Citation: | Jianghao Bai, Mingxing Ling, Xiaoyong Yang, Fang Liu, Huangling Gu, Zebin Luo, Xiaoyan Jiang, Zhaofeng Zhang. Yangshan A-Type Granites in the Lower Yangtze River Belt Formed by Ridge Subduction: Radiogenic Ca and Nd Isotopic Constraints. Journal of Earth Science, 2022, 33(3): 581-590. doi: 10.1007/s12583-021-1588-7 |
The Early Cretaceous aluminous A-type granites in the Lower Yangtze River belt (LYRB) can provide important insights into the Mesozoic magmatism in eastern China, but their origin remains highly controversial. In this study, radiogenic Ca-Nd isotopic analysis was performed for syenite porphyry and alkali-feldspar granite porphyry of the Yangshan pluton, a typical aluminous A-type granitic intrusion in the LYRB, to constrain its source and geodynamic setting. The results show that
Antonelli, M. A., DePaolo, D. J., Christensen, J. N., et al., 2021. Radiogenic 40Ca in Seawater: Implications for Modern and Ancient Ca Cycles. ACS Earth and Space Chemistry, 5(9): 2481–2492. https://doi.org/10.1021/acsearthspacechem.1c00179 |
Antonelli, M. A., DePaolo, D. J., Chacko, T., et al., 2019. Radiogenic Ca Isotopes Confirm Post-Formation K Depletion of Lower Crust. Geochemical Perspectives Letters, 43–48. https://doi.org/10.7185/geochemlet.1904 |
Bai, J. H., Liu, F., Zhang, Z. F., et al., 2020. Key Aspects of Non-Traditional Isotope Analysis. Earth Science Fronties, 27(3): 1–13. https://doi.org/10.13745/j.esf.sf.2020.4.7 (in Chinese with English Abstract) |
Bizzarro, M., Baker, J. A., Haack, H., et al., 2003. Early History of Earth՚s Crust-Mantle System Inferred from Hafnium Isotopes in Chondrites. Nature, 421(6926): 931–933. https://doi.org/10.1038/nature01421 |
Cao, Y., Du, Y. S., Cai, C. L., et al., 2008. Mesozoic A-Type Granitoids and Xenoliths in the Lujiang-Zongyang Area, Anhui Province: Significance in Post-Collisional Magmatic Evolution. Geological Journal of China Universities, 14(4): 565–576 (in Chinese with English Abstract) |
Caro, G., Papanastassiou, D. A., Wasserburg, G. J., 2010. 40K-40Ca Isotopic Constraints on the Oceanic Calcium Cycle. Earth and Planetary Science Letters, 296(1/2): 124–132. https://doi.org/10.1016/j.epsl.2010.05.001 |
Chang, Y. F., 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. In: Liu, X. P., Wu, Y. C., eds., Geological Publishing House, Beijing. 379 (in Chinese) |
Chen, C. F., Liu, Y. S., Feng, L. P., et al., 2018. Calcium Isotope Evidence for Subduction-Enriched Lithospheric Mantle under the Northern North China Craton. Geochimica et Cosmochimica Acta, 238: 55–67. https://doi.org/10.1016/j.gca.2018.06.038 |
Chen, D. G., Zhi, X. C., Li, B. X., 1994. The Nd, Sr and Pb Isotopic Characteristics of Lherzolite Xenoliths from Panshishan. Geochimica, 23(3): 245–253. https://doi.org/10.19700/j.0379-1726.1994.03.004 (in chinese with English Abstract) |
Chen, J. F., Yan, J., Xie, Z., et al., 2001. Nd and Sr Isotopic Compositions of Igneous Rocks from the Lower Yangtze Region in Eastern China: Constraints on Sources. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9/10): 719–731. https://doi.org/10.1016/s1464-1895(01)00122-3 |
DePaolo, D. J., 2004. Calcium Isotopic Variations Produced by Biological, Kinetic, Radiogenic and Nucleosynthetic Processes. In: Johnson, C. M., Beard, B. L., Albarède, F., et al., eds., Geochemistry of Non-Traditional Stable Isotopes. De Gruyter. 55(8): 255–288. https://doi.org/10.1515/9781501509360-011 |
Du, Y. S., Cao, Y., Yuan, W. M., et al., 2007. Mesozoic Post-Collisional to Postorogenic Magmatic Activities and Crustal Interaction with Mantle along the Yangtze River, Anhui Provience: Evidence from Volcanic-intrusive Complexes and Xenolith. Acta Petrologica Sinica, 23(6): 1294–1302 (in Chinese with English Abstract) |
