Alegret, L., Thomas, E., 2004. Benthic Foraminifera and Environmental Turnover across the Cretaceous/Paleogene Boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic). Palaeogeography, Palaeoclimatology, Palaeoecology, 208(1/2): 59–83. https://doi.org/10.1016/j.palaeo.2004.02.028 |
Beavington-Penney, S. J., Racey, A., 2004. Ecology of Extant Nummulitids and other Larger Benthic Foraminifera: Applications in Palaeoenviron-mental Analysis. Earth-Science Reviews, 67(3/4): 219–265. https://doi.org/10.1016/j.earscirev.2004.02.005 |
Bentov, S., Brownlee, C., Erez, J., 2009. The Role of Seawater Endocytosis in the Biomineralization Process in Calcareous Foraminifera. Proceedings of the National Academy of Sciences of the United States of America, 106(51): 21500–21504. https://doi.org/10.1073/pnas.0906636106 |
Berner, R. A., Kothavala, Z., 2001. GEOCARB Ⅲ: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 301(2): 182–204. https://doi.org/10.2475/ajs.301.2.182 |
Bischoff, W. D., Bishop, F. C., MacKenzie, F., 1983. Biogenically Produced Magnesian Calcite; Inhomogeneities in Chemical and Physical Properties; Comparison with Synthetic Phases. American Mineralogist, 68(11/12): 1183–1188 |
Botté, E. S., Luter, H. M., Marangon, E., et al., 2020. Simulated Future Conditions of Ocean Warming and Acidification Disrupt the Microbiome of the Calcifying Foraminifera Marginopora vertebralis across Life Stages. Environmental Microbiology Reports, 12(6): 693–701. https://doi.org/10.1111/1758-2229.12900 |
BouDagher-Fadel, M. K., 2008. Evolution and Geological Significance of Larger Benthic Foraminifera. Developments in Palaeontology and Stratigraphy, 21: 540 |
BouDagher-Fadel, M. K., 2018. Evolution and Geological Significance of Larger Benthic Foraminifera. UCL Press, London. 702. https://doi.org/10.2307/j.ctvqhsq3 |
BouDagher-Fadel, M. K., 2022. Evolution, Extinction and Homoplasy of the Larger Benthic Foraminifera from the Carboniferous to the Present Day, as Exemplified by Planispiral-fusiform and Discoidal Forms. Journal of Earth Science, 33(6): 1348–1361. https://doi.org/10.1007/s12583-021-1596-7 |
BouDagher-Fadel, M. K., Price, G. D., 2013. The Phylogenetic and Palaeogeographic Evolution of the Miogypsinid Larger Benthic Foraminifera. Journal of the Geological Society, 170(1): 185–208. https://doi.org/10.1144/jgs2011-149 |
BouDagher-Fadel, M., Price, G. D., 2019. Global Evolution and Paleo-geographic Distribution of Mid-Cretaceous Orbitolinids. UCL Open Environment, 1: 21. https://doi.org/10.14324/111.444/ucloe.000001 |
Bradshaw, J. S., 1957. Laboratory Studies on the Rate of Growth of the Foraminifer. Journal of Paleontology, 31(6): 1138–1147 |
Brandano, M., Tomassetti, L., Bosellini, F., et al., 2010. Depositional Model and Paleodepth Reconstruction of a Coral-Rich, Mixed Siliciclastic-Carbonate System: The Burdigalian of Capo Testa (Northern Sardinia, Italy). Facies, 56(3): 433–444. https://doi.org/10.1007/s10347-009-0209-1 |
Brasier, M. D., 1986. Form, Function and Evolution in Benthic and Planktic Foraminiferid Test Architecture. In: Leadbeater, B. S. C., Riding, R., eds., Biomineralisation in Lower Plants and Animals. Systematics Association Special. Clarendon Press, Oxford. 30: 32–67 |
Briguglio, A., Hohenegger, J., 2014. Growth Oscillation in Larger Foraminifera. Paleobiology, 40(3): 494–509. https://doi.org/10.1666/13051 |
