Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 6
Dec 2022
Turn off MathJax
Article Contents
Claire E. Reymond, Pamela Hallock, Hildegard Westphal. Preface for 'Tropical Large Benthic Foraminifera: Adaption, Extinction, and Radiation'. Journal of Earth Science, 2022, 33(6): 1339-1347. doi: 10.1007/s12583-021-1590-0
Citation: Claire E. Reymond, Pamela Hallock, Hildegard Westphal. Preface for "Tropical Large Benthic Foraminifera: Adaption, Extinction, and Radiation". Journal of Earth Science, 2022, 33(6): 1339-1347. doi: 10.1007/s12583-021-1590-0

Preface for "Tropical Large Benthic Foraminifera: Adaption, Extinction, and Radiation"

doi: 10.1007/s12583-021-1590-0
More Information
  • Corresponding author: Claire E. Reymond, claire.reymond@gmail.com
  • Received Date: 10 Sep 2021
  • Accepted Date: 25 Nov 2021
  • Issue Publish Date: 30 Dec 2022
  • loading
  • Alegret, L., Thomas, E., 2004. Benthic Foraminifera and Environmental Turnover across the Cretaceous/Paleogene Boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic). Palaeogeography, Palaeoclimatology, Palaeoecology, 208(1/2): 59–83. https://doi.org/10.1016/j.palaeo.2004.02.028
    Beavington-Penney, S. J., Racey, A., 2004. Ecology of Extant Nummulitids and other Larger Benthic Foraminifera: Applications in Palaeoenviron-mental Analysis. Earth-Science Reviews, 67(3/4): 219–265. https://doi.org/10.1016/j.earscirev.2004.02.005
    Bentov, S., Brownlee, C., Erez, J., 2009. The Role of Seawater Endocytosis in the Biomineralization Process in Calcareous Foraminifera. Proceedings of the National Academy of Sciences of the United States of America, 106(51): 21500–21504. https://doi.org/10.1073/pnas.0906636106
    Berner, R. A., Kothavala, Z., 2001. GEOCARB Ⅲ: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 301(2): 182–204. https://doi.org/10.2475/ajs.301.2.182
    Bischoff, W. D., Bishop, F. C., MacKenzie, F., 1983. Biogenically Produced Magnesian Calcite; Inhomogeneities in Chemical and Physical Properties; Comparison with Synthetic Phases. American Mineralogist, 68(11/12): 1183–1188
    Botté, E. S., Luter, H. M., Marangon, E., et al., 2020. Simulated Future Conditions of Ocean Warming and Acidification Disrupt the Microbiome of the Calcifying Foraminifera Marginopora vertebralis across Life Stages. Environmental Microbiology Reports, 12(6): 693–701. https://doi.org/10.1111/1758-2229.12900
    BouDagher-Fadel, M. K., 2008. Evolution and Geological Significance of Larger Benthic Foraminifera. Developments in Palaeontology and Stratigraphy, 21: 540
    BouDagher-Fadel, M. K., 2018. Evolution and Geological Significance of Larger Benthic Foraminifera. UCL Press, London. 702. https://doi.org/10.2307/j.ctvqhsq3
    BouDagher-Fadel, M. K., 2022. Evolution, Extinction and Homoplasy of the Larger Benthic Foraminifera from the Carboniferous to the Present Day, as Exemplified by Planispiral-fusiform and Discoidal Forms. Journal of Earth Science, 33(6): 1348–1361. https://doi.org/10.1007/s12583-021-1596-7
    BouDagher-Fadel, M. K., Price, G. D., 2013. The Phylogenetic and Palaeogeographic Evolution of the Miogypsinid Larger Benthic Foraminifera. Journal of the Geological Society, 170(1): 185–208. https://doi.org/10.1144/jgs2011-149
    BouDagher-Fadel, M., Price, G. D., 2019. Global Evolution and Paleo-geographic Distribution of Mid-Cretaceous Orbitolinids. UCL Open Environment, 1: 21. https://doi.org/10.14324/111.444/ucloe.000001
    Bradshaw, J. S., 1957. Laboratory Studies on the Rate of Growth of the Foraminifer. Journal of Paleontology, 31(6): 1138–1147
