Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 4
Aug 2024
Turn off MathJax
Article Contents
Wenjia Li, Liang Wu, Xinde Xu, Zhong Xie, Qinjun Qiu, Hao Liu, Zhen Huang, Jianguo Chen. Deep Learning and Network Analysis: Classifying and Visualizing Geologic Hazard Reports. Journal of Earth Science, 2024, 35(4): 1289-1303. doi: 10.1007/s12583-021-1589-6
Citation: Wenjia Li, Liang Wu, Xinde Xu, Zhong Xie, Qinjun Qiu, Hao Liu, Zhen Huang, Jianguo Chen. Deep Learning and Network Analysis: Classifying and Visualizing Geologic Hazard Reports. Journal of Earth Science, 2024, 35(4): 1289-1303. doi: 10.1007/s12583-021-1589-6

Deep Learning and Network Analysis: Classifying and Visualizing Geologic Hazard Reports

doi: 10.1007/s12583-021-1589-6
More Information
  • Corresponding author: Qinjun Qiu, qiuqinjun@cug.edu.cn
  • Received Date: 06 Sep 2021
  • Accepted Date: 19 Nov 2021
  • Available Online: 16 Aug 2024
  • Issue Publish Date: 30 Aug 2024
  • If progress is to be made toward improving geohazard management and emergency decision-making, then lessons need to be learned from past geohazard information. A geologic hazard report provides a useful and reliable source of information about the occurrence of an event, along with detailed information about the condition or factors of the geohazard. Analyzing such reports, however, can be a challenging process because these texts are often presented in unstructured long text formats, and contain rich specialized and detailed information. Automatically text classification is commonly used to mine disaster text data in open domains (e.g., news and microblogs). But it has limitations to performing contextual long-distance dependencies and is insensitive to discourse order. These deficiencies are most obviously exposed in long text fields. Therefore, this paper uses the bidirectional encoder representations from Transformers (BERT), to model long text. Then, utilizing a softmax layer to automatically extract text features and classify geohazards without manual features. The latent Dirichlet allocation (LDA) model is used to examine the interdependencies that exist between causal variables to visualize geohazards. The proposed method is useful in enabling the machine-assisted interpretation of text-based geohazards. Moreover, it can help users visualize causes, processes, and other geohazards and assist decision-makers in emergency responses.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Adhikari, A., Ram, A., Tang, R., et al., 2019. DocBERT: BERT for Document Classification.: arXiv: 1904.08398. http://arxiv.org/abs/1904.08398.pdf
    Behera, B., Kumaravelan, G., 2021. Text Document Classification Using Fuzzy Rough Set Based on Robust Nearest Neighbor (FRS-RNN). Soft Computing, 25(15): 9915–9923. https://doi.org/10.1007/s00500-020-05410-9
    Blei, D. M., Ng, A. Y., Jordan, M. I., 2003, Latent Dirichlet Allocation. Journal of Machine Learning Research, 3: 993–1022. https://doi.org/10.5555/944919.944937
    Bojanowski, P., Grave, E., Joulin, A., et al., 2017. Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics, 5: 135–146. https://doi.org/10.1162/tacl_a_00051
    Brooks, B., 2008. Shifting the Focus of Strategic Occupational Injury Prevention. Safety Science, 46(1): 1–21. https://doi.org/10.1016/j.ssci.2006.09.006
    Calafiore, A., Palmer, G., Comber, S., et al., 2021. A Geographic Data Science Framework for the Functional and Contextual Analysis of Human Dynamics within Global Cities. Computers, Environment and Urban Systems, 85: 101539. https://doi.org/10.1016/j.compenvurbsys.2020.101539
    Chen, J. A., Yang, Z. C., Yang, D. Y., 2020. MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification.: arXiv: 2004.12239. http://arxiv.org/abs/2004.12239.pdf
    Chen, J. N., Huang, H. K., Tian, S. F., et al., 2009. Feature Selection for Text Classification with Naïve Bayes. Expert Systems with Applications, 36(3): 5432–5435. https://doi.org/10.1016/j.eswa.2008.06.054
    Church, K. W., 2017. Word2Vec. Natural Language Engineering, 23(1): 155–162. https://doi.org/10.1017/s1351324916000334
    Croitoru, A., Wayant, N., Crooks, A., et al., 2015. Linking Cyber and Physical Spaces through Community Detection and Clustering in Social Media Feeds. Computers, Environment and Urban Systems, 53: 47–64. https://doi.org/10.1016/j.compenvurbsys.2014.11.002
    Devlin, J., Chang, M. W., Lee, K., et al., 2018. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding.: arXiv: 1810.04805. http://arxiv.org/abs/1810.04805.pdf
    Goodchild, M. F., 2007. Citizens as Sensors: The World of Volunteered Geography. GeoJournal, 69(4): 211–221. https://doi.org/10.1007/s10708-007-9111-y
    Granell, C., Ostermann, F. O., 2016. Beyond Data Collection: Objectives and Methods of Research Using VGI and Geo-Social Media for Disaster Management. Computers, Environment and Urban Systems, 59: 231–243. https://doi.org/10.1016/j.compenvurbsys.2016.01.006
    Guo, B., Zhang, C. X., Liu, J. M., et al., 2019. Improving Text Classification with Weighted Word Embeddings via a Multi-Channel TextCNN Model. Neurocomputing, 363(C): 366–374. https://doi.org/10.1016/j.neucom.2019.07.052
    Haworth, B., 2016. Emergency Management Perspectives on Volunteered Geographic Information: Opportunities, Challenges and Change. Computers, Environment and Urban Systems, 57: 189–198. https://doi.org/10.1016/j.compenvurbsys.2016.02.009.