Briguglio, A., Wöger, J., Wolfgring, E., et al., 2014. Changing Investigation Perspectives: Methods and Applications of Computed Tomography on Larger Benthic Foraminifera. Approaches to Study Living Foraminifera. Springer, Tokyo. 55–70. https://doi.org/10.1007/978-4-431-54388-6_4 |
Cole, W., 1957. Larger Foraminifera. In: Johnson, J. H., Bramlette, M., Riedel, W., et al., Geology of Saipan, Mariana Islands: Part 3, Paleontology. United States Geological Survey Professional Papers, 280(I): 321–360 |
Cotton, L. J., Pearson, P. N., Renema, W., 2014. Stable Isotope Stratigraphy and Larger Benthic Foraminiferal Extinctions in the Melinau Limestone, Sarawak. Journal of Asian Earth Sciences, 79: 65–71. https://doi.org/10.1016/j.jseaes.2013.09.025 |
Culver, S. J., 2003. Benthic Foraminifera across the Cretaceous-Tertiary (K-T) Boundary: A Review. Marine Micropaleontology, 47(3/4): 177–226. https://doi.org/10.1016/S0377-8398(02)00117-2 |
Cushman, J. A., 1940. Foraminifera: Their Classification and Economic Use. Harvard University Press, Harvard. 605 |
Darling, K. F., Schweizer, M., Knudsen, K. L., et al., 2016. The Genetic Diversity, Phylogeography and Morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic. Marine Micropaleontology, 129: 1–23. https://doi.org/10.1016/j.marmicro.2016.09.001 |
Darling, K. F., Thomas, E., Kasemann, S. A., et al., 2009. Surviving Mass Extinction by Bridging the Benthic/Planktic Divide. PNAS, 106(31): 12629–12633. https://doi.org/10.1073/pnas.0902827106 |
de Nooijer, L. J., Spero, H. J., Erez, J., et al., 2014. Biomineralization in Perforate Foraminifera. Earth-Science Reviews, 135: 48–58. https://doi.org/10.1016/j.earscirev.2014.03.013 |
de Vargas, C., Norris, R., Zaninetti, L., et al., 1999. Molecular Evidence of Cryptic Speciation in Planktonic Foraminifers and Their Relation to Oceanic Provinces. Proceedings of the National Academy of Sciences of the United States of America, 96(6): 2864–2868. https://doi.org/10.1073/pnas.96.6.2864 |
Doo, S. S., Leplastrier, A., Graba-Landry, A., et al., 2020. Amelioration of Ocean Acidification and Warming Effects through Physiological Buffering of a Macroalgae. Ecology and Evolution, 10(15): 8465–8475. https://doi.org/10.1002/ece3.6552 |
Drooger, C. W., 1993. Radial Foraminifera, Morphometrics and Evolution. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Natuurkunde, Erste Reeks, deel 41, Amsterdam. 241 |
Dubicka, Z., Gajewska, M., Kozłowski, W., et al., 2021. Photosynthetic Activity in Devonian Foraminifera. Biogeosciences, 18(20): 5719–5728. https://doi.org/10.5194/bg-18-5719-2021 |
Dubinsky, Z., Berman-Frank, I., 2001. Uncoupling Primary Production from Population Growth in Photosynthesizing Organisms in Aquatic Ecosystems. Aquatic Sciences, 63(1): 4–17. https://doi.org/10.1007/pl00001343 |
Engel, B. E., Hallock, P., Price, R. E., et al., 2015. Shell Dissolution in Larger Benthic Foraminifers Exposed to pH and Temperature Extremes: Results from an in situ Experiment. The Journal of Foraminiferal Research, 45(2): 190–203. https://doi.org/10.2113/gsjfr.45.2.190 |
Erez, J., 2003. The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies. Reviews in Mineralogy and Geochemistry, 54(1): 115–149. https://doi.org/10.2113/0540115 |
Evans, D., Müller, W., Erez, J., 2018. Assessing Foraminifera Biomineralisation Models through Trace Element Data of Cultures under Variable Seawater Chemistry. Geochimica et Cosmochimica Acta, 236: 198–217. https://doi.org/10.1016/j.gca.2018.02.048 |
Fehrenbacher, J. S., Russell, A. D., Davis, C. V., et al., 2017. Link between Light-Triggered Mg-Banding and Chamber Formation in the Planktic Foraminifera Neogloboquadrina dutertrei. Nature Communications, 8: 15441. https://doi.org/10.1038/ncomms15441 |