    Brandano, M., Tomassetti, L., Bosellini, F., et al., 2010. Depositional Model and Paleodepth Reconstruction of a Coral-Rich, Mixed Siliciclastic-Carbonate System: The Burdigalian of Capo Testa (Northern Sardinia, Italy). Facies, 56(3): 433–444. https://doi.org/10.1007/s10347-009-0209-1
    Brasier, M. D., 1986. Form, Function and Evolution in Benthic and Planktic Foraminiferid Test Architecture. In: Leadbeater, B. S. C., Riding, R., eds., Biomineralisation in Lower Plants and Animals. Systematics Association Special. Clarendon Press, Oxford. 30: 32–67
    Briguglio, A., Hohenegger, J., 2014. Growth Oscillation in Larger Foraminifera. Paleobiology, 40(3): 494–509. https://doi.org/10.1666/13051
    Briguglio, A., Wöger, J., Wolfgring, E., et al., 2014. Changing Investigation Perspectives: Methods and Applications of Computed Tomography on Larger Benthic Foraminifera. Approaches to Study Living Foraminifera. Springer, Tokyo. 55–70. https://doi.org/10.1007/978-4-431-54388-6_4
    Cole, W., 1957. Larger Foraminifera. In: Johnson, J. H., Bramlette, M., Riedel, W., et al., Geology of Saipan, Mariana Islands: Part 3, Paleontology. United States Geological Survey Professional Papers, 280(I): 321–360
    Cotton, L. J., Pearson, P. N., Renema, W., 2014. Stable Isotope Stratigraphy and Larger Benthic Foraminiferal Extinctions in the Melinau Limestone, Sarawak. Journal of Asian Earth Sciences, 79: 65–71. https://doi.org/10.1016/j.jseaes.2013.09.025
    Culver, S. J., 2003. Benthic Foraminifera across the Cretaceous-Tertiary (K-T) Boundary: A Review. Marine Micropaleontology, 47(3/4): 177–226. https://doi.org/10.1016/S0377-8398(02)00117-2
    Cushman, J. A., 1940. Foraminifera: Their Classification and Economic Use. Harvard University Press, Harvard. 605
    Darling, K. F., Schweizer, M., Knudsen, K. L., et al., 2016. The Genetic Diversity, Phylogeography and Morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic. Marine Micropaleontology, 129: 1–23. https://doi.org/10.1016/j.marmicro.2016.09.001
    Darling, K. F., Thomas, E., Kasemann, S. A., et al., 2009. Surviving Mass Extinction by Bridging the Benthic/Planktic Divide. PNAS, 106(31): 12629–12633. https://doi.org/10.1073/pnas.0902827106
    de Nooijer, L. J., Spero, H. J., Erez, J., et al., 2014. Biomineralization in Perforate Foraminifera. Earth-Science Reviews, 135: 48–58. https://doi.org/10.1016/j.earscirev.2014.03.013
    de Vargas, C., Norris, R., Zaninetti, L., et al., 1999. Molecular Evidence of Cryptic Speciation in Planktonic Foraminifers and Their Relation to Oceanic Provinces. Proceedings of the National Academy of Sciences of the United States of America, 96(6): 2864–2868. https://doi.org/10.1073/pnas.96.6.2864
    Doo, S. S., Leplastrier, A., Graba-Landry, A., et al., 2020. Amelioration of Ocean Acidification and Warming Effects through Physiological Buffering of a Macroalgae. Ecology and Evolution, 10(15): 8465–8475. https://doi.org/10.1002/ece3.6552
    Drooger, C. W., 1993. Radial Foraminifera, Morphometrics and Evolution. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Natuurkunde, Erste Reeks, deel 41, Amsterdam. 241
    Dubicka, Z., Gajewska, M., Kozłowski, W., et al., 2021. Photosynthetic Activity in Devonian Foraminifera. Biogeosciences, 18(20): 5719–5728. https://doi.org/10.5194/bg-18-5719-2021
    Dubinsky, Z., Berman-Frank, I., 2001. Uncoupling Primary Production from Population Growth in Photosynthesizing Organisms in Aquatic Ecosystems. Aquatic Sciences, 63(1): 4–17. https://doi.org/10.1007/pl00001343
    Engel, B. E., Hallock, P., Price, R. E., et al., 2015. Shell Dissolution in Larger Benthic Foraminifers Exposed to pH and Temperature Extremes: Results from an in situ Experiment. The Journal of Foraminiferal Research, 45(2): 190–203. https://doi.org/10.2113/gsjfr.45.2.190
