li, F., 2019. Physical Modelling of Xu-Huai Arc Structure on the Southeastern Margin of North China Block: [Dissertation]. Nanjing University, Nanjing (in Chinese with English Abstract)
    Li, H. Y., Song, X. D., Lü, Q. T., et al., 2018. Seismic Imaging of Lithosphere Structure and Upper Mantle Deformation beneath East-Central China and Their Tectonic Implications. Journal of Geophysical Research: Solid Earth, 123(4): 2856–2870. https://doi.org/10.1002/2017jb014992
    Li, L. L., Shen, W. S., Sui, S. Y., et al., 2021. Crustal Thickness beneath the Tanlu Fault Zone and Its Tectonic Significance Based on Two-Layer H-κ Stacking. Earthquake Science, 34(1): 47–63. https://doi.org/10.29382/eqs-2020-0064
    Li, P. F., Sun, M., Rosenbaum, G., et al., 2017. Late Paleozoic Closure of the Ob-Zaisan Ocean along the Irtysh Shear Zone (NW China): Implications for Arc Amalgamation and Oroclinal Bending in the Central Asian Orogenic Belt. Geological Society of America Bulletin, 129(5/6): 547–569. https://doi.org/10.1130/b31541.1
    Li, W. C., 1994. The Genetics and Coal Resource Prospect of Xu-Huai Arc. Coal Geology of China, 8(2): 1–4 (in Chinese with English Abstract)
    Ling, M. X., Li, Y., Ding, X., et al., 2013. Destruction of the North China Craton Induced by Ridge Subductions. The Journal of Geology, 121(2): 197–213. https://doi.org/10.1086/669248
    Ling, M. X., Wang, F. Y., Ding, X., et al., 2009. Cretaceous Ridge Subduction along the Lower Yangtze River Belt, Eastern China. Economic Geology, 104(2): 303–321. https://doi.org/10.2113/gsecongeo.104.2.303
    Liu, B. J., Feng, S. Y., Ji, J. F., et al., 2015. Fine Lithosphere Structure beneath the Middle-Southern Segment of the Tan-Lu Fault Zone. Chinese Journal of Geophysics, 58(5): 1610–1621 (in Chinese with English Abstract)
    Liu, G., Gao, Y., Shi, Y. T., 2017. Shear-Wave Splitting in Qinling Orogen and Its Both Sides. Chinese Journal of Geophysics, 60(6): 2326–2337. https://doi.org/10.6038/cjg20170624 (in Chinese with English Abstract)
    Liu, J., Wu, J. P., Wang, W. L., et al., 2020. Seismic Anisotropy beneath the Eastern Margin of the Tibetan Plateau from SKS Splitting Observations. Tectonophysics, 785: 228430. https://doi.org/10.1016/j.tecto.2020.228430
    Livani, M., Scrocca, D., Arecco, P., et al., 2018. Structural and Stratigraphic Control on Salient and Recess Development along a Thrust Belt Front: The Northern Apennines (Po Plain, Italy). Journal of Geophysical Research: Solid Earth, 123(5): 4360–4387. https://doi.org/10.1002/2017jb015235
    Lü, Q., Yan, J. Y., Shi, D. N., et al., 2013. Reflection Seismic Imaging of the Lujiang-Zongyang Volcanic Basin, Yangtze Metallogenic Belt: An Insight into the Crustal Structure and Geodynamics of an Ore District. Tectonophysics, 606: 60–77. https://doi.org/10.1016/j.tecto.2013.04.006
    Luis, J. F., Miranda, J. M., 2008. Reevaluation of Magnetic Chrons in the North Atlantic between 35°N and 47°N: Implications for the Formation of the Azores Triple Junction and Associated Plateau. Journal of Geophysical Research: Solid Earth, 113(B10): B10105. https://doi.org/10.1029/2007jb005573
    Luo, S., Huang, R., Zhu, L. P., et al., 2020. The Formation of the Dabashan Orocline, Central China: Insights from High-Resolution 3D Crustal Shear-Wave Velocity Structure. Tectonophysics, 774: 228244. https://doi.org/10.1016/j.tecto.2019.228244
    Luo, S., Yao, H. J., Li, Q. S., et al., 2019. High-Resolution 3D Crustal S-Wave Velocity Structure of the Middle-Lower Yangtze River Metallogenic Belt and Implications for Its Deep Geodynamic Setting. Science China Earth Sciences, 62(9): 1361–1378. https://doi.org/10.1007/s11430-018-9352-9