Förderer, M., Rödder, D., Langer, M. R., 2018. Patterns of Species Richness and the Center of Diversity in Modern Indo-Pacific Larger Foraminifera. Scientific Reports, 8: 8189. https://doi.org/10.1038/s41598-018-26598-9 |
Fujita, K., Kanda, Y., Hosono, T., 2022. Light is an Important Limiting Factor for the Vertical Distribution of the Largest Extant Benthic Foraminifer Cycloclypeus carpenteri. Journal of Earth Science, 33(6): 1460–1468. https://doi.org/10.1007/s12583-022-1612-6 |
Fursenko, A. V., 1933. General Information about Foraminifera and Their Significance for Petroleum Geology. In: Cushman, J. A., ed., Foramini-fery: Leningrad-Moscow, Noovosibirsk, Gosudarstvennoe Nauchnotech-nicheskoe Gornogeologoneftjanoe Izdatelstvo. 5–77 (in Russian) |
Garcia-Cuetos, L., Pochon, X., Pawlowski, J, 2005. Molecular Evidence for Host-Symbiont Specificity in Soritid Foraminifera. Protist, 156(4): 399–412. https://doi.org/10.1016/j.protis.2005.08.003 |
Glas, M. S., Fabricius, K. E., de Beer, D., et al., 2012. The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World. PLoS ONE, 7(11): e50010. https://doi.org/10.1371/journal.pone.0050010 |
Goeting, S., Briguglio, A., Eder, W., et al., 2018. Depth Distribution of Modern Larger Benthic Foraminifera Offshore Brunei Darussalam. Micropaleon-tology, 64(4): 299–316. https://doi.org/10.47894/mpal.64.4.04 |
Groussin, M., Gouy, M., 2011. Adaptation to Environmental Temperature is a Major Determinant of Molecular Evolutionary Rates in Archaea. Molecular Biology and Evolution, 28(9): 2661–2674. https://doi.org/10.1093/molbev/msr098 |
Groves, J. R., Yue, W., 2009. Foraminiferal Diversification during the Late Paleozoic Ice Age. Paleobiology, 35(3): 367–392. https://doi.org/10.1666/0094-8373-35.3.367 |
Gudmundsson, G., 1994. Phylogeny, Ontogeny and Systematics of Recent Soritacea Ehrenberg 1839 (Foraminiferida). Micropaleontology, 40(2): 101–155. https://doi.org/10.2307/1485772 |
Guido, A., Papazzoni, C. A., Mastandrea, A., et al., 2011. Automicrite in a 'Nummulite Bank' from the Monte Saraceno (Southern Italy): Evidence for Synsedimentary Cementation. Sedimentology, 58(4): 878–889. https://doi.org/10.1111/j.1365-3091.2010.01187.x |
Hallock, P., 1981. Production of Carbonate Sediments by Selected Large Benthic Foraminifera on Two Pacific Coral Reefs. Journal of Sedimentary Petrology, 51(2): 467–474 |
Hallock, P., 1985. Why are Larger Foraminifera Large? Paleobiology, 11(2): 195–208. https://doi.org/10.1017/s0094837300011507 |
Hallock, P., 2000. Symbiont-Bearing Foraminifera: Harbingers of Global Change. Micropaleontology, 46: 95–104 |
Hallock, P., 2001. Coral Reefs, Carbonate Sediments, Nutrients, and Global Change. In: Stanley, G. D., ed., The History and Sedimentology of Ancient Reef Systems. Topics in Geobiology, vol. 17. Springer, Boston. 387–427 |
Hallock, P., Glenn, E. C., 1986. Larger Foraminifera: A Tool for Paleoenvironmental Analysis of Cenozoic Carbonate Depositional Facies. PALAIOS, 1(1): 55–64. https://doi.org/10.2307/3514459 |
Hallock, P., Schlager, W., 1986. Nutrient Excess and the Demise of Coral Reefs and Carbonate Platforms. PALAIOS, 1(4): 389–398. https://doi.org/10.2307/3514476 |
Hallock, P., Reymond, C. E., 2022. Contributions of Trimorphic Life Cycles to Dispersal and Evolutionary Trends in Large Benthic Foraminifera. Journal of Earth Science, 33(6): 1425–1433. https://doi.org/10.1007/s12583-022-1707-0 |