    Erez, J., 2003. The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies. Reviews in Mineralogy and Geochemistry, 54(1): 115–149. https://doi.org/10.2113/0540115
    Evans, D., Müller, W., Erez, J., 2018. Assessing Foraminifera Biomineralisation Models through Trace Element Data of Cultures under Variable Seawater Chemistry. Geochimica et Cosmochimica Acta, 236: 198–217. https://doi.org/10.1016/j.gca.2018.02.048
    Fehrenbacher, J. S., Russell, A. D., Davis, C. V., et al., 2017. Link between Light-Triggered Mg-Banding and Chamber Formation in the Planktic Foraminifera Neogloboquadrina dutertrei. Nature Communications, 8: 15441. https://doi.org/10.1038/ncomms15441
    Förderer, M., Rödder, D., Langer, M. R., 2018. Patterns of Species Richness and the Center of Diversity in Modern Indo-Pacific Larger Foraminifera. Scientific Reports, 8: 8189. https://doi.org/10.1038/s41598-018-26598-9
    Fujita, K., Kanda, Y., Hosono, T., 2022. Light is an Important Limiting Factor for the Vertical Distribution of the Largest Extant Benthic Foraminifer Cycloclypeus carpenteri. Journal of Earth Science, 33(6): 1460–1468. https://doi.org/10.1007/s12583-022-1612-6
    Fursenko, A. V., 1933. General Information about Foraminifera and Their Significance for Petroleum Geology. In: Cushman, J. A., ed., Foramini-fery: Leningrad-Moscow, Noovosibirsk, Gosudarstvennoe Nauchnotech-nicheskoe Gornogeologoneftjanoe Izdatelstvo. 5–77 (in Russian)
    Garcia-Cuetos, L., Pochon, X., Pawlowski, J, 2005. Molecular Evidence for Host-Symbiont Specificity in Soritid Foraminifera. Protist, 156(4): 399–412. https://doi.org/10.1016/j.protis.2005.08.003
    Glas, M. S., Fabricius, K. E., de Beer, D., et al., 2012. The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World. PLoS ONE, 7(11): e50010. https://doi.org/10.1371/journal.pone.0050010
    Goeting, S., Briguglio, A., Eder, W., et al., 2018. Depth Distribution of Modern Larger Benthic Foraminifera Offshore Brunei Darussalam. Micropaleon-tology, 64(4): 299–316. https://doi.org/10.47894/mpal.64.4.04
    Groussin, M., Gouy, M., 2011. Adaptation to Environmental Temperature is a Major Determinant of Molecular Evolutionary Rates in Archaea. Molecular Biology and Evolution, 28(9): 2661–2674. https://doi.org/10.1093/molbev/msr098
    Groves, J. R., Yue, W., 2009. Foraminiferal Diversification during the Late Paleozoic Ice Age. Paleobiology, 35(3): 367–392. https://doi.org/10.1666/0094-8373-35.3.367
    Gudmundsson, G., 1994. Phylogeny, Ontogeny and Systematics of Recent Soritacea Ehrenberg 1839 (Foraminiferida). Micropaleontology, 40(2): 101–155. https://doi.org/10.2307/1485772
    Guido, A., Papazzoni, C. A., Mastandrea, A., et al., 2011. Automicrite in a 'Nummulite Bank' from the Monte Saraceno (Southern Italy): Evidence for Synsedimentary Cementation. Sedimentology, 58(4): 878–889. https://doi.org/10.1111/j.1365-3091.2010.01187.x
    Hallock, P., 1981. Production of Carbonate Sediments by Selected Large Benthic Foraminifera on Two Pacific Coral Reefs. Journal of Sedimentary Petrology, 51(2): 467–474
    Hallock, P., 1985. Why are Larger Foraminifera Large? Paleobiology, 11(2): 195–208. https://doi.org/10.1017/s0094837300011507
    Hallock, P., 2000. Symbiont-Bearing Foraminifera: Harbingers of Global Change. Micropaleontology, 46: 95–104
    Hallock, P., 2001. Coral Reefs, Carbonate Sediments, Nutrients, and Global Change. In: Stanley, G. D., ed., The History and Sedimentology of Ancient Reef Systems. Topics in Geobiology, vol. 17. Springer, Boston. 387–427