Fan, Y., Zhou, T. F., Zhang, D. Y., et al., 2016. Genesis of the Qingyang-Jiuhuashan Complex Pluton in South Anhui Province and Its Geological Significance. Acta Petrologica Sinica, 32(2): 419–438 (in Chinese with English Abstract) |
Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13/14): 2071–2088. https://doi.org/10.1016/s0016-7037(99)00153-2 |
Gu, H. L., Yang, X. Y., Deng, J. H., et al., 2017. Geochemical and Zircon U-Pb Geochronological Study of the Yangshan A-Type Granite: Insights into the Geological Evolution in South Anhui, Eastern Jiangnan Orogen. Lithos, 284/285: 156–170. https://doi.org/10.1016/j.lithos.2017.04.007 |
Gu, H. L., 2017. The Yanshanian Magmatism and Its Relations to the Cu(Mo)-Au Mineralization in Guichi district, Lower Yangtze River Metallogenic Belt: [Dissertation]. Univeristy of Science and Technology of China, Hefei. 136 (in Chinese with English Abstract) |
Guo, J. L., Gao, S., Wu, Y. B., et al., 2014. 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82–95. https://doi.org/10.1016/j.precamres.2013.12.018 |
He, Y. S., Li, S. G., Hoefs, J., et al., 2013. Sr-Nd-Pb Isotopic Compositions of Early Cretaceous Granitoids from the Dabie Orogen: Constraints on the Recycled Lower Continental Crust. Lithos, 156–159: 204–217. https://doi.org/10.1016/j.lithos.2012.10.011 |
He, Y. S., Wang, Y., Zhu, C. W., et al., 2017. Mass-Independent and Mass-Dependent Ca Isotopic Compositions of Thirteen Geological Reference Materials Measured by Thermal Ionisation Mass Spectrometry. Geostandards and Geoanalytical Research, 41(2): 283–302. https://doi.org/10.1111/ggr.12153 |
Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297–314. https://doi.org/10.1016/0012-821x(88)90132-x |
Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1/2): 1–13. https://doi.org/10.1016/j.chemgeo.2008.02.014 |
Jiang, X. Y., Li, H., Ding, X., et al., 2018a. Formation of A-Type Granites in the Lower Yangtze River Belt: A Perspective from Apatite Geochemistry. Lithos, 304–307: 125–134. https://doi.org/10.1016/j.lithos.2018.02.005 |
Jiang, X. Y., Luo, J. C., Guo, J., et al., 2018b. Geochemistry of I- and A-Type Granites of the Qingyang-Jiuhuashan Complex, Eastern China: Insights into Early Cretaceous Multistage Magmatism. Lithos, 316/317: 278–294. https://doi.org/10.1016/j.lithos.2018.07.025 |
Kang, J. T., Ionov, D. A., Liu, F., et al., 2017. Calcium Isotopic Fractionation in Mantle Peridotites by Melting and Metasomatism and Ca Isotope Composition of the Bulk Silicate Earth. Earth and Planetary Science Letters, 474: 128–137. https://doi.org/10.1016/j.epsl.2017.05.035 |
Kreissig, K., Elliott, T., 2005. Ca Isotope Fingerprints of Early Crust-Mantle Evolution. Geochimica et Cosmochimica Acta, 69(1): 165–176. https://doi.org/10.1016/j.gca.2004.06.026 |
Li, H., Zhang, H., Ling, M. X., et al., 2011. Geochemical and Zircon U-Pb Study of the Huangmeijian A-Type Granite: Implications for Geological Evolution of the Lower Yangtze River Belt. International Geology Review, 53(5/6): 499–525. https://doi.org/10.1080/00206814.2010. 496202 doi: 10.1080/00206814.2010.496202 |
Li, H., Ling, M. X., Li, C. Y., et al., 2012. A-Type Granite Belts of Two Chemical Subgroups in Central Eastern China: Indication of Ridge Subduction. Lithos, 150: 26–36. https://doi.org/10.1016/j.lithos.2011.09.021 |
Li, H., Ling, M. X., Ding, X., et al., 2014. The Geochemical Characteristics of Haiyang A-Type Granite Complex in Shandong, Eastern China. Lithos, 200/201: 142–156. https://doi.org/10.1016/j.lithos.2014.04.014 |
Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383–409. https://doi.org/10.1007/s00410-008-0341-x |