Hallock, P., Lidz, B. H., Cockey-Burkhard, E. M., et al., 2003. Foraminifera as Bioindicators in Coral Reef Assessment and Monitoring: The FORAM Index. Foraminifera in Reef Assessment and Monitoring. Environmental Monitoring and Assessment, 81(1/2/3): 221–238 |
Hansen, H. J., Buchardt, B., 1977. Depth Distribution of Amphistegina in the Gulf of Elat, Israel. Utrecht Micropaleontological Bulletin, 15: 205–224 |
Hansen, H. J., Dalberg, P., 1979. Symbiotic Algae in Milioline Foraminifera: CO2 Uptake and Shell Adaptations. Bulletin of the Geological Society of Denmark, 28: 47–55 |
Hedley, R. H., 1964. The Biology of Foraminifera. In: Felts, W. J. L., Harrison, R. J., eds., International Review of General and Experimental Zoology. Elsevier. 1–45 |
Hemleben, C., Kaminski, M. A., 1990. Agglutinated Foraminifera: An Introduction. In: Hemleben, C., Kaminski, M. A., Kuhnt, W., Scott, D. B., eds. Paleoecology, Biostratigraphy, Paleoceanography and Taxono-my of Agglutinated Foraminifera. NATO ASI Series (Series C: Mathema-tical and Physical Sciences), vol 327. Springer, Dordrecht. 3–11 |
Hohenegger, J., 1994. Distribution of Living Larger Foraminifera NW of Sesoko-Jima, Okinawa, Japan. Marine Ecology, 15(3/4): 291–334. https://doi.org/10.1111/j.1439-0485.1994.tb00059.x |
Hohenegger, J., 2000. Coenoclines of Larger Foraminifera. Micropaleon-tology, 46: 127–151 |
Hohenegger, J., Torres-Silva, A. I., Eder, W., 2022. Interpreting Morphologi-cally Homogeneous (Paleo-)Populations as Ecological Species Enables Comparison of Living and Fossil Organism Groups, Exemplified by Nummulitid Foraminifera. Journal of Earth Science, 33(6): 1362–1377. https://doi.org/10.1007/s12583-021-1567-z |
Hohn, S., Reymond, C. E., 2019. Coral Calcification, Mucus, and the Origin of Skeletal Organic Molecules. Coral Reefs, 38(5): 973–984. https://doi.org/10.1007/s00338-019-01826-4 |
Holzmann, M., Hohenegger, J., Hallock, P., et al., 2001. Molecular Phylogeny of Large Miliolid Foraminifera (Soritacea Ehrenberg 1839). Marine Micropaleontology, 43(1/2): 57–74. https://doi.org/10.1016/s0377-8398(01)00021-4 |
Holzmann, M., Hohenegger, J., Apothéloz-Perret-Gentil, L., et al., 2022. A Revision of Recent Nummulitid Genera Based on Molecular and Morphological Data. Journal of Earth Science, 33(6): 1411–1424. https://doi.org/10.1007/s12583-021-1595-8 |
Holzmann, M., Pawlowski, J., 2017. An Updated Classification of Rotaliid Foraminifera Based on Ribosomal DNA Phylogeny. Marine Micropa-leontology, 132: 18–34. https://doi.org/10.1016/j.marmicro.2017.04.002 |
Hönisch, B., Ridgwell, A., Schmidt, D. N., et al., 2012. The Geological Record of Ocean Acidification. Science, 335(6072): 1058–1063. https://doi.org/10.1126/science.1208277 |
Hottinger, L., 1960. Uber Paleocaene Und Eocaene Alveolinen. Eclogae Geologicae Helvetiae, 53(1): 265–283 |
Huber, B. T., Bijma, J., Darling, K., 1997. Cryptic Speciation in the Living Planktonic Foraminifer Globigerinella siphonifera (d'Orbigny). Paleo-biology, 23(1): 33–62. https://doi.org/10.1017/s0094837300016638 |
Humphreys, A. F., Halfar, J., Ingle, J. C., et al., 2019. Shallow-Water Benthic Foraminifera of the Galápagos Archipelago: Ecologically Sensitive Carbonate Producers in an Atypical Tropical Oceanographic Setting. Journal of Foraminiferal Research, 49(1): 48–65. https://doi.org/10.2113/gsjfr.49.1.48 |
Humphreys, A. F., Purkis, S. J., Wan, C., et al., 2022. A New Foraminiferal Bioindicator for Long-Term Heat Stress on Coral Reefs. Journal of Earth Science, 33(6): 1451–1459. https://doi.org/10.1007/s12583-021-1543-7 |