    Hallock, P., Glenn, E. C., 1986. Larger Foraminifera: A Tool for Paleoenvironmental Analysis of Cenozoic Carbonate Depositional Facies. PALAIOS, 1(1): 55–64. https://doi.org/10.2307/3514459
    Hallock, P., Schlager, W., 1986. Nutrient Excess and the Demise of Coral Reefs and Carbonate Platforms. PALAIOS, 1(4): 389–398. https://doi.org/10.2307/3514476
    Hallock, P., Reymond, C. E., 2022. Contributions of Trimorphic Life Cycles to Dispersal and Evolutionary Trends in Large Benthic Foraminifera. Journal of Earth Science, 33(6): 1425–1433. https://doi.org/10.1007/s12583-022-1707-0
    Hallock, P., Lidz, B. H., Cockey-Burkhard, E. M., et al., 2003. Foraminifera as Bioindicators in Coral Reef Assessment and Monitoring: The FORAM Index. Foraminifera in Reef Assessment and Monitoring. Environmental Monitoring and Assessment, 81(1/2/3): 221–238
    Hansen, H. J., Buchardt, B., 1977. Depth Distribution of Amphistegina in the Gulf of Elat, Israel. Utrecht Micropaleontological Bulletin, 15: 205–224
    Hansen, H. J., Dalberg, P., 1979. Symbiotic Algae in Milioline Foraminifera: CO2 Uptake and Shell Adaptations. Bulletin of the Geological Society of Denmark, 28: 47–55
    Hedley, R. H., 1964. The Biology of Foraminifera. In: Felts, W. J. L., Harrison, R. J., eds., International Review of General and Experimental Zoology. Elsevier. 1–45
    Hemleben, C., Kaminski, M. A., 1990. Agglutinated Foraminifera: An Introduction. In: Hemleben, C., Kaminski, M. A., Kuhnt, W., Scott, D. B., eds. Paleoecology, Biostratigraphy, Paleoceanography and Taxono-my of Agglutinated Foraminifera. NATO ASI Series (Series C: Mathema-tical and Physical Sciences), vol 327. Springer, Dordrecht. 3–11
    Hohenegger, J., 1994. Distribution of Living Larger Foraminifera NW of Sesoko-Jima, Okinawa, Japan. Marine Ecology, 15(3/4): 291–334. https://doi.org/10.1111/j.1439-0485.1994.tb00059.x
    Hohenegger, J., 2000. Coenoclines of Larger Foraminifera. Micropaleon-tology, 46: 127–151
    Hohenegger, J., Torres-Silva, A. I., Eder, W., 2022. Interpreting Morphologi-cally Homogeneous (Paleo-)Populations as Ecological Species Enables Comparison of Living and Fossil Organism Groups, Exemplified by Nummulitid Foraminifera. Journal of Earth Science, 33(6): 1362–1377. https://doi.org/10.1007/s12583-021-1567-z
    Hohn, S., Reymond, C. E., 2019. Coral Calcification, Mucus, and the Origin of Skeletal Organic Molecules. Coral Reefs, 38(5): 973–984. https://doi.org/10.1007/s00338-019-01826-4
    Holzmann, M., Hohenegger, J., Hallock, P., et al., 2001. Molecular Phylogeny of Large Miliolid Foraminifera (Soritacea Ehrenberg 1839). Marine Micropaleontology, 43(1/2): 57–74. https://doi.org/10.1016/s0377-8398(01)00021-4
    Holzmann, M., Hohenegger, J., Apothéloz-Perret-Gentil, L., et al., 2022. A Revision of Recent Nummulitid Genera Based on Molecular and Morphological Data. Journal of Earth Science, 33(6): 1411–1424. https://doi.org/10.1007/s12583-021-1595-8
    Holzmann, M., Pawlowski, J., 2017. An Updated Classification of Rotaliid Foraminifera Based on Ribosomal DNA Phylogeny. Marine Micropa-leontology, 132: 18–34. https://doi.org/10.1016/j.marmicro.2017.04.002
    Hönisch, B., Ridgwell, A., Schmidt, D. N., et al., 2012. The Geological Record of Ocean Acidification. Science, 335(6072): 1058–1063. https://doi.org/10.1126/science.1208277
    Hottinger, L., 1960. Uber Paleocaene Und Eocaene Alveolinen. Eclogae Geologicae Helvetiae, 53(1): 265–283
    Huber, B. T., Bijma, J., Darling, K., 1997. Cryptic Speciation in the Living Planktonic Foraminifer Globigerinella siphonifera (d'Orbigny). Paleo-biology, 23(1): 33–62. https://doi.org/10.1017/s0094837300016638
