Citation: | Shuai Yuan, He Li, Lipeng Zhang, Congying Li, Haiyang Liu, Ying-Yu Xue, Weidong Sun. Geochemical and Zircon Hf-O Isotopic Constraints on the Origin of Wulian A-Type Granite in Shandong Peninsula, Eastern China. Journal of Earth Science, 2022, 33(3): 609-622. doi: 10.1007/s12583-021-1592-y |
Early Cretaceous A-type granitic plutons are widely distributed in Shandong Peninsula, which are of great significance to understanding the regional tectonic evolution. Here we report geochemical characteristics, geochronological results, and zircon Hf-O isotope compositions of Wulian granites to reveal its origin and geological significance. Wulian granites share most characteristics of the A2-type granite. Zircon U-Pb LA-ICPMS analysis for Wulian A-type granites yields average age of 116.6 ± 2.1 Ma. Zircon O isotope values range from 4.20‰ to 5.57‰, and these values are marginally identical to or slightly lower than those of mantle zircon (5.3‰ ± 0.3‰). Zircon
Ballard, J. R., Palin, M. J., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(IV)/Ce(III) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347–364. https://doi.org/10.1007/s00410-002-0402-5 |
Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7 |
Bindeman, I. N., Eiler, J. M., Yogodzinski, G. M., et al., 2005. Oxygen Isotope Evidence for Slab Melting in Modern and Ancient Subduction Zones. Earth and Planetary Science Letters, 235(3/4): 480–496. https://doi.org/10.1016/j.epsl.2005.04.014 |
Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1–29. https://doi.org/10.1016/j.lithos.2006.12.007 |
Churikova, T., Wörner, G., Mironov, N., et al., 2007. Volatile (S, Cl and F) and Fluid Mobile Trace Element Compositions in Melt Inclusions: Implications for Variable Fluid Sources across the Kamchatka Arc. Contributions to Mineralogy and Petrology, 154(2): 217–239. https://doi.org/10.1007/s00410-007-0190-z |
Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/bf00374895 |
Deng, J. H., Yang, X. Y., Li, S., et al., 2016. Partial Melting of Subducted Paleo-Pacific Plate during the Early Cretaceous: Constraint from Adakitic Rocks in the Shaxi Porphyry Cu-Au Deposit, Lower Yangtze River Belt. Lithos, 262: 651–667. https://doi.org/10.1016/j.lithos.2016. 07.039 doi: 10.1016/j.lithos.2016.07.039 |
Doherty, A. L., Webster, J. D., Goldoff, B. A., et al., 2014. Partitioning Behavior of Chlorine and Fluorine in Felsic Melt-Fluid(s)-Apatite Systems at 50 MPa and 850–950 ℃. Chemical Geology, 384: 94–111. https://doi.org/10.1016/j.chemgeo.2014.06.023 |
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 |
Enrique, P., Esteve, S., 2019. A Chemical Approximation to the Modal QAPF and Normative Q'(F')-ANOR Classification of the Igneous Rocks Based on Their SiO2-CaO-K2O Content. Geogaceta, 66: 91–94 |
Frost, C. D., Frost, B. R., Chamberlain, K. R., et al., 1999. Petrogenesis of the 1.43 Ga Sherman Batholith, SE Wyoming, USA: A Reduced, Rapakivi-Type Anorogenic Granite. Journal of Petrology, 40(12): 1771–1802. https://doi.org/10.1093/petroj/40.12.1771 |
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033 |
Frost, C. D., Frost, B. R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39–53. https://doi.org/10.1093/petrology/egq070 |
Gao, Y. Y., Li, X. H., Griffin, W. L., et al., 2014. Screening Criteria for Reliable U-Pb Geochronology and Oxygen Isotope Analysis in Uranium-Rich Zircons: A Case Study from the Suzhou A-Type Granites, SE China. Lithos, 192–195: 180–191. https://doi.org/10.1016/j.lithos.2014.02.002 |
