Citation: | Chao Zhang, Ying-Chun Cui, Chen-Guang Liu, Fang-Hua Cui, Lu-Yuan Wang, Wei-Qiang Zhang. Early Triassic Legoupil Formation in Schmidt Peninsula, Antarctic Peninsula: Provenance and Depositional Settings. Journal of Earth Science, 2024, 35(2): 317-331. doi: 10.1007/s12583-021-1601-1 |
Geochemical compositions can be used to determine the tectonic setting of sedimentary basins, while where the link of source to sink is no longer preserved, detrital zircon age patterns can aid in resolving the original basin setting. The metasedimentary Legoupil Formation, located at Cape Legoupil and the Schmidt Peninsula, could give a hint for the tectonic evolution of Antarctic Peninsula. In this contribution, we constrain the sedimentary provenance of the Legoupil Formation through geochemistry and detrital zircon U-Pb geochronology. The petrography and geochemical features indicate that the provenance of the Legoupil Formation could be felsic rocks. Detrital zircon grains record a steady supply of Permian and Ordovician material into the Legoupil Formation. The youngest concordant zircon ages of 262 Ma suggest that the depositional time of Legoupil Formation is no older than Late Permian. The detrital zircon age spectrum of Legoupil Formation suggests that the Legoupil Formation sediments should be derived from regional sources endemic to western Gondwana prior to its breakup. Together with the previous studies, geochemistry and detrital zircons reflect an active continental margin tectonic setting and the detrital zircon spectra of Legoupil Formation are similar to the ones deposited in forearc tectonic setting.
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x |
Barbeau, D. L., Davis, J. T., Murray, K. E., et al., 2010. Detrital-Zircon Geochronology of the Metasedimentary Rocks of North-Western Graham Land. Antarctic Science, 22(1): 65–78. https://doi.org/10.1017/s095410200999054x |
Bastias, J., Calderón, M., Israel, L., et al., 2020. The Byers Basin: Jurassic–Cretaceous Tectonic and Depositional Evolution of the Forearc Deposits of the South Shetland Islands and Its Implications for the Northern Antarctic Peninsula. International Geology Review, 62(11): 1467–1484. https://doi.org/10.1080/00206814.2019.1655669 |
Bhatia, M. R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 45(1/2): 97–113. https://doi.org/10.1016/0037-0738(85)90025-9 |
Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181–193. https://doi.org/10.1007/bf00375292 |
Birkenmajer, K., 1992. Trinity Peninsula Group (Permo–Triassic?) at Hope Bay, Antarctic Peninsula. Polish Polar Research, 13(3–4): 215–240 |
Birkenmajer, K., Doktor, M., Swierczewska, A., 1997. A Turbidite Sedimentary Log of the Trinity Peninsula Group (Upper Permian–Triassic) at Paradise Harbour, Danco Coast (Antarctic Peninsula): Sedimentology and Petrology. Studia Geologica Polonica, 110: 61–90 |
Blewett, S. C. J., Phillips, D., Matchan, E. L., 2019. Provenance of Cape Supergroup Sediments and Timing of Cape Fold Belt Orogenesis: Constraints from High-Precision 40Ar/39Ar Dating of Muscovite. Gondwana Research, 70: 201–221. https://doi.org/10.1016/j.gr.2019.0 1.009 doi: 10.1016/j.gr.2019.01.009 |
Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, Elsevier, Amsterdam. |
Bradshaw, J. D., Vaughan, A. P. M., Millar, I. L., et al., 2012. Permo–Carboniferous Conglomerates in the Trinity Peninsula Group at View Point, Antarctic Peninsula: Sedimentology, Geochronology and Isotope Evidence for Provenance and Tectonic Setting in Gondwana. Geological Magazine, 149(4): 626–644. https://doi.org/10.1017/s001675681100080x |