    Humphreys, A. F., Halfar, J., Ingle, J. C., et al., 2019. Shallow-Water Benthic Foraminifera of the Galápagos Archipelago: Ecologically Sensitive Carbonate Producers in an Atypical Tropical Oceanographic Setting. Journal of Foraminiferal Research, 49(1): 48–65. https://doi.org/10.2113/gsjfr.49.1.48
    Humphreys, A. F., Purkis, S. J., Wan, C., et al., 2022. A New Foraminiferal Bioindicator for Long-Term Heat Stress on Coral Reefs. Journal of Earth Science, 33(6): 1451–1459. https://doi.org/10.1007/s12583-021-1543-7
    Keitelman, V., 2020. A Brief Review of the Study of Symbiotic Relationships in Extant and Fossil Foraminifera. Ameghiniana, 57(4): 327–335. https://doi.org/10.5710/amgh.03.04.2020.3308
    Kövecsi, S. -A., Less, G., Pleș, G., et al., 2022. Nummulites Assemblages, Biofabrics and Sedimentary Structures: The Anatomy and Depositional Model of an Extended Eocene (Bartonian) Nummulitic Accumulation from the Transylvanian Basin (NW Romania). Palaeogeography, Palaeoclimatology, Palaeoecology, 586: 110751. https://doi.org/10.1016/j.palaeo.2021.110751
    Langer, M. R., 2008. Assessing the Contribution of Foraminiferan Protists to Global Ocean Carbonate Production. Journal of Eukaryotic Microbio-logy, 55(3): 163–169. https://doi.org/10.1111/j.1550-7408.2008.00321.x
    Langer, M., Hottinger, L., 2000. Biogeography of Selected "Larger" Fora-minifera. Micropaleontology, 46(Suppl. 1): 105–126 of Reef Foramini-fera. Journal of Foraminiferal Research, 27(4): 271–277. https://doi.org/10.2113/gsjfr.27.4.271
    Lee, J. J., 1998. Living Sands: Larger Foraminifera and Their Endosym-biotic Algae. Symbiosis, 25(1/2/3): 71–100
    Lee, J. J., 2006. Algal Symbiosis in Larger Foraminifera. Symbiosis, 42(2): 63–75
    Lee, J. J., Hallock, P., 1987. Algal Symbiosis as the Driving Force in the Evolution of Larger Foraminifera. Annals of the New York Academy of Sciences, 503(1): 330–347. https://doi.org/10.1111/j.1749-6632.1987.tb40619.x
    Lee, J. J., McEnery, M. E., Kahn, E. G., et al., 1979. Symbiosis and the Evolution of Larger Foraminifera. Micropaleontology, 25(2): 118–140. https://doi.org/10.2307/1485262
    Lee, J. J., Muller, W. A., Stone, R. J., et al., 1969. Standing Crop of Foraminifera in Sublittoral Epiphytic Communities of a Long Island Salt Marsh. Marine Biology, 4(1): 44–61. https://doi.org/10.1007/bf00372165
    Leutert, T. J., Sexton, P. F., Tripati, A., et al., 2019. Sensitivity of Clumped Isotope Temperatures in Fossil Benthic and Planktic Foraminifera to Diagenetic Alteration. Geochimica et Cosmochimica Acta, 257: 354–372. https://doi.org/10.1016/j.gca.2019.05.005
    Loeblich, A. R., Tappan, H., 1987. Foraminiferal Genera and Their Classification, v. 1–2. Van Nostrand Reinhold, New York. 970
    Lunt, P., Luan, X. W., 2022. East Tethyan Cenozoic Larger Foraminifera: Taxonomic Questions, Apparent Radiation and Abrupt Extinctions, Journal of Earth Science, 33(6): 1378–1399. https://doi.org/10.1007/s12583-022-1614-4
    Mateu-Vicens, G., Hallock, P., Brandano, M., 2009. Test-Shape Variability of Amphistegina d'Orbigny, 1826 as a Paleobathymetric Proxy: Application to Two Miocene Examples. Geologic Problem Solving with Microfossils. SEPM Special Publications, 93: 67–82. https://doi.org/10.2110/sepmsp.093.067
    Michel, J., Vicens, G. M., Westphal, H., 2011. Modern Heterozoan Carbonates from a Eutrophic Tropical Shelf (Mauritania). Journal of Sedimentary Research, 81(9/10): 641–655. https://doi.org/10.2110/jsr.2011.53
    Mikhalevich, V. I., 2013. Post-Cambrian Testate Foraminifera as a System in Its Evolution. Nova Science Publishers, New York. 426