Gao, Y. J., Niu, Y. L., Duan, M., et al., 2019. The Petrogenesis and Tectonic Significance of the Early Cretaceous Intraplate Granites in Eastern China: The Laoshan Granite as an Example. Lithos, 328/329: 200–211. https://doi.org/10.1016/j.lithos.2019.01.031 |
Goss, S. C., Wilde, S. A., Wu, F. Y., et al., 2010. The Age, Isotopic Signature and Significance of the Youngest Mesozoic Granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 120(3/4): 309–326. https://doi.org/10.1016/j.lithos.2010.08.019 |
Gu, H. O., Xiao, Y. L., Santosh, M., et al., 2013. Spatial and Temporal Distribution of Mesozoic Adakitic Rocks along the Tan-Lu Fault, Eastern China: Constraints on the Initiation of Lithospheric Thinning. Lithos, 177: 352–365. https://doi.org/10.1016/j.lithos.2013.07.011 |
Gu, H. L., Yang, X. Y., Deng, J. H., et al., 2017. Geochemical and Zircon U-Pb Geochronological Study of the Yangshan A-Type Granite: Insights into the Geological Evolution in South Anhui, Eastern Jiangnan Orogen. Lithos, 284/285: 156–170. https://doi.org/10.1016/j.lithos.2017.04.007 |
Harlov, D. E., 2015. Apatite: A Fingerprint for Metasomatic Processes. Elements, 11(3): 171–176. https://doi.org/10.2113/gselements.11.3.171 |
Ickert, R. B., Hiess, J., Williams, I. S., et al., 2008. Determining High Precision, in situ, Oxygen Isotope Ratios with a SHRIMP II: Analyses of MPI-DING Silicate-Glass Reference Materials and Zircon from Contrasting Granites. Chemical Geology, 257(1/2): 114–128. https://doi.org/10.1016/j.chemgeo.2008.08.024 |
Jarrard, R. D., 2003. Subduction Fluxes of Water, Carbon Dioxide, Chlorine, and Potassium. Geochemistry, Geophysics, Geosystems, 4(5): 8905. https://doi.org/10.1029/2002gc000392 |
Jiang, H., Jiang, S. Y., Li, W. Q., et al., 2018. Highly Fractionated Jurassic I-Type Granites and Related Tungsten Mineralization in the Shirenzhang Deposit, Northern Guangdong, South China: Evidence from Cassiterite and Zircon U-Pb Ages, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Lithos, 312/313: 186–203. https://doi.org/10.1016/j.lithos.2018.04.030 |
Jiang, X. Y., Li, H., Ding, X., et al., 2018a. Formation of A-Type Granites in the Lower Yangtze River Belt: A Perspective from Apatite Geochemistry. Lithos, 304–307: 125–134. https://doi.org/10.1016/j.lithos.2018.02.005 |
Jiang, X. Y., Ling, M. X., Wu, K., et al., 2018b. Insights into the Origin of Coexisting A1- and A2-Type Granites: Implications from Zircon Hf-O Isotopes of the Huayuangong Intrusion in the Lower Yangtze River Belt, Eastern China. Lithos, 318/319: 230–243. https://doi.org/10.1016/j.lithos.2018.08.008 |
King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371–391. https://doi.org/10.1093/petroj/38.3.371 |
Li, C. Y., Zhang, H., Wang, F. Y., et al., 2012. The Formation of the Dabaoshan Porphyry Molybdenum Deposit Induced by Slab Rollback. Lithos, 150: 101–110. https://doi.org/10.1016/j.lithos.2012.04.001 |
Li, H., Ling, M. X., Li, C. Y., et al., 2012. A-Type Granite Belts of Two Chemical Subgroups in Central Eastern China: Indication of Ridge Subduction. Lithos, 150: 26–36. https://doi.org/10.1016/j.lithos.2011.09.021 |
Li, H., Ling, M. X., Ding, X., et al., 2014. The Geochemical Characteristics of Haiyang A-Type Granite Complex in Shandong, Eastern China. Lithos, 200/201: 142–156. https://doi.org/10.1016/j.lithos.2014.04.014 |