Ling, M. X., Wang, F. Y., Ding, X., et al., 2011. Different Origins of Adakites from the Dabie Mountains and the Lower Yangtze River Belt, Eastern China: Geochemical Constraints. International Geology Review, 53(5/6): 727–740. https://doi.org/10.1080/00206814.2010.482349 |
Ling, M. X., Wang, F. Y., Ding, X., et al., 2009. Cretaceous Ridge Subduction along the Lower Yangtze River Belt, Eastern China. Economic Geology, 104(2): 303–321. https://doi.org/10.2113/gsecongeo.104.2.303 |
Liu, F., Li, X., Wang, G. Q., et al., 2017a. Marine Carbonate Component in the Mantle beneath the Southeastern Tibetan Plateau: Evidence from Magnesium and Calcium Isotopes. Journal of Geophysical Research: Solid Earth, 122(12): 9729–9744. https://doi.org/10.1002/2017jb014206 |
Liu, F., Zhu, H. L., Li, X., et al., 2017b. Calcium Isotopic Fractionation and Compositions of Geochemical Reference Materials. Geostandards and Geoanalytical Research, 41(4): 675–688. https://doi.org/10.1111/ggr.12172 |
Liu, G. X., Deng, Y. F., Yuan, F., et al., 2021. Rb-Sr Dating and S-Sr-Nd Isotopic Constraints on the Genesis of the Hehuashan Pb-Zn Deposit in the Middle-Lower Yangtze River Metallogenic Belt, China. Solid Earth Sciences, 6(2): 57–69. https://doi.org/10.1016/j.sesci.2021.04.003 |
Liu, L., Yang, X. Y., Santosh, M., et al., 2015. Neoproterozoic Intraplate Crustal Accretion on the Northern Margin of the Yangtze Block: Evidence from Geochemistry, Zircon SHRIMP U-Pb Dating and Hf Isotopes from the Fuchashan Complex. Precambrian Research, 268: 97–114. https://doi.org/10.1016/j.precamres.2015.07.004 |
Liu, S. S., Yang, X. Y., Chen, L. J., et al., 2020. Geological and Geochemical Characteristics and Genesis of the Cishan Gold Deposit in Tongling Ore Cluster Area, Anhui Province. Solid Earth Sciences, 5(3): 182–201. https://doi.org/10.1016/j.sesci.2020.06.003 |
Liu, Y. F., Zhu, H. L., Liu, F., et al., 2015. Methodological Study of Chemical Separation of Calcium for TIMS Measurements. Geochimica, 44(5): 469–476. https://doi.org/10.19700/j.0379-1726.2015.05.006 (in Chinese with English Abstract) |
Lu, W. N., He, Y. S., Wang, Y., et al., 2020. Behavior of Calcium Isotopes during Continental Subduction Recorded in Meta-Basaltic Rocks. Geochimica et Cosmochimica Acta, 278: 392–404. https://doi.org/10.1016/j.gca.2019.09.027 |
Luo, Z. B., Xue, S., Zhang, L. P., et al., 2018. Origin of Early Cretaceous Guandian Adakitic Pluton in Central Eastern China: Partial Melting of Delaminated Lower Continental Crust Triggered by Ridge Subduction. International Geology Review, 60(11–14): 1707–1720. https://doi.org/10.1080/00206814.2017.1393777 |
Ma, J. L., Wei, G. J., Liu, Y., et al., 2013. Precise Measurement of Stable Neodymium Isotopes of Geological Materials by Using MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 28(12): 1926–1931. https://doi.org/10.1039/c3ja50229e |
Mao, J. W., Wang, Y. T., Lehmann, B., et al., 2006. Molybdenite Re-Os and Albite 40Ar/39Ar Dating of Cu-Au-Mo and Magnetite Porphyry Systems in the Yangtze River Valley and Metallogenic Implications. Ore Geology Reviews, 29(3/4): 307–324. https://doi.org/10.1016/j.oregeorev.2005.11.001 |
Marshall, B. D., DePaolo, D. J., 1982. Precise Age Determinations and Petrogenetic Studies Using the K-Ca Method. Geochimica et Cosmochimica Acta, 46(12): 2537–2545. https://doi.org/10.1016/0016-7037(82)90376-3 |
Marshall, B. D., DePaolo, D. J., 1989. Calcium Isotopes in Igneous Rocks and the Origin of Granite. Geochimica et Cosmochimica Acta, 53(4): 917–922. https://doi.org/10.1016/0016-7037(89)90036-7 |
Mills, R. D., Simon, J. I., DePaolo, D. J., 2018. Calcium and Neodymium Radiogenic Isotopes of Igneous Rocks: Tracing Crustal Contributions in Felsic Magmas Related to Super-Eruptions and Continental Rifting. Earth and Planetary Science Letters, 495: 242–250. https://doi.org/10.1016/j.epsl.2018.05.017 |