    Momigliano, P., Uthicke, S., 2013. Symbiosis in a Giant Protist (Marginopora vertebralis, Soritinae): Flexibility in Symbiotic Partnerships along a Natural Temperature Gradient. Marine Ecology Progress Series, 491: 33–46. https://doi.org/10.3354/meps10465
    Morse, F. T., Mackenzie, J. W., 1990. Geochemistry of Sedimentary Carbonates. Elsevier. 706
    Morse, J. W., Andersson, A. J., Mackenzie, F. T., 2006. Initial Responses of Carbonate-Rich Shelf Sediments to Rising Atmospheric pCO2 and "Ocean Acidification": Role of High Mg-Calcites. Geochimica et Cosmochimica Acta, 70(23): 5814–5830. https://doi.org/10.1016/j.gca.2006.08.017
    Narayan, G. R., Reymond, C. E., Stuhr, M., et al., 2022a. Response of Large Benthic Foraminifera to Climate and Local Changes: Implications for Future Carbonate Production. Sedimentology, 69(1): 121–161. https://doi.org/10.1111/sed.12858
    Narayan, G. R., Herrán, N., Reymond, C. E., et al., 2022b. Local Persistence of Foraminifera under Increasing Urban Development: A Case Study from Zanzibar (Unguja), East Africa. Journal of Earth Science, 33(6): 1434–1450. https://doi.org/10.1007/s12583-022-1702-5
    Narayan, Y. R., Lybolt, M., Zhao, J. -X., et al., 2015. Holocene Benthic Foraminiferal Assemblages Indicate Long-Term Marginality of Reef Habitats from Moreton Bay, Australia. Palaeogeography, Palaeoclima-tology, Palaeoecology, 420: 49–64. https://doi.org/10.1016/j.palaeo.2014.12.010
    Narayan, Y. R., Pandolfi, J. M., 2010. Benthic Foraminiferal Assemblages from Moreton Bay, South-East Queensland, Australia: Applications in Monitoring Water and Substrate Quality in Subtropical Estuarine Environments. Marine Pollution Bulletin, 60(11): 2062–2078. https://doi.org/10.1016/j.marpolbul.2010.07.012
    Pandolfi, J. M., Jackson, J. B. C., Baron, N., et al., 2005. Are US Coral Reefs on the Slippery Slope to Slime? Science, 307(5716): 1725–1726. https://doi.org/10.1126/science.1104258
    Papazzoni, C. A., Ćosović, V., Briguglio, A., et al., 2017. Towards a Calibrated Larger Foraminifera Biostratigraphic Zonation: Celebrating 18 Years of the Application of Shallow Benthic Zones. PALAIOS, 32(1): 1–4. https://doi.org/10.2110/palo.2016.043
    Papazzoni, C. A., Seddighi, M., 2018. What, if Anything, is a Nummulite Bank? Journal of Foraminiferal Research, 48(4): 276–287. https://doi.org/10.2113/gsjfr.48.4.276
    Patterson, R. T., Fowler, A. D., 1996. Evidence of Self Organization in Planktic Foraminiferal Evolution: Implications for Interconnectedness of Paleoecosystems. Geology, 24(3): 215–218. https://doi.org/10.1130/0091-7613(1996)0240215:eosoip>2.3.co;2 doi: 10.1130/0091-7613(1996)0240215:eosoip>2.3.co;2
    Pawlowski, J., Bolivar, I., Fahrni, J. F., et al., 1997. Extreme Differences in Rates of Molecular Evolution of Foraminifera Revealed by Comparison of Ribosomal DNA Sequences and the Fossil Record. Molecular Biology and Evolution, 14(5): 498–505. https://doi.org/10.1093/oxfordjournals.molbev.a025786
    Pawlowski, J., Holzmann, M., Berney, C., et al., 2003. The Evolution of Early Foraminifera. Proceedings of the National Academy of Sciences of the United States of America, 100(20): 11494–11498. https://doi.org/10.1073/pnas.2035132100
    Pawlowski, J., Holzmann, M., Tyszka, J., 2013. New Supraordinal Classification of Foraminifera: Molecules Meet Morphology. Marine Micropaleontology, 100: 1–10. https://doi.org/10.1016/j.marmicro.2013.04.002
    Pochon, X., Garcia-Cuetos, L., Baker, A. C., et al., 2007. One-Year Survey of a Single Micronesian Reef Reveals Extraordinarily Rich Diversity of Symbiodinium Types in Soritid Foraminifera. Coral Reefs, 26(4): 867–882. https://doi.org/10.1007/s00338-007-0279-x
    Prazeres, M., Renema, W., 2019. Evolutionary Significance of the Microbial Assemblages of Large Benthic Foraminifera. Biological Reviews, 94(3): 828–848. https://doi.org/10.1111/brv.12482