    Macedo, J., Marshak, S., 1999. Controls on the Geometry of Fold-Thrust Belt Salients. Geological Society of America Bulletin, 111(12): 1808–1822. https://doi.org/10.1130/0016-7606(1999)1111808:cotgof>2.3.co;2 doi: 10.1130/0016-7606(1999)1111808:cotgof>2.3.co;2
    Marshak, S., 1988. Kinematics of Orocline and Arc Formation in Thin-Skinned Orogens. Tectonics, 7(1): 73–86. https://doi.org/10.1029/tc007i001p00073
    Marshak, S., 2004. Salients, Recesses, Arcs, Oroclines, and Syntaxes—A Review of Ideas Concerning the Formation of Map-View Curves in Fold-Thrust Belts. In: McClay, K. R., ed., Thrust Tectonics and Hydrocarbon Systems. AAPG Memoir, 82: 131–156
    Meng, Q. R., Zhang, G. W., 1999. Timing of Collision of the North and South China Blocks: Controversy and Reconciliation. Geology, 27(2): 123–126. https://doi.org/10.1130/0091-7613(1999)0270123:tocotn>2.3.co;2 doi: 10.1130/0091-7613(1999)0270123:tocotn>2.3.co;2
    Meng, Y. F., Yao, H. J., Wang, X. Z., et al., 2019. Crustal Velocity Structure and Deformation Features in the Central-Southern Segment of Tanlu Fault Zone and Its Adjacent Area from Ambient Noise Tomography. Chinese Journal of Geophysics, 62(7): 2490–2509 (in Chinese with English Abstract)
    Meurers, B., 2017. The Physical Meaning of Bouguer Anomalies—General Aspects Revisited. In: Pašteka, R., Mikuška, J., Meurers, B., eds., Understanding the Bouguer Anomaly (Chapter 2). Elsevier. 13–30
    Mooney, W. D., Kaban, M. K., 2010. The North American Upper Mantle: Density, Composition, and Evolution. Journal of Geophysical Research: Solid Earth, 115(B12): B12424. https://doi.org/10.1029/2010jb000866
    Pavlis, N. K., Holmes, S. A., Kenyon, S. C., et al., 2012. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4): B04406. https://doi.org/10.1029/2011jb008916
    Ravat, D., 2007. Reduction to Pole. In: Gubbins, D., Herrero-Bervera, E., eds., Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. 856–858
    Schellart, W. P., Freeman, J., Stegman, D. R., et al., 2007. Evolution and Diversity of Subduction Zones Controlled by Slab Width. Nature, 446(7133): 308–311. https://doi.org/10.1038/nature05615
    Shi, D. N., Lü, Q., Xu, W. Y., et al., 2013. Crustal Structure beneath the Middle-Lower Yangtze Metallogenic Belt in East China: Constraints from Passive Source Seismic Experiment on the Mesozoic Intra-Continental Mineralization. Tectonophysics, 606: 48–59. https://doi.org/10.1016/j.tecto.2013.01.012
    Shi, W., Zhang, Y. Q., Dong, S. W., et al., 2012. Intra-Continental Dabashan Orocline, Southwestern Qinling, Central China. Journal of Asian Earth Sciences, 46: 20–38. https://doi.org/10.1016/j.jseaes.2011.10.005
    Shu, L. S., Yin, H. W., Faure, M., et al., 2017. Mesozoic Intracontinental Underthrust in the SE Margin of the North China Block: Insights from the Xu-Huai Thrust-and-Fold Belt. Journal of Asian Earth Sciences, 141: 161–173. https://doi.org/10.1016/j.jseaes.2016.08.020
    Sun, S. J., Yang, X. Y., Wang, G. J., et al., 2019. In situ Elemental and Sr-O Isotopic Studies on Apatite from the Xu-Huai Intrusion at the Southern Margin of the North China Craton: Implications for Petrogenesis and Metallogeny. Chemical Geology, 510: 200–214. https://doi.org/10.1016/j.chemgeo.2019.02.010
    Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4): 533–542. https://doi.org/10.1016/j.epsl.2007.08.021
    Sun, W. D., Ling, M. X., Yang, X. Y., et al., 2010. Ridge Subduction and Porphyry Copper-Gold Mineralization: An Overview. Science China Earth Sciences, 53(4): 475–484. https://doi.org/10.1007/s11430-010-0024-0