Keitelman, V., 2020. A Brief Review of the Study of Symbiotic Relationships in Extant and Fossil Foraminifera. Ameghiniana, 57(4): 327–335. https://doi.org/10.5710/amgh.03.04.2020.3308 |
Kövecsi, S. -A., Less, G., Pleș, G., et al., 2022. Nummulites Assemblages, Biofabrics and Sedimentary Structures: The Anatomy and Depositional Model of an Extended Eocene (Bartonian) Nummulitic Accumulation from the Transylvanian Basin (NW Romania). Palaeogeography, Palaeoclimatology, Palaeoecology, 586: 110751. https://doi.org/10.1016/j.palaeo.2021.110751 |
Langer, M. R., 2008. Assessing the Contribution of Foraminiferan Protists to Global Ocean Carbonate Production. Journal of Eukaryotic Microbio-logy, 55(3): 163–169. https://doi.org/10.1111/j.1550-7408.2008.00321.x |
Langer, M., Hottinger, L., 2000. Biogeography of Selected "Larger" Fora-minifera. Micropaleontology, 46(Suppl. 1): 105–126 of Reef Foramini-fera. Journal of Foraminiferal Research, 27(4): 271–277. https://doi.org/10.2113/gsjfr.27.4.271 |
Lee, J. J., 1998. Living Sands: Larger Foraminifera and Their Endosym-biotic Algae. Symbiosis, 25(1/2/3): 71–100 |
Lee, J. J., 2006. Algal Symbiosis in Larger Foraminifera. Symbiosis, 42(2): 63–75 |
Lee, J. J., Hallock, P., 1987. Algal Symbiosis as the Driving Force in the Evolution of Larger Foraminifera. Annals of the New York Academy of Sciences, 503(1): 330–347. https://doi.org/10.1111/j.1749-6632.1987.tb40619.x |
Lee, J. J., McEnery, M. E., Kahn, E. G., et al., 1979. Symbiosis and the Evolution of Larger Foraminifera. Micropaleontology, 25(2): 118–140. https://doi.org/10.2307/1485262 |
Lee, J. J., Muller, W. A., Stone, R. J., et al., 1969. Standing Crop of Foraminifera in Sublittoral Epiphytic Communities of a Long Island Salt Marsh. Marine Biology, 4(1): 44–61. https://doi.org/10.1007/bf00372165 |
Leutert, T. J., Sexton, P. F., Tripati, A., et al., 2019. Sensitivity of Clumped Isotope Temperatures in Fossil Benthic and Planktic Foraminifera to Diagenetic Alteration. Geochimica et Cosmochimica Acta, 257: 354–372. https://doi.org/10.1016/j.gca.2019.05.005 |
Loeblich, A. R., Tappan, H., 1987. Foraminiferal Genera and Their Classification, v. 1–2. Van Nostrand Reinhold, New York. 970 |
Lunt, P., Luan, X. W., 2022. East Tethyan Cenozoic Larger Foraminifera: Taxonomic Questions, Apparent Radiation and Abrupt Extinctions, Journal of Earth Science, 33(6): 1378–1399. https://doi.org/10.1007/s12583-022-1614-4 |
Mateu-Vicens, G., Hallock, P., Brandano, M., 2009. Test-Shape Variability of Amphistegina d'Orbigny, 1826 as a Paleobathymetric Proxy: Application to Two Miocene Examples. Geologic Problem Solving with Microfossils. SEPM Special Publications, 93: 67–82. https://doi.org/10.2110/sepmsp.093.067 |
Michel, J., Vicens, G. M., Westphal, H., 2011. Modern Heterozoan Carbonates from a Eutrophic Tropical Shelf (Mauritania). Journal of Sedimentary Research, 81(9/10): 641–655. https://doi.org/10.2110/jsr.2011.53 |
Mikhalevich, V. I., 2013. Post-Cambrian Testate Foraminifera as a System in Its Evolution. Nova Science Publishers, New York. 426 |
Momigliano, P., Uthicke, S., 2013. Symbiosis in a Giant Protist (Marginopora vertebralis, Soritinae): Flexibility in Symbiotic Partnerships along a Natural Temperature Gradient. Marine Ecology Progress Series, 491: 33–46. https://doi.org/10.3354/meps10465 |
Morse, F. T., Mackenzie, J. W., 1990. Geochemistry of Sedimentary Carbonates. Elsevier. 706 |