    Prazeres, M., Martínez-Colón, M., Hallock, P., 2020. Foraminifera as Bioindicators of Water Quality: The FoRAM Index Revisited. Environmental Pollution, 257: 113612. https://doi.org/10.1016/j.envpol.2019.113612
    Raja, R., Saraswati, P. K., Rogers, K., et al., 2005. Magnesium and Strontium Compositions of Recent Symbiont-Bearing Benthic Foraminifera. Marine Micropaleontology, 58(1): 31–44. https://doi.org/10.1016/j.marmicro.2005.08.001
    Raja, R., Saraswati, P. K., Iwao, K., 2007. A Field-Based Study on Variation in Mg/Ca and Sr/Ca in Larger Benthic Foraminifera. Geochemistry, Geophysics, Geosystems, 8(10): Q10012. https://doi.org/10.1029/2006gc001478
    Raup, D. M., Sepkoski, J. J. Jr., 1982. Mass Extinctions in the Marine Fossil Record. Science, 215(4539): 1501–1503. https://doi.org/10.1126/science.215.4539.1501
    Reijmer., J., 2021. Marine Carbonate Factories: Review and Update. Sedimentology, 68: 1729–1796. https://doi.org/10.1111/sed.12878
    Renema, W., 2018. Morphological Diversity in the Foraminiferal Genus Marginopora. PLoS One, 13(12): e0208158. https://doi.org/10.1371/journal.pone.0208158
    Reymond, C. E., Patel, F., Uthicke, S., 2022. Stable Adult Growth but Reduced Asexual Fecundity in Marginopora vertebralis under Global Climate Change Scenarios. Journal of Earth Science, 33(6): 1400–1410. https://doi.org/10.1007/s12583-022-1657-6
    Reymond, C. E., Hohn, S., 2021. An Experimental Approach to Assessing the Roles of Magnesium, Calcium, and Carbonate Ratios in Marine Car-bonates. Oceans, 2(1): 193–214. https://doi.org/10.3390/oceans2010012
    Reymond, C. E., Lloyd, A., Kline, D. I., et al., 2013. Decline in Growth of Foraminifer Marginopora rossi under Eutrophication and Ocean Acidification Scenarios. Global Change Biology, 19(1): 291–302. https://doi.org/10.1111/gcb.12035
    Reymond, C. E., Mateu-Vicens, G., Westphal, H, 2014. Foraminiferal Assemblages from a Transitional Tropical Upwelling Zone in the Golfe d'Arguin, Mauritania. Estuarine, Coastal and Shelf Science, 148: 70–84. https://doi.org/10.1016/j.ecss.2014.05.034
    Reymond, C. E., Uthicke, S., Pandolfi, J. M., 2012. Tropical Foraminifera as Indicators of Water Quality and Temperature. In: Yellowlees, D., Hughes, T. P., eds., 12th International Coral Reef Symposium. James Cook University, Cairns, Australia. 1–5
    Reymond, C. E., Uthicke, S., Pandolfi, J. M., 2011. Inhibited Growth in the Photosymbiont-Bearing Foraminifer Marginopora Vertebralis from the Nearshore Great Barrier Reef, Australia. Marine Ecology Progress Series, 435: 97–109. https://doi.org/10.3354/meps09172
    Reymond, C. E., Zihrul, K-S., Halfar, J., et al., 2016. Heterozoan carbonates from the equatorial rocky reefs of the Galápagos Archipelago. Sedimentology, 63: 940–958. https://doi.org/10.1111/sed.12244
    Ries, J. B., 2010. Review: Geological and Experimental Evidence for Secular Variation in Seawater Mg/Ca (Calcite-Aragonite Seas) and Its Effects on Marine Biological Calcification. Biogeosciences, 7(9): 2795–2849. https://doi.org/10.5194/bg-7-2795-2010
    Ross, C. A., 1960. Fusulinids from the Hess Member of the Leonard Formation, Leonard Series (Permian), Glass Mountains, Texas. Contributions from the Cushman Foundation for Foraminiferal Research, Ⅺ(4): 117–133
    Ross, C. A., 1974. Evolutionary and Ecological Significance of Large Calcareous Foraminiferida (Protozoa), Great Barrier Reef. Proceedings of the Second International Coral Reef Symposium, 1: 327–333
    Schaub, H., 1981. Nummulites et Assilines de la Téthys Paléogène. Taxinomie, Phylogenèse et Biostratigraphie. Mémoires Suisses de Paléontologie, 104: 236