    Tian, X. B., Santosh, M., 2015. Fossilized Lithospheric Deformation Revealed by Teleseismic Shear Wave Splitting in Eastern China. GSA Today, 25(2): 4–10. https://doi.org/10.1130/gsatg220a.1
    Wang, G. L., Jiang, B., Cao, D. Y., et al., 1998. On the Xuzhou-Suzhou Arcuate Duplex-Imbricate. Acta Geologica Sinica, 72: 228–236 (in Chinese with English Abstract)
    Wang, Q., Niu, F. L., Gao, Y., et al., 2016. Crustal Structure and Deformation beneath the NE Margin of the Tibetan Plateau Constrained by Teleseismic Receiver Function Data. Geophysical Journal International, 204(1): 167–179. https://doi.org/10.1093/gji/ggv420
    Wang, R. R., Xu, Z. Q., Santosh, M., et al., 2019. Formation of Dabashan Arcuate Structures: Constraints from Mesozoic Basement Deformation in South Qinling Orogen, China. Journal of Structural Geology, 118: 135–149. https://doi.org/10.1016/j.jsg.2018.10.014
    Weil, A. B., Sussman, A. J., 2004. Classifying Curved Orogens Based on Timing Relationships between Structural Development and Vertical-Axis Rotations. Geological Society of America, 383: 1–17. https://doi.org/10.1130/0-8137-2383-3(2004)383[1:ccobot]2.0.co;2
    Wu, C. L., Xu, T., Badal, J., et al., 2015. Seismic Anisotropy across the Kunlun Fault and Their Implications for Northward Transforming Lithospheric Deformation in Northeastern Tibet. Tectonophysics, 659: 91–101. https://doi.org/10.1016/j.tecto.2015.07.030
    Wüstefeld, A., Bokelmann, G., Barruol, G., 2010. Evidence for Ancient Lithospheric Deformation in the East European Craton Based on Mantle Seismic Anisotropy and Crustal Magnetics. Tectonophysics, 481(1/2/3/4): 16–28. https://doi.org/10.1016/j.tecto.2009.01.010
    Xiong, S. Q., Yang, H., Ding, Y. Y., et al., 2016. Distribution of Igneous Rocks in China Revealed by Aeromagnetic Data. Journal of Asian Earth Sciences, 129: 231–242. https://doi.org/10.1016/j.jseaes.2016.08.016
    Xu, J., Wang, K. D., Li, J. L., et al., 2021. High Resolution Tomography of the Tanlu Fault Zone near Hefei with Passive Seismic and Magnetotelluric Linear Array Data. Earthquake Science, 34(1): 24–35. https://doi.org.10.29382/eqs-2020-0061
    Xu, S. T., Chen, G. B., Zhou, H. Y., 1987. Xuhuai Nappe. Chinese Science Bulletin, 32: 1091–1095 (in Chinese) doi: 10.1360/csb1987-32-14-1091
    Xu, T., Zhang, Z. J., Tian, X. B., et al., 2014. Crustal Structure beneath the Middle-Lower Yangtze Metallogenic Belt and Its Surrounding Areas: Constraints from Active Source Seismic Experiment along the Lixin to Yixing Profile in East China. Acta Petrologica Sinica, 30(4): 918–930 (in Chinese with English Abstract)
    Xu, W. L., Gao, S., Wang, Q. H., et al., 2006. Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34(9): 721–724. https://doi.org/10.1130/g22551.1
    Xu, X. M., Niu, F. L., Ding, Z. F., et al., 2018. Complicated Crustal Deformation beneath the NE Margin of the Tibetan Plateau and Its Adjacent Areas Revealed by Multi-Station Receiver-Function Gathering. Earth and Planetary Science Letters, 497: 204–216. https://doi.org/10.1016/j.epsl.2018.06.010
    Yang, D. B., Xu, W. L., Pei, F. P., et al., 2008. Chronology and Pb Isotope Compositions of Early Cretaceous Adakitic Rocks in Xuzhou-Huaibei Area, Central China: Constraints on Magma Sources and Tectonic Evolution in the Eastern North China Craton. Acta Petrologica Sinica, 24(8): 1745–1758 (in Chinese with English Abstract)
    Yang, X. Y., Li, H. Y., Li, Y. H., et al., 2019. Seismic Anisotropy beneath Eastern China from Shear Wave Splitting. Geophysical Journal International, 218(3): 1642–1651. https://doi.org/10.1093/gji/ggz242