    Herfort, B., de Albuquerque, J. P., Schelhorn, S. J., et al., 2014. Exploring the Geographical Relations between Social Media and Flood Phenomena to Improve Situational Awareness. In: Huerta, J., Schade, S., Granell, C., eds., Connecting a Digital Europe Through Location and Place. Springer, Cham. 55–71. https://doi.org/10.1007/978-3-319-03611-3_4
    Hong, F., Lai, C. F., Guo, H. Q., et al., 2014. FLDA: Latent Dirichlet Allocation Based Unsteady Flow Analysis. IEEE Transactions on Visualization and Computer Graphics, 20(12): 2545–2554. https://doi.org/10.1109/TVCG.2014.2346416
    Huang, Q. Y., Cervone, G., Zhang, G. M., 2017. A Cloud-Enabled Automatic Disaster Analysis System of Multi-Sourced Data Streams: An Example Synthesizing Social Media, Remote Sensing and Wikipedia Data. Computers, Environment and Urban Systems, 66: 23–37. https://doi.org/10.1016/j.compenvurbsys.2017.06.004
    Huang, X., Li, Z. L., Wang, C. Z., et al., 2020. Identifying Disaster Related Social Media for Rapid Response: A Visual-Textual Fused CNN Architecture. International Journal of Digital Earth, 13(9): 1017–1039. https://doi.org/10.1080/17538947.2019.1633425
    Jelodar, H., Wang, Y. L., Yuan, C., et al., 2019. Latent Dirichlet Allocation (LDA) and Topic Modeling: Models, Applications, a Survey. Multimedia Tools and Applications, 78(11): 15169–15211. https://doi.org/10.1007/s11042-018-6894-4
    Joulin, A., Grave, E., Bojanowski, P., et al., 2016. Bag of Tricks for Efficient Text Classification.: arXiv: 1607.01759. http://arxiv.org/abs/1607.01759.pdf
    Kaity, M., Balakrishnan, V., 2020. Sentiment Lexicons and Non-English Languages: A Survey. Knowledge and Information Systems, 62(12): 4445–4480. https://doi.org/10.1007/s10115-020-01497-6
    Liao, M., Shi, B., Bai, X., 2017. Textboxes: A Fast Text Detector with a Single Deep Neural Network. In Proceedings of the AAAI Conference On Artificial Intelligence, 31(1). https://doi.org/10.1609/aaai.v31i1.11196
    Ma, K., Tian, M., Tan, Y. J., et al., 2023. Ontology-Based BERT Model for Automated Information Extraction from Geological Hazard Reports. Journal of Earth Science, 34(5): 1390–1405. https://doi.org/10.1007/s12583-022-1724-z
    Mikolov, T., Sutskever, I., Chen, K., et al., 2013. Distributed Representations of Words and Phrases and Their Compositionality.: arXiv: 1310.4546. http://arxiv.org/abs/1310.4546.pdf
    Ogie, R. I., Clarke, R. J., Forehead, H., et al., 2019. Crowdsourced Social Media Data for Disaster Management: Lessons from the PetaJakarta. org Project. Computers, Environment and Urban Systems, 73: 108–117. https://doi.org/10.1016/j.compenvurbsys.2018.09.002
    Pennington, J., Socher, R., Manning, C. D., 2014. Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), October 25–29, 2014, Doha, Qatar. Association for Computational Linguistics, Stroudsburg, PA, USA. https://doi.org/10.3115/v1/d14-1162
    Peters, M. E., Neumann, M., Iyyer, M., et al., 2018. Deep Contextualized Word Representations.: arXiv: 1802.05365. http://arxiv.org/abs/1802.05365.pdf
    Poonkuzhali, G., Thiagarajan, K., Sarukesi, K. et al., 2009. Signed Approach for Mining Web Content Outliers. International Journal of Computer and Information Engineering, 3(8): 2124–2128. https://doi.org/10.5281/zenodo.1081495