Morse, J. W., Andersson, A. J., Mackenzie, F. T., 2006. Initial Responses of Carbonate-Rich Shelf Sediments to Rising Atmospheric pCO2 and "Ocean Acidification": Role of High Mg-Calcites. Geochimica et Cosmochimica Acta, 70(23): 5814–5830. https://doi.org/10.1016/j.gca.2006.08.017 |
Narayan, G. R., Reymond, C. E., Stuhr, M., et al., 2022a. Response of Large Benthic Foraminifera to Climate and Local Changes: Implications for Future Carbonate Production. Sedimentology, 69(1): 121–161. https://doi.org/10.1111/sed.12858 |
Narayan, G. R., Herrán, N., Reymond, C. E., et al., 2022b. Local Persistence of Foraminifera under Increasing Urban Development: A Case Study from Zanzibar (Unguja), East Africa. Journal of Earth Science, 33(6): 1434–1450. https://doi.org/10.1007/s12583-022-1702-5 |
Narayan, Y. R., Lybolt, M., Zhao, J. -X., et al., 2015. Holocene Benthic Foraminiferal Assemblages Indicate Long-Term Marginality of Reef Habitats from Moreton Bay, Australia. Palaeogeography, Palaeoclima-tology, Palaeoecology, 420: 49–64. https://doi.org/10.1016/j.palaeo.2014.12.010 |
Narayan, Y. R., Pandolfi, J. M., 2010. Benthic Foraminiferal Assemblages from Moreton Bay, South-East Queensland, Australia: Applications in Monitoring Water and Substrate Quality in Subtropical Estuarine Environments. Marine Pollution Bulletin, 60(11): 2062–2078. https://doi.org/10.1016/j.marpolbul.2010.07.012 |
Pandolfi, J. M., Jackson, J. B. C., Baron, N., et al., 2005. Are US Coral Reefs on the Slippery Slope to Slime? Science, 307(5716): 1725–1726. https://doi.org/10.1126/science.1104258 |
Papazzoni, C. A., Ćosović, V., Briguglio, A., et al., 2017. Towards a Calibrated Larger Foraminifera Biostratigraphic Zonation: Celebrating 18 Years of the Application of Shallow Benthic Zones. PALAIOS, 32(1): 1–4. https://doi.org/10.2110/palo.2016.043 |
Papazzoni, C. A., Seddighi, M., 2018. What, if Anything, is a Nummulite Bank? Journal of Foraminiferal Research, 48(4): 276–287. https://doi.org/10.2113/gsjfr.48.4.276 |
Patterson, R. T., Fowler, A. D., 1996. Evidence of Self Organization in Planktic Foraminiferal Evolution: Implications for Interconnectedness of Paleoecosystems. Geology, 24(3): 215–218. https://doi.org/10.1130/0091-7613(1996)0240215:eosoip>2.3.co;2 doi: 10.1130/0091-7613(1996)0240215:eosoip>2.3.co;2 |
Pawlowski, J., Bolivar, I., Fahrni, J. F., et al., 1997. Extreme Differences in Rates of Molecular Evolution of Foraminifera Revealed by Comparison of Ribosomal DNA Sequences and the Fossil Record. Molecular Biology and Evolution, 14(5): 498–505. https://doi.org/10.1093/oxfordjournals.molbev.a025786 |
Pawlowski, J., Holzmann, M., Berney, C., et al., 2003. The Evolution of Early Foraminifera. Proceedings of the National Academy of Sciences of the United States of America, 100(20): 11494–11498. https://doi.org/10.1073/pnas.2035132100 |
Pawlowski, J., Holzmann, M., Tyszka, J., 2013. New Supraordinal Classification of Foraminifera: Molecules Meet Morphology. Marine Micropaleontology, 100: 1–10. https://doi.org/10.1016/j.marmicro.2013.04.002 |
Pochon, X., Garcia-Cuetos, L., Baker, A. C., et al., 2007. One-Year Survey of a Single Micronesian Reef Reveals Extraordinarily Rich Diversity of Symbiodinium Types in Soritid Foraminifera. Coral Reefs, 26(4): 867–882. https://doi.org/10.1007/s00338-007-0279-x |
Prazeres, M., Renema, W., 2019. Evolutionary Significance of the Microbial Assemblages of Large Benthic Foraminifera. Biological Reviews, 94(3): 828–848. https://doi.org/10.1111/brv.12482 |