Li, S. G., Xiao, Y. L., Liou, D. L., et al., 1993. Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites: Timing and Processes. Chemical Geology, 109(1/2/3/4): 89–111. https://doi.org/10.1016/0009-2541(93)90063-o |
Li, W. K., Cheng, Y. Q., Yang, Z. M., 2019. Geo-fO2: Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542–2555. https://doi.org/10.1029/2019gc008273 |
Li, X. H., Li, W. X., Wang, X. C., et al., 2009. Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China: In situ Zircon Hf-O Isotopic Constraints. Science in China Series D: Earth Sciences, 52(9): 1262–1278. https://doi.org/10.1007/s11430-009-0117-9 |
Liang, J. L., Ding, X., Sun, X. M., et al., 2009. Nb/Ta Fractionation Observed in Eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology, 268(1/2): 27–40. https://doi.org/10.1016/j.chemgeo.2009.07.006 |
Ling, M. X., Wang, F. Y., Ding, X., et al., 2009. Cretaceous Ridge Subduction along the Lower Yangtze River Belt, Eastern China. Economic Geology, 104(2): 303–321. https://doi.org/10.2113/gsecongeo.104.2.303 |
Ling, M. X., Wang, F. Y., Ding, X., et al., 2011. Different Origins of Adakites from the Dabie Mountains and the Lower Yangtze River Belt, Eastern China: Geochemical Constraints. International Geology Review, 53(5/6): 727–740. https://doi.org/10.1080/00206814.2010.482349 |
Ling, M. X., Li, Y., Ding, X., et al., 2013. Destruction of the North China Craton Induced by Ridge Subductions. The Journal of Geology, 121(2): 197–213. https://doi.org/10.1086/669248 |
Liu, S., Hu, R. Z., Gao, S., et al., 2008. U-Pb Zircon Age, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt, Eastern China. Lithos, 106(3/4): 365–379. https://doi.org/10.1016/j.lithos.2008.09.004 |
Liu, S., Feng, C. X., Hu, R. Z., et al., 2013. Zircon U-Pb Age, Geochemical, and Sr-Nd-Pb Isotopic Constraints on the Origin of Alkaline Intrusions in Eastern Shandong Province, China. Mineralogy and Petrology, 107(4): 591–608. https://doi.org/10.1007/s00710-013-0285-3 |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082 |
Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4 |
Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America, 11(7): 68 |
Mushkin, A., Navon, O., Halicz, L., et al., 2003. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815–832. https://doi.org/10.1093/petrology/44.5.815 |
Pagé, L., Hattori, K., de Hoog, J. C. M., et al., 2016. Halogen (F, Cl, Br, I) Behaviour in Subducting Slabs: A Study of Lawsonite Blueschists in Western Turkey. Earth and Planetary Science Letters, 442: 133–142. https://doi.org/10.1016/j.epsl.2016.02.054 |
Seton, M., Müller, R. D., Zahirovic, S., et al., 2012. Global Continental and Ocean Basin Reconstructions since 200 Ma. Earth-Science Reviews, 113(3/4): 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002 |
Seton, M., Flament, N., Whittaker, J., et al., 2015. Ridge Subduction Sparked Reorganization of the Pacific Plate-Mantle System 60–50 Million Years Ago. Geophysical Research Letters, 42(6): 1732–1740. https://doi.org/10.1002/2015gl063057 |
Shellnutt, J. G., Wang, C. Y., Zhou, M. F., et al., 2009. Zircon Lu-Hf Isotopic Compositions of Metaluminous and Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. Journal of Asian Earth Sciences, 35(1): 45–55. https://doi.org/10.1016/j.jseaes.2008.12.003 |
Smith, D. C., 1998. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Mineralogical Magazine, 62(4): 574–575. https://doi.org/10.1180/minmag.1998.62.4.01 |
Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311–324. https://doi.org/10.1016/s0012-821x(04)00012-3 |
Sorensen, S. S., Grossman, J. N., Perfit, M. R., 1997. Phengite-Hosted LILE Enrichment in Eclogite and Related Rocks: Implications for Fluid-Mediated Mass Transfer in Subduction Zones and Arc Magma Genesis. Journal of Petrology, 38(1): 3–34. https://doi.org/10.1093/petroj/38.1.3 |
Sun, X. M., Tang, Q., Sun, W. D., et al., 2007. Monazite, Iron Oxide and Barite Exsolutions in Apatite Aggregates from CCSD Drillhole Eclogites and Their Geological Implications. Geochimica et Cosmochimica Acta, 71(11): 2896–2905. https://doi.org/10.1016/j.gca.2007.03.030 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4): 533–542. https://doi.org/10.1016/j.epsl.2007.08.021 |
Sun, W. D., Williams, I. S., Li, S. G., 2002. Carboniferous and Triassic Eclogites in the Western Dabie Mountains, East-Central China: Evidence for Protracted Convergence of the North and South China Blocks. Journal of Metamorphic Geology, 20(9): 873–886. https://doi.org/10.1046/j.1525-1314.2002.00418.x |
Sun, W. D., Liu, L. J., Hu, Y. B., et al., 2018. Post-Ridge-Subduction Acceleration of the Indian Plate Induced by Slab Rollback. Solid Earth Sciences, 3(1): 1–7. https://doi.org/10.1016/j.sesci.2017.12.003 |
Sun, W. D., Zhang, L. P., Liao, R. Q., et al., 2020. Plate Convergence in the Indo-Pacific Region. Journal of Oceanology and Limnology, 38(4): 1008–1017. https://doi.org/10.1007/s00343-020-0146-y |
Sun, Y., Liu, J. M., Zeng, Q. D., et al., 2021. Permian-Triassic Highly Fractionated I-Type Granites in the Baituyingzi Mo-Cu Area, Southeastern Inner Mongolia, NE China: Petrogenesis and Tectonic Implications. Geological Journal, 56(6): 3118–3136. https://doi.org/10.1002/gj.4098 |
Tappe, S., Pearson, D. G., Kjarsgaard, B. A., et al., 2013. Mantle Transition Zone Input to Kimberlite Magmatism near a Subduction Zone: Origin of Anomalous Nd-Hf Isotope Systematics at Lac de Gras, Canada. Earth and Planetary Science Letters, 371/372: 235–251. https://doi.org/10.1016/j.epsl.2013.03.039 |
Trotter, J. A., Williams, I. S., Barnes, C. R., et al., 2008. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 321(5888): 550–554. https://doi.org/10.1126/science.1155814 |
Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151–179. https://doi.org/10.1016/0024-4937(92)90029-x |
Valley, J. W., Kinny, P. D., Schulze, D. J., et al., 1998. Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133(1/2): 1–11. https://doi.org/10.1007/s004100050432 |
Wang, D. Z., Zhao, G. T., Qiu, J. S., 1995. The Tectonic Constraint on the Late Mesozoic A-Type Granitoids in Eastern China. Geological Journal of China Universities, 1(2): 13–21 (in Chinese with English Abstract) |
Wang, Y., Yang, Y. Z., Siebel, W., et al., 2020. Geochemistry and Tectonic Significance of Late Paleoproterozoic A-Type Granites along the Southern Margin of the North China Craton. Scientific Reports, 10: 86. https://doi.org/10.1038/s41598-019-56820-1 |
Webster, J. D., Tappen, C. M., Mandeville, C. W., 2009. Partitioning Behavior of Chlorine and Fluorine in the System Apatite-Melt-Fluid. II: Felsic Silicate Systems at 200 MPa. Geochimica et Cosmochimica Acta, 73(3): 559–581. https://doi.org/10.1016/j.gca.2008.10.034 |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202 |
Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143–173. https://doi.org/10.1016/s0009-2541(02)00018-9 |
Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochron-ology. Chemical Geology, 234(1/2): 105–126. https://doi.org/10.1016/j.chemgeo.2006.05.003 |
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201–1219. https://doi.org/10.1007/s11430-016-5139-1 |
Wu, K., Ling, M. X., Sun, W. D., et al., 2017. Major Transition of Continental Basalts in the Early Cretaceous: Implications for the Destruction of the North China Craton. Chemical Geology, 470: 93–106. https://doi.org/10.1016/j.chemgeo.2017.08.025 |
Yang, J. H., Chung, S. L., Wilde, S. A., et al., 2005. Petrogenesis of Post-Orogenic Syenites in the Sulu Orogenic Belt, East China: Geochronological, Geochemical and Nd-Sr Isotopic Evidence. Chemical Geology, 214(1/2): 99–125.https://doi.org/10.1016/j.chemgeo.2004. 08.053 doi: 10.1016/j.chemgeo.2004.08.053 |
Yang, Y. Z., Chen, F. K., Siebel, W., et al., 2014. Age and Composition of Cu-Au Related Rocks from the Lower Yangtze River Belt: Constraints on Paleo-Pacific Slab Roll-back beneath Eastern China. Lithos, 202/203: 331–346. https://doi.org/10.1016/j.lithos.2014.06.007 |
Zafar, T., Rehman, H. U., Mahar, M. A., et al., 2020. A Critical Review on Petrogenetic, Metallogenic and Geodynamic Implications of Granitic Rocks Exposed in North and East China: New Insights from Apatite Geochemistry. Journal of Geodynamics, 136: 101723. https://doi.org/10.1016/j.jog.2020.101723 |
Zhang, C., Holtz, F., Ma, C. Q., et al., 2012. Tracing the Evolution and Distribution of F and Cl in Plutonic Systems from Volatile-Bearing Minerals: A Case Study from the Liujiawa Pluton (Dabie Orogen, China). Contributions to Mineralogy and Petrology, 164(5): 859–879. https://doi.org/10.1007/s00410-012-0778-9 |
Zhang, J., Zhao, Z. F., Zheng, Y. F., et al., 2010. Postcollisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3/4): 512–536. https://doi.org/10.1016/j.lithos.2010.08.005 |
Zhang, L. P., Hu, Y. B., Liang, J. L., et al., 2017a. Adakitic Rocks Associated with the Shilu Copper-Molybdenum Deposit in the Yangchun Basin, South China, and Their Tectonic Implications. Acta Geochimica, 36(2): 132–150. https://doi.org/10.1007/s11631-017-0146-6 |
Zhang, L. P., Zhang, R. Q., Hu, Y. B., et al., 2017b. The Formation of the Late Cretaceous Xishan Sn-W Deposit, South China: Geochronological and Geochemical Perspectives. Lithos, 290/291: 253–268. https://doi.org/10.1016/j.lithos.2017.08.013 |
Zhao, Z. F., Zheng, Y. F., 2003. Calculation of Oxygen Isotope Fractionation in Magmatic Rocks. Chemical Geology, 193(1/2): 59–80. https://doi.org/10.1016/s0009-2541(02)00226-7 |
Zheng, Y. F., Wu, Y. B., Zhao, Z. F., et al., 2005. Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 240(2): 378–400. https://doi.org/10.1016/j.epsl.2005.09.025 |
Zheng, Y. F., Zhao, Z. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231(1/2): 135–158. https://doi.org/10.1016/j.chemgeo.2006.01.005 |
Zhu, Y. S., Yang, J. H., Sun, J. F., et al., 2017. Zircon Hf-O Isotope Evidence for Recycled Oceanic and Continental Crust in the Sources of Alkaline Rocks. Geology, 45(5): 407–410. https://doi.org/10.1130/g38872.1 |
Zong, Z. J., Du, Y. S., Li, S. T., et al., 2021. Petrogenesis of the Early Permian A-Type Granites in the Halajun Region, Southwest Tianshan, Western Xinjiang, NW China: Implications for Geodynamics of Tarim Large Igneous Province. International Geology Review, 63(9): 1110–1131. https://doi.org/10.1080/00206814.2020.1749898 |