Castillo, P., Fanning, C. M., Hervé, F., et al., 2016. Characterisation and Tracing of Permian Magmatism in the South-Western Segment of the Gondwanan Margin; U-Pb Age, Lu-Hf and O Isotopic Compositions of Detrital Zircons from Metasedimentary Complexes of Northern Antarctic Peninsula and Western Patagonia. Gondwana Research, 36: 1–13. https://doi.org/10.1016/j.gr.2015.07.014 |
Castillo, P., Fanning, C. M., Pankhurst, R. J., et al., 2017. Zircon O- and Hf-Isotope Constraints on the Genesis and Tectonic Significance of Permian Magmatism in Patagonia. Journal of the Geological Society, 174(5): 803–816. https://doi.org/10.1144/jgs2016-152 |
Castillo, P., Fanning, C. M., Riley, T. R., 2020. Zircon O and Hf Isotopic Constraints on the Genesis of Permian–Triassic Magmatic and Metamorphic Rocks in the Antarctic Peninsula and Correlations with Patagonia. Journal of South American Earth Sciences, 104: 102848. https://doi.org/10.1016/j.jsames.2020.102848 |
Castillo, P., Lacassie, J. P., Augustsson, C., et al., 2015. Petrography and Geochemistry of the Carboniferous–Triassic Trinity Peninsula Group, West Antarctica: Implications for Provenance and Tectonic Setting. Geological Magazine, 152(4): 575–588. https://doi.org/10.1017/s0016756814000454 |
Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10): 875–878. https://doi.org/10.1130/g32945.1 |
Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1/2/3/4): 1–37. https://doi.org/10.1016/0009-2541(93)90140-e |
Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9 |
Craddock, J. P., Fitzgerald, P., Konstantinou, A., et al., 2017. Detrital Zircon Provenance of Upper Cambrian–Permian Strata and Tectonic Evolution of the Ellsworth Mountains, West Antarctica. Gondwana Research, 45: 191–207. https://doi.org/10.1016/j.gr.2016.11.011 |
Dickinson, W. R., Gehrels, G. E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test Against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1/2): 115–125. https://doi.org/10.1016/j.epsl.2009.09.013 |
Dott, R. H. J., 1963. Dynamics of Subaqueous Gravity Depositional Processes. AAPG Bulletin, 47(1): 104–128. https://doi.org/10.1306/bc743973-16be-11d7-8645000102c1865d |
Elliot, D. H., Fanning, C. M., Hulett, S. R. W., 2015. Age Provinces in the Antarctic Craton: Evidence from Detrital Zircons in Permian Strata from the Beardmore Glacier Region, Antarctica. Gondwana Research, 28(1): 152–164. https://doi.org/10.1016/j.gr.2014.03.013 |
Fanning, C. M., Hervé, F., Pankhurst, R. J., et al., 2011. Lu-Hf Isotope Evidence for the Provenance of Permian Detritus in Accretionary Complexes of Western Patagonia and the Northern Antarctic Peninsula Region. Journal of South American Earth Sciences, 32(4): 485–496. https://doi.org/10.1016/j.jsames.2011.03.007 |
Flowerdew, M. J., Millar, I. L., Curtis, M. L., et al., 2007. Combined U-Pb Geochronology and Hf Isotope Geochemistry of Detrital Zircons from Early Paleozoic Sedimentary Rocks, Ellsworth-Whitmore Mountains Block, Antarctica. Geological Society of America Bulletin, 119(3/4): 275–288. https://doi.org/10.1130/b25891.1 |
Floyd, P. A., Leveridge, B. E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4): 531–542. https://doi.org/10.1144/gsjgs.14 4.4.0531 doi: 10.1144/gsjgs.144.4.0531 |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of the People's Republic of China, 2010. Methods for Chemical Analysis of Silicate Rocks―Part 28: Determination of 16 Major and Minor Elements Content (GB/T 14506.28-2010), Standards Press of China, Beijing (in Chinese) |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of the People's Republic of China, 2010. Methods for Chemical Analysis of Silicate Rocks―Part 30: Determination of 44 Elements (GB/T 14506.30-2010). Standards Press of China, Beijing (in Chinese) |