    Qiu, Q. J., Xie, Z., Zhang, D., et al., 2023. Knowledge Graph for Identifying Geological Disasters by Integrating Computer Vision with Ontology. Journal of Earth Science, 34(5): 1418–1432. https://doi.org/10.1007/s12583-022-1641-1
    Resch, B., Usländer, F., Havas, C., 2018. Combining Machine-Learning Topic Models and Spatiotemporal Analysis of Social Media Data for Disaster Footprint and Damage Assessment. Cartography and Geographic Information Science, 45(4): 362–376. https://doi.org/10.1080/15230406.2017.1356242
    Ruhnau, B., 2000. Eigenvector-Centrality—A Node-Centrality? Social Networks, 22(4): 357–365. https://doi.org/10.1016/s0378-8733(00)00031-9
    Sun, X., Ma, X. H., Ni, Z. W., et al., 2018. A New LSTM Network Model Combining TextCNN. International Conference on Neural Information Processing. Springer, Cham. 416–424. https://doi.org/10.1007/978-3-030-04167-0_38
    Suto, J., Oniga, S., 2019. Efficiency Investigation from Shallow to Deep Neural Network Techniques in Human Activity Recognition. Cognitive Systems Research, 54: 37–49. https://doi.org/10.1016/j.cogsys.2018.11.009
    Tang, R., Lu, Y., Liu, L., et al., 2019. Distilling Task-Specific Knowledge from BERT into Simple Neural Networks.: arXiv: 1903.12136. http://arxiv.org/abs/1903.12136.pdf
    Trstenjak, B., Mikac, S., Donko, D., 2014. KNN with TF-IDF Based Framework for Text Categorization. Procedia Engineering, 69: 1356–1364. https://doi.org/10.1016/j.proeng.2014.03.129
    Wang, Y. D., Ruan, S. S., Wang, T., et al., 2019. Rapid Estimation of an Earthquake Impact Area Using a Spatial Logistic Growth Model Based on Social Media Data. International Journal of Digital Earth, 12(11): 1265–1284. https://doi.org/10.1080/17538947.2018.1497100
    Wang, Z. L., Lai, C. G., Chen, X. H., et al., 2015. Flood Hazard Risk Assessment Model Based on Random Forest. Journal of Hydrology, 527: 1130–1141. https://doi.org/10.1016/j.jhydrol.2015.06.008
    Yao, F., Wang, Y., 2020. Domain-Specific Sentiment Analysis for Tweets during Hurricanes (DSSA-H): A Domain-Adversarial Neural-Network-Based Approach. Computers, Environment and Urban Systems, 83: 101522. https://doi.org/10.1016/j.compenvurbsys.2020.101522
    Zhang, W., Yoshida, T., Tang, X. J., 2008. Text Classification Based on Multi-Word with Support Vector Machine. Knowledge-Based Systems, 21(8): 879–886. https://doi.org/10.1016/j.knosys.2008.03.044
    Zhang, Y. J., Chen, Q. Y., Yang, Z. H., et al., 2019. BioWordVec, Improving Biomedical Word Embeddings with Subword Information and MeSH. Scientific Data, 6: 52. https://doi.org/10.1038/s41597-019-0055-0
    Zhong, B. T., Pan, X., Love, P. E. D., et al., 2020. Deep Learning and Network Analysis: Classifying and Visualizing Accident Narratives in Construction. Automation in Construction, 113: 103089. https://doi.org/10.1016/j.autcon.2020.103089
    Zhou, Y., Chen, C., Zhang, P., et al., 2021. Structured Data Extraction Method of Hazard Description Text Based on Strong Part-of-Speech Matching. Journal of Physics: Conference Series, 1746(1): 012056. https://doi.org/10.1088/1742-6596/1746/1/012056
    Zhu, Y. H., Wen, Z. Q., Wang, P., et al., 2009. A Method of Building Chinese Basic Semantic Lexicon Based on Word Similarity. 2009 Chinese Conference on Pattern Recognition. Nanjing, China. IEEE. https://doi.org/10.1109/CCPR.2009.5344041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(8)

    Article Metrics

    Article views(89) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return