Qian, L., Wang, Y., Xie, J. C., et al., 2019. The Late Mesozoic Granodiorite and Polymetallic Mineralization in Southern Anhui Province, China: A Perspective from Apatite Geochemistry. Solid Earth Sciences, 4(4): 178–189. https://doi.org/10.1016/j.sesci.2019.11.006 |
Qiu, Y. M., Gao, S., McNaughton, N. J., et al., 2000. First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 28(1): 11–14. https://doi.org/10.1130/0091-7613(2000)0280011:feogcc>2.0.co;2 doi: 10.1130/0091-7613(2000)0280011:feogcc>2.0.co;2 |
Ren, L., Bao, Z. W., Huang, W. T., et al., 2020. Flat-Slab Subduction and Formation of "Intraplate" Porphyry Deposits: Insights from the Jurassic High and Low La/Yb Ore-Forming Porphyries along the Qin-Hang Belt, South China. Ore Geology Reviews, 123: 103574. https://doi.org/10.1016/j.oregeorev.2020.103574 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry, vol. 3. Elsevier-Pergamon, Oxford |
Russell, S. D., Cambon, N., Pruliere, G., et al., 1987. Thyroid-Hormone Induces Precocious Expression of Fast Myosin Heavy-Chain Messenger-Rna and Protein in Rat Hindlimb Muscle. Journal of Muscle Research and Cell Motility, 8(1): 80–80 |
Russell, W. A., Papanastassiou, D. A., Tombrello, T. A., 1978. Ca Isotope Fractionation on the Earth and other Solar System Materials. Geochimica et Cosmochimica Acta, 42(8): 1075–1090. https://doi.org/10.1016/0016-7037(78)90105-9 |
Salters, V. J. M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5): Q05B07. https://doi.org/10.1029/2003gc000597 |
Scherer, E., Münker, C., Mezger, K, 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683–687. https://doi.org/10.1126/science.1061372 |
Simon, J. I., DePaolo, D. J., Moynier, F, 2009. Calcium Isotope Composition of Meteorites, Earth, and Mars. The Astrophysical Journal Letters, 702(1): 707–715. https://doi.org/10.1088/0004-637x/702/1/707 |
Steiger, R. H., Jäger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359–362. https://doi.org/10.1016/0012-821x(77)90060-7 |
Su, Y. P., Zheng, J. P., Griffin, W. L., et al., 2013. Petrogenesis and Geochronology of Cretaceous Adakitic, I- and A-Type Granitoids in the NE Yangtze Block: Constraints on the Eastern Subsurface Boundary between the North and South China Blocks. Lithos, 175/176: 333–350. https://doi.org/10.1016/j.lithos.2013.05.016 |
Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4): 533–542. https://doi.org/10.1016/j.epsl.2007.08.021 |
Sun, W. D., Ling, M. X., Wang, F. Y., et al., 2008. Pacific Plate Subduction and Mesozoic Geological Event in Eastern China. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 218–225 (in Chinese with English Abstract) |
Sun, W. D., Ling, M. X., Yang, X. Y., et al., 2010. Ridge Subduction and Porphyry Copper Gold Mineralization: An Overview. Science China (Earth Sciences), 53(4): 475–484. https://doi.org/10.1007/s11430-010-0024-0 (in Chinese) |
Sun, W. D., Liu, L. J., Hu, Y. B., et al., 2018. Post-Ridge-Subduction Acceleration of the Indian Plate Induced by Slab Rollback. Solid Earth Sciences, 3(1): 1–7. https://doi.org/10.1016/j.sesci.2017.12.003 |
Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241–265. https://doi.org/10.1029/95rg00262 |
Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478: 164–182. https://doi.org/10.1016/j.chemgeo.2017.09.033 |
Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609–2636. https://doi.org/10.1016/j.gca.2007.03.008 |
Wang, W. J., 2009. Characteristics, Petrogenesis and Minerogenic Specialization of the Mesozoic Granitoids in Shitai Area, Anhui Province: [Dissertation]. Hefei University of Technology, Hefei (in Chinese with English Abstract) |