Goodge, J. W., Fanning, C. M., Brecke, D. M., et al., 2010. Continuation of the Laurentian Grenville Province across the Ross Sea Margin of East Antarctica. The Journal of Geology, 118(6): 601–619. https://doi.org/10.1086/656385 |
Halpern, M., 1965. The Geology of the General Bernardo O'Higgins Area, Northwest Antarctic Peninsula1. Hadley, B., ed., Geology and Paleontology of the Antarctic. American Geophysical Union, Washington, D. C. |
Harker, A., 1950. Metamorphism, Methuen and Co., London |
Harrison, C. G. A., Barron, E. J., Hay, W. W., 1979. Mesozoic Evolution of the Antarctic Peninsula and the Southern Andes. Geology, 7(8): 374. https://doi.org/10.1130/0091-7613(1979)7374:meotap>2.0.co;2 doi: 10.1130/0091-7613(1979)7374:meotap>2.0.co;2 |
Hawkesworth, C., Dhuime, B., Pietranik, A., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167: 229–248 doi: 10.1144/0016-76492009-072 |
Hayashi, K. I., Fujisawa, H., Holland, H. D., et al., 1997. Geochemistry of Approximately 1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115 doi: 10.1016/S0016-7037(97)00214-7 |
Herron, M. M., 1988. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. SEPM Journal of Sedimentary Research, 58(5): 820–829. https://doi.org/10.1306/212f8e77-2b24-11d7-8648000102c1865d |
Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481–492 (in Chinese with English Abstract) |
Hyden, G., Tanner, P. W. G., 1981. Late Palaeozoic–Early Mesozoic Fore-Arc Basin Sedimentary Rocks at the Pacific Margin in Western Antarctica. Geologische Rundschau, 70(2): 529–541. https://doi.org/10.1007/bf01822133 |
Loske, W. P., Miller, H., Kramm, U., 1988. U-Pb Systematics of Detrital Zircons from Low-Grade Metamorphic Sandstones of the Trinity Peninsula Group (Antarctica). Journal of South American Earth Sciences, 1(3): 301–307. https://doi.org/10.1016/0895-9811(88)90008-9 |
McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 203–236. https://doi.org/10.1029/2000gc000109 |
McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Special Paper of the Geological Society of America, 284: 21–40. https://doi.org/10.1130/spe284-p21 |
Millar, I. L., Pankhurst, R. J., Fanning, C. M., 2002. Basement Chronology of the Antarctic Peninsula: Recurrent Magmatism and Anatexis in the Palaeozoic Gondwana Margin. Journal of the Geological Society, 159(2): 145–157. https://doi.org/10.1144/0016-764901-020 |
Miller, H., 1983. The Position of Antarctica within Gondwana in the Light of Palaeozoic Orogenic Development. In: Oliver, R. L., James, P. R., Jago, J. B., eds., Antarctic Earth Science. Australian Academy of Science, Canberra |
Nelson, D. A., Cottle, J. M., 2017. Long-Term Geochemical and Geodynamic Segmentation of the Paleo-Pacific Margin of Gondwana: Insight from the Antarctic and Adjacent Sectors. Tectonics, 36(12): 3229–3247. https://doi.org/10.1002/2017tc004611 |
Pankhurst, R. J., Rapela, C. W., Fanning, C. M., et al., 2006. Gondwanide Continental Collision and the Origin of Patagonia. Earth-Science Reviews, 76(3/4): 235–257. https://doi.org/10.1016/j.earscirev.2006.0 2.001 doi: 10.1016/j.earscirev.2006.02.001 |