Prazeres, M., Martínez-Colón, M., Hallock, P., 2020. Foraminifera as Bioindicators of Water Quality: The FoRAM Index Revisited. Environmental Pollution, 257: 113612. https://doi.org/10.1016/j.envpol.2019.113612 |
Raja, R., Saraswati, P. K., Rogers, K., et al., 2005. Magnesium and Strontium Compositions of Recent Symbiont-Bearing Benthic Foraminifera. Marine Micropaleontology, 58(1): 31–44. https://doi.org/10.1016/j.marmicro.2005.08.001 |
Raja, R., Saraswati, P. K., Iwao, K., 2007. A Field-Based Study on Variation in Mg/Ca and Sr/Ca in Larger Benthic Foraminifera. Geochemistry, Geophysics, Geosystems, 8(10): Q10012. https://doi.org/10.1029/2006gc001478 |
Raup, D. M., Sepkoski, J. J. Jr., 1982. Mass Extinctions in the Marine Fossil Record. Science, 215(4539): 1501–1503. https://doi.org/10.1126/science.215.4539.1501 |
Reijmer., J., 2021. Marine Carbonate Factories: Review and Update. Sedimentology, 68: 1729–1796. https://doi.org/10.1111/sed.12878 |
Renema, W., 2018. Morphological Diversity in the Foraminiferal Genus Marginopora. PLoS One, 13(12): e0208158. https://doi.org/10.1371/journal.pone.0208158 |
Reymond, C. E., Patel, F., Uthicke, S., 2022. Stable Adult Growth but Reduced Asexual Fecundity in Marginopora vertebralis under Global Climate Change Scenarios. Journal of Earth Science, 33(6): 1400–1410. https://doi.org/10.1007/s12583-022-1657-6 |
Reymond, C. E., Hohn, S., 2021. An Experimental Approach to Assessing the Roles of Magnesium, Calcium, and Carbonate Ratios in Marine Car-bonates. Oceans, 2(1): 193–214. https://doi.org/10.3390/oceans2010012 |
Reymond, C. E., Lloyd, A., Kline, D. I., et al., 2013. Decline in Growth of Foraminifer Marginopora rossi under Eutrophication and Ocean Acidification Scenarios. Global Change Biology, 19(1): 291–302. https://doi.org/10.1111/gcb.12035 |
Reymond, C. E., Mateu-Vicens, G., Westphal, H, 2014. Foraminiferal Assemblages from a Transitional Tropical Upwelling Zone in the Golfe d'Arguin, Mauritania. Estuarine, Coastal and Shelf Science, 148: 70–84. https://doi.org/10.1016/j.ecss.2014.05.034 |
Reymond, C. E., Uthicke, S., Pandolfi, J. M., 2012. Tropical Foraminifera as Indicators of Water Quality and Temperature. In: Yellowlees, D., Hughes, T. P., eds., 12th International Coral Reef Symposium. James Cook University, Cairns, Australia. 1–5 |
Reymond, C. E., Uthicke, S., Pandolfi, J. M., 2011. Inhibited Growth in the Photosymbiont-Bearing Foraminifer Marginopora Vertebralis from the Nearshore Great Barrier Reef, Australia. Marine Ecology Progress Series, 435: 97–109. https://doi.org/10.3354/meps09172 |
Reymond, C. E., Zihrul, K-S., Halfar, J., et al., 2016. Heterozoan carbonates from the equatorial rocky reefs of the Galápagos Archipelago. Sedimentology, 63: 940–958. https://doi.org/10.1111/sed.12244 |
Ries, J. B., 2010. Review: Geological and Experimental Evidence for Secular Variation in Seawater Mg/Ca (Calcite-Aragonite Seas) and Its Effects on Marine Biological Calcification. Biogeosciences, 7(9): 2795–2849. https://doi.org/10.5194/bg-7-2795-2010 |
Ross, C. A., 1960. Fusulinids from the Hess Member of the Leonard Formation, Leonard Series (Permian), Glass Mountains, Texas. Contributions from the Cushman Foundation for Foraminiferal Research, Ⅺ(4): 117–133 |
Ross, C. A., 1974. Evolutionary and Ecological Significance of Large Calcareous Foraminiferida (Protozoa), Great Barrier Reef. Proceedings of the Second International Coral Reef Symposium, 1: 327–333 |
Schaub, H., 1981. Nummulites et Assilines de la Téthys Paléogène. Taxinomie, Phylogenèse et Biostratigraphie. Mémoires Suisses de Paléontologie, 104: 236 |