    Yin, A., 2010. Cenozoic Tectonic Evolution of Asia: A Preliminary Synthesis. Tectonophysics, 488(1/2/3/4): 293–325. https://doi.org/10.1016/j.tecto. 2009.06.002 doi: 10.1016/j.tecto.2009.06.002
    Yin, A., Nie, S. Y., 1993. An Indentation Model for the North and South China Collision and the Development of the Tan-Lu and Honam Fault Systems, Eastern Asia. Tectonics, 12(4): 801–813. https://doi.org/10.1029/93tc00313
    Yin, W. W., Lei, J. S., Du, M. F., et al., 2019. Uppermost-Mantle Pn Velocity and Anisotropic Tomography of the Tanlu Fault Zone and Adjacent Areas. Chinese Journal of Geophysics, 62(11): 4227–4238. https://doi.org//10.6038/cjg2019m0672 (in Chinese with English Abstract)
    Yu, Y., Chen, Y. J., 2016. Seismic Anisotropy beneath the Southern Ordos Block and the Qinling-Dabie Orogen, China: Eastward Tibetan Asthenospheric Flow around the Southern Ordos. Earth and Planetary Science Letters, 455: 1–6. https://doi.org/10.1016/j.epsl.2016.08.026
    Zeng, H. L., 2005. Gravity Field and Gravity Exploration. Geological Publishing House, Beijing. 79–100 (in Chinese)
    Zhang, M. H., Xu, T., Lü, Q. T., et al., 2015. 3D Moho Depth beneath the Middle-Lower Yangtze Metallogenic Belt and Its Surrounding Areas: Insight from the Wide Angle Seismic Data. Chinese Journal of Geophysics, 58(12): 4360–4372. https://doi.org/10.6038/cjg20151203 (in Chinese with English Abstract)
    Zhang, Y. Q., Dong, S. W., 2008. Mesozoic Tectonic Evolution History of the Tan-Lu Fault Zone, China: Advances and New Understanding. Geological Bulletin of China, 27: 1371–1390 (in Chinese with English Abstract)
    Zhang, Y. Q., Vergèly, P., Mercier, J. L., et al., 1999. Kinematic History and Changes in the Tectonic Stress Regime during the Cenozoic along the Qinling and Southern Tanlu Fault Zones. Acta Geologica Sinica—English Edition, 73(3): 264–274. https://doi.org/10.1111/j.1755-6724. 1999.tb00835.x doi: 10.1111/j.1755-6724.1999.tb00835.x
    Zhang, Z. K., Ling, M. X., Lin, W., et al., 2020. "Yanshanian Movement" Induced by the Westward Subduction of the Paleo-Pacific Plate. Solid Earth Sciences, 5(2): 103–114. https://doi.org/10.1016/j.sesci.2020.04.002
    Zhao, L., Zheng, T. Y., Lu, G., 2013. Distinct Upper Mantle Deformation of Cratons in Response to Subduction: Constraints from SKS Wave Splitting Measurements in Eastern China. Gondwana Research, 23(1): 39–53. https://doi.org/10.1016/j.gr.2012.04.007
    Zhao, T., Zhu, G., Lin, S. Z., et al., 2016. Indentation-Induced Tearing of a Subducting Continent: Evidence from the Tan-Lu Fault Zone, East China. Earth-Science Reviews, 152: 14–36. https://doi.org/10.1016/j.earscirev.2015.11.003
    Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 53(20): 3081–3104. https://doi.org/10.1007/s11434-008-0388-0
    Zhu, G., Wang, D. X., Liu, G. S., et al., 2004. Evolution of the Tan-Lu Fault Zone and Its Responses to Plate Movement in West Pacific Basin. Chinese Journal of Geology, 39(1): 36–49 (in Chinese with English Abstract)
    Zhu, G., Liu, G. S., Niu, M. L., et al., 2009. Syn-Collisional Transform Faulting of the Tan-Lu Fault Zone, East China. International Journal of Earth Sciences, 98(1): 135–155. https://doi.org/10.1007/s00531-007-0225-8
    Zhu, L. P., Kanamori, H., 2000. Moho Depth Variation in Southern California from Teleseismic Receiver Functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969–2980. https://doi.org/10.1029/1999jb900322
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(121) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return