Wang, Y., He, Y. S., Wu, H. J., et al., 2019. Calcium Isotope Fractionation during Crustal Melting and Magma Differentiation: Granitoid and Mineral-Pair Perspectives. Geochimica et Cosmochimica Acta, 259: 37–52. https://doi.org/10.1016/j.gca.2019.05.030 |
Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q08006. https://doi.org/10.1029/2006gc001283 |
Wu, F. Y., Ji, W. Q., Sun, D. H., et al., 2012. Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Mesozoic Granites in Southern Anhui Province, China. Lithos, 150: 6–25. https://doi.org/10.1016/j.lithos.2012.03.020 |
Xie, G. Q., Mao, J. W., Li, R. L., et al., 2008. Geochemistry and Nd-Sr Isotopic Studies of Late Mesozoic Granitoids in the Southeastern Hubei Province, Middle-Lower Yangtze River Belt, Eastern China: Petrogenesis and Tectonic Setting. Lithos, 104(1/2/3/4): 216–230. https://doi.org/10.1016/j.lithos.2007.12.008 |
Xu, X. S., Suzuki, K., Liu, L., et al., 2010. Petrogenesis and Tectonic Implications of Late Mesozoic Granites in the NE Yangtze Block, China: Further Insights from the Jiuhuashan-Qingyang Complex. Geological Magazine, 147(2): 219–232. https://doi.org/10.1017/s0016756809990367 |
Xue, H. M., Wang, Y. G., Ma, F., et al., 2009. Zircon U-Pb SHRIMP Ages of the Taiping (Calc-Alkaline)-Huangshan (Alkaline) Composite Intrusion: Constraints on Mesozoic Lithospheric Thinning of the Southeastern Yangtze Craton, China. Science in China Series D: Earth Sciences, 52: 1756–1770. https://doi.org/10.1007/S11430-009-0133-9 (in Chinese) |
Yan, J., Chen, J. F., Xie, Z., et al., 2005. Geochemistry of Late Mesozoic Basalts from Kedoushan in the Middle and Lower Yangtze Regions: Constraints on Characteristics and Evolution of the Lithospheric Mantle. Geochimica, 34(5): 455–469 (in Chinese with English Abstract) |
Yan, J., Liu, J. M., Li, Q. Z., et al., 2015. In Situ Zircon Hf-O Isotopic Analyses of Late Mesozoic Magmatic Rocks in the Lower Yangtze River Belt, Central Eastern China: Implications for Petrogenesis and Geodynamic Evolution. Lithos, 227: 57–76. https://doi.org/10.1016/j.lithos.2015.03.013 |
Yang, Y. Z., Wang, Y., Ye, R. S., et al., 2017. Petrology and Geochemistry of Early Cretaceous A-Type Granitoids and Late Mesozoic Mafic Dikes and Their Relationship to Adakitic Intrusions in the Lower Yangtze River Belt, Southeast China. International Geology Review, 59(1): 62–79. https://doi.org/10.1080/00206814.2016.1212284 |
Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241–1260. https://doi.org/10.1016/j.gr.2012.09.005 |
Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age and Hf Isotope Evidence for 3.8 Ga Crustal Remnant and Episodic Reworking of Archean Crust in South China. Earth and Planetary Science Letters, 252(1/2): 56–71. https://doi.org/10.1016/j.epsl.2006.09.027 |
Zhang, Y. S., Yan, J., Li, Q. Z., et al., 2018. Pulses of Late Mesozoic Magmatism: Zircon Ages and Hf-O Isotopic Composition of the Qingyang-Jiuhuashan Granitic Complex, Southern Anhui Province, Eastern China. Journal of Asian Earth Sciences, 167: 181–196. https://doi.org/10.1016/j.jseaes.2017.08.003 |
Zhang, Z. K., Ling, M. X., Zhang, L. P., et al., 2020. High Oxygen Fugacity Magma: Implication for the Destruction of the North China Craton. Acta Geochimica, 39(2): 161–171. https://doi.org/10.1007/s11631-020-00394-7 |
Zhu, H. L., Du, L., Li, X., et al., 2020. Calcium Isotopic Fractionation during Plate Subduction: Constraints from Back-Arc Basin Basalts. Geochimica et Cosmochimica Acta, 270: 379–393. https://doi.org/10.1016/j.gca.2019.12.004 |
Zhu, H. L., Zhang, Z. F., Wang, G. Q., et al., 2016. Calcium Isotopic Fractionation during Ion-Exchange Column Chemistry and Thermal Ionisation Mass Spectrometry (TIMS) Determination. Geostandards and Geoanalytical Research, 40(2): 185–194. https://doi.org/10.1111/j.1751-908x.2015.00360.x |