    Scheibner, C., Speijer, R. P., Marzouk, A. M., 2005. Turnover of Larger Foraminifera during the Paleocene-Eocene Thermal Maximum and Paleoclimatic Control on the Evolution of Platform Ecosystems. Geology, 33(6): 493–496. https://doi.org/10.1130/g21237.1
    Segev, E., Erez, J., 2006. Effect of Mg/Ca Ratio in Seawater on Shell Composition in Shallow Benthic Foraminifera. Geochemistry, Geophy-sics, Geosystems, 7(2): Q02P09. https://doi.org/10.1029/2005gc000969
    Sen Gupta, B. K., 2002. Systematics of Modern Foraminifera. In: Sen Gupta, B. K., ed., Modern Foraminifera. Springer, Dordrecht. 371
    Sepkoski, J. J., 2002. A Compendium of Fossil Marine Animal Genera. In: Jablonski, D., Foote, M., ed., Bulletins of American Paleontology, 1(83): 1–156
    Serra-Kiel, J., Hottinger, L., Caus, E., et al., 1998. Larger Foraminiferal Biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Societe Geologique de France, 169(2): 281–299
    Serra-Kiel, J., Vicedo, V., Baceta, J. I., et al., 2020. Paleocene Larger Foraminifera from the Pyrenean Basin with a Recalibration of the Paleocene Shallow Benthic Zones. Geologica Acta, 18: 1–69. https://doi.org/10.1344/geologicaacta2020.18.8
    Stuhr, M., Cameron, L. P., Blank-Landeshammer, B., et al., 2021. Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans, 2(2): 281–314. https://doi.org/10.3390/oceans2020017
    Stuhr, M., Meyer, A., Reymond, C. E., et al., 2018. Variable Thermal Stress Tolerance of the Reef-Associated Symbiont-Bearing Foraminifera Amphistegina Linked to Differences in Symbiont Type. Coral Reefs, 37(3): 811–824. https://doi.org/10.1007/s00338-018-1707-9
    Talge, H. K., Hallock, P., 2003. Ultrastructural Responses in Field-Bleached and Experimentally Stressed Amphistegina gibbosa (Class Foramini-fera). Journal of Eukaryotic Microbiology, 50(5): 324–333. https://doi.org/10.1111/j.1550-7408.2003.tb00143.x
    Tappan, H., Loeblich, A. R., 1988. Foraminiferal Evolution, Diversification, and Extinction. Journal of Paleontology, 62: 695–714. https://doi.org/10.1017/s0022336000018977
    ter Kuile, B., Erez, J., Padan, E., 1989. Mechanisms for the Uptake of Inorganic Carbon by Two Species of Symbiont-Bearing Foraminifera. Marine Biology, 103(2): 241–251. https://doi.org/10.1007/bf00543354
    Todd, R., 1966. Smaller Foraminifera from Guam. U.S. Government Printing Office. 40
    Vachard, D., 2016. Macroevolution and Biostratigraphy of Paleozoic Foraminifers. Stratigraphy & Timescales, 1: 257–323. https://doi.org/10.1016/bs.sats.2016.10.005
    Vachard, D., Pille, L., Gaillot, J., 2010. Palaeozoic Foraminifera: Systematics, Palaeoecology and Responses to Global Changes. Revue de Micro-paléontologie, 53(4): 209–254. https://doi.org/10.1016/j.revmic.2010.0.001
    von Möller, V., 1877. Über Fusulinen und ähnliche Foraminiferen-Formen des russischen Kohlenkalkes. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. 139–146
    Walter, L. M., Morse, J. W., 1984. Reactive Surface Area of Skeletal Carbonates during Dissolution: Effect of Grain Size. SEPM Journal of Sedimentary Research, 54: 1081–1090
    Wendler, J., Willems, H., 2002. Distribution Pattern of Calcareous Dinoflagellate Cysts across the Cretaceous-Tertiary Boundary (Fish Clay, Stevns Klint, Denmark): Implications for Our Understanding of Species-Selective Extinction. In: Koeberl, C., MacLeod, K. G., ed., Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America. 356. https://doi.org/10.1130/0-8137-2356-6.265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views(336) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return