Scheibner, C., Speijer, R. P., Marzouk, A. M., 2005. Turnover of Larger Foraminifera during the Paleocene-Eocene Thermal Maximum and Paleoclimatic Control on the Evolution of Platform Ecosystems. Geology, 33(6): 493–496. https://doi.org/10.1130/g21237.1 |
Segev, E., Erez, J., 2006. Effect of Mg/Ca Ratio in Seawater on Shell Composition in Shallow Benthic Foraminifera. Geochemistry, Geophy-sics, Geosystems, 7(2): Q02P09. https://doi.org/10.1029/2005gc000969 |
Sen Gupta, B. K., 2002. Systematics of Modern Foraminifera. In: Sen Gupta, B. K., ed., Modern Foraminifera. Springer, Dordrecht. 371 |
Sepkoski, J. J., 2002. A Compendium of Fossil Marine Animal Genera. In: Jablonski, D., Foote, M., ed., Bulletins of American Paleontology, 1(83): 1–156 |
Serra-Kiel, J., Hottinger, L., Caus, E., et al., 1998. Larger Foraminiferal Biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Societe Geologique de France, 169(2): 281–299 |
Serra-Kiel, J., Vicedo, V., Baceta, J. I., et al., 2020. Paleocene Larger Foraminifera from the Pyrenean Basin with a Recalibration of the Paleocene Shallow Benthic Zones. Geologica Acta, 18: 1–69. https://doi.org/10.1344/geologicaacta2020.18.8 |
Stuhr, M., Cameron, L. P., Blank-Landeshammer, B., et al., 2021. Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans, 2(2): 281–314. https://doi.org/10.3390/oceans2020017 |
Stuhr, M., Meyer, A., Reymond, C. E., et al., 2018. Variable Thermal Stress Tolerance of the Reef-Associated Symbiont-Bearing Foraminifera Amphistegina Linked to Differences in Symbiont Type. Coral Reefs, 37(3): 811–824. https://doi.org/10.1007/s00338-018-1707-9 |
Talge, H. K., Hallock, P., 2003. Ultrastructural Responses in Field-Bleached and Experimentally Stressed Amphistegina gibbosa (Class Foramini-fera). Journal of Eukaryotic Microbiology, 50(5): 324–333. https://doi.org/10.1111/j.1550-7408.2003.tb00143.x |
Tappan, H., Loeblich, A. R., 1988. Foraminiferal Evolution, Diversification, and Extinction. Journal of Paleontology, 62: 695–714. https://doi.org/10.1017/s0022336000018977 |
ter Kuile, B., Erez, J., Padan, E., 1989. Mechanisms for the Uptake of Inorganic Carbon by Two Species of Symbiont-Bearing Foraminifera. Marine Biology, 103(2): 241–251. https://doi.org/10.1007/bf00543354 |
Todd, R., 1966. Smaller Foraminifera from Guam. U.S. Government Printing Office. 40 |
Vachard, D., 2016. Macroevolution and Biostratigraphy of Paleozoic Foraminifers. Stratigraphy & Timescales, 1: 257–323. https://doi.org/10.1016/bs.sats.2016.10.005 |
Vachard, D., Pille, L., Gaillot, J., 2010. Palaeozoic Foraminifera: Systematics, Palaeoecology and Responses to Global Changes. Revue de Micro-paléontologie, 53(4): 209–254. https://doi.org/10.1016/j.revmic.2010.0.001 |
von Möller, V., 1877. Über Fusulinen und ähnliche Foraminiferen-Formen des russischen Kohlenkalkes. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. 139–146 |
Walter, L. M., Morse, J. W., 1984. Reactive Surface Area of Skeletal Carbonates during Dissolution: Effect of Grain Size. SEPM Journal of Sedimentary Research, 54: 1081–1090 |
Wendler, J., Willems, H., 2002. Distribution Pattern of Calcareous Dinoflagellate Cysts across the Cretaceous-Tertiary Boundary (Fish Clay, Stevns Klint, Denmark): Implications for Our Understanding of Species-Selective Extinction. In: Koeberl, C., MacLeod, K. G., ed., Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America. 356. https://doi.org/10.1130/0-8137-2356-6.265 |