Pankhurst, R. J., Rapela, C. W., López de Luchi, M. G., et al., 2014. The Gondwana Connections of Northern Patagonia. Journal of the Geological Society, 171(3): 313–328. https://doi.org/10.1144/jgs2013-081 |
Pankhurst, R. J., Rapela, C. W., Loske, W. P., et al., 2003. Chronological Study of the Pre-Permian Basement Rocks of Southern Patagonia. Journal of South American Earth Sciences, 16(1): 27–44. https://doi.org/10.1016/S0895-9811(03)00017-8 |
Pankhurst, R. J., Rapela, C. W., Saavedra, J., et al., 1998. The Famatinian Magmatic Arc in the Central Sierras Pampeanas: An Early to Mid-Ordovician Continental Arc on the Gondwana Margin. Geological Society, London, Special Publications, 142(1): 343–367. https://doi.org/10.1144/gsl.sp.1998.142.01.17 |
Paulsen, T. S., Encarnación, J., Grunow, A. M., et al., 2015. Detrital Mineral Ages from the Ross Supergroup, Antarctica: Implications for the Queen Maud Terrane and Outboard Sediment Provenance on the Gondwana Margin. Gondwana Research, 27(1): 377–391. https://doi.org/10.1016/j.gr.2013.10.006 |
Pettijohn, F. J., Potter, P. E., Siever, R., 1972. Sand and Sandstone. Springer, Berlin |
Pupin, J. P., 1980. Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73(3): 207–220. https://doi.org/10.1007/bf00381441 |
Riley, T. R., Flowerdew, M. J., Whitehouse, M. J., 2012. U-Pb Ion-Microprobe Zircon Geochronology from the Basement Inliers of Eastern Graham Land, Antarctic Peninsula. Journal of the Geological Society, 169(4): 381–393. https://doi.org/10.1144/0016-76492011-142 |
Roser, B. P., Cooper, R. A., Nathan, S., et al., 1996. Reconnaissance Sandstone Geochemistry, Provenance, and Tectonic Setting of the Lower Paleozoic Terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics, 39(1): 1–16. https://doi.org/10.1080/00288306.1996.9514690 |
Roser, B. P., Korsch, R. J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5): 635–650. https://doi.org/10.1086/62 9071 doi: 10.1086/629071 |
Roser, B. P., Korsch, R. J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67(1/2): 119–139. https://doi.org/10.1016/0009-2541(88)90010-1 |
Shen, W. Z., Shu, L. S., Xiang, L., et al., 2009. Geochemical Characteristics of Early Paleozoic Sedimentary Rocks in the Jinggangshan Area, Jiangxi Province and the Constraining to the Sedimentary Environment. Acta Petrologica Sinica, 25(10): 2442–2458 (in Chinese with English Abstract) |
Smellie, J. L., 1991. Stratigraphy, Provenance and Tectonic Setting of (?)Late Palaeozoic–Triassic Sedimentary Sequences in Northern Graham Land and South Scotia Ridge, In: Thomson, M. R. A., Crame, J. A., Thomson, J. W., eds., Geological Evolution of Antarctica. Cambridge University Press, Cambridge |
Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford |
Thomson, M. R. A., 1975. First Marine Triassic Fauna from the Antarctic Peninsula. Nature, 257(5527): 577–578. https://doi.org/10.1038/257577a0 |
Tokarski, A., 1989. Structural Development of Legoupil Formation an Cape Legoupil, Antarctic Peninsula. Polish Polar Research, 10(4): 587–603 |
Vaughan, A. P. M., Storey, B. C., 2000. The Eastern Palmer Land Shear Zone: A New Terrane Accretion Model for the Mesozoic Development of the Antarctic Peninsula. Journal of the Geological Society, 157(6): 1243–1256. https://doi.org/10.1144/jgs.157.6.1243 |
Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001 |
Yang, Z. Y., Lang, X. H., Tang, J. X., et al., 2017. Geochemical Characteristics of the Jurassic Sandstones in the Xiongcun Copper-Gold Deposit, Tibet: Constraints on Tectonic Setting. Acta Geologica Sinica, 91(9): 1985–2003 (in Chinese with English Abstract) |