Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 2
Apr 2024
Turn off MathJax
Article Contents
Chao Zhang, Ying-Chun Cui, Chen-Guang Liu, Fang-Hua Cui, Lu-Yuan Wang, Wei-Qiang Zhang. Early Triassic Legoupil Formation in Schmidt Peninsula, Antarctic Peninsula: Provenance and Depositional Settings. Journal of Earth Science, 2024, 35(2): 317-331. doi: 10.1007/s12583-021-1601-1
Citation: Chao Zhang, Ying-Chun Cui, Chen-Guang Liu, Fang-Hua Cui, Lu-Yuan Wang, Wei-Qiang Zhang. Early Triassic Legoupil Formation in Schmidt Peninsula, Antarctic Peninsula: Provenance and Depositional Settings. Journal of Earth Science, 2024, 35(2): 317-331. doi: 10.1007/s12583-021-1601-1

Early Triassic Legoupil Formation in Schmidt Peninsula, Antarctic Peninsula: Provenance and Depositional Settings

doi: 10.1007/s12583-021-1601-1
More Information
  • Corresponding author: Ying-Chun Cui, cuiyingchun@pric.org.cn
  • Received Date: 03 Oct 2021
  • Accepted Date: 09 Dec 2021
  • Available Online: 11 Apr 2024
  • Issue Publish Date: 30 Apr 2024
  • Geochemical compositions can be used to determine the tectonic setting of sedimentary basins, while where the link of source to sink is no longer preserved, detrital zircon age patterns can aid in resolving the original basin setting. The metasedimentary Legoupil Formation, located at Cape Legoupil and the Schmidt Peninsula, could give a hint for the tectonic evolution of Antarctic Peninsula. In this contribution, we constrain the sedimentary provenance of the Legoupil Formation through geochemistry and detrital zircon U-Pb geochronology. The petrography and geochemical features indicate that the provenance of the Legoupil Formation could be felsic rocks. Detrital zircon grains record a steady supply of Permian and Ordovician material into the Legoupil Formation. The youngest concordant zircon ages of 262 Ma suggest that the depositional time of Legoupil Formation is no older than Late Permian. The detrital zircon age spectrum of Legoupil Formation suggests that the Legoupil Formation sediments should be derived from regional sources endemic to western Gondwana prior to its breakup. Together with the previous studies, geochemistry and detrital zircons reflect an active continental margin tectonic setting and the detrital zircon spectra of Legoupil Formation are similar to the ones deposited in forearc tectonic setting.

     

  • Electronic Supplementary Material: Supplementary material (Table S1) is available in the online version of this article at https://doi.org/10.1007/s12583-021-1601-1.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Barbeau, D. L., Davis, J. T., Murray, K. E., et al., 2010. Detrital-Zircon Geochronology of the Metasedimentary Rocks of North-Western Graham Land. Antarctic Science, 22(1): 65–78. https://doi.org/10.1017/s095410200999054x
    Bastias, J., Calderón, M., Israel, L., et al., 2020. The Byers Basin: Jurassic–Cretaceous Tectonic and Depositional Evolution of the Forearc Deposits of the South Shetland Islands and Its Implications for the Northern Antarctic Peninsula. International Geology Review, 62(11): 1467–1484. https://doi.org/10.1080/00206814.2019.1655669
    Bhatia, M. R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 45(1/2): 97–113. https://doi.org/10.1016/0037-0738(85)90025-9
    Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181–193. https://doi.org/10.1007/bf00375292
    Birkenmajer, K., 1992. Trinity Peninsula Group (Permo–Triassic?) at Hope Bay, Antarctic Peninsula. Polish Polar Research, 13(3–4): 215–240
    Birkenmajer, K., Doktor, M., Swierczewska, A., 1997. A Turbidite Sedimentary Log of the Trinity Peninsula Group (Upper Permian–Triassic) at Paradise Harbour, Danco Coast (Antarctic Peninsula): Sedimentology and Petrology. Studia Geologica Polonica, 110: 61–90
    Blewett, S. C. J., Phillips, D., Matchan, E. L., 2019. Provenance of Cape Supergroup Sediments and Timing of Cape Fold Belt Orogenesis: Constraints from High-Precision 40Ar/39Ar Dating of Muscovite. Gondwana Research, 70: 201–221. https://doi.org/10.1016/j.gr.2019.0 1.009 doi: 10.1016/j.gr.2019.01.009
    Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
    Bradshaw, J. D., Vaughan, A. P. M., Millar, I. L., et al., 2012. Permo–Carboniferous Conglomerates in the Trinity Peninsula Group at View Point, Antarctic Peninsula: Sedimentology, Geochronology and Isotope Evidence for Provenance and Tectonic Setting in Gondwana. Geological Magazine, 149(4): 626–644. https://doi.org/10.1017/s001675681100080x
    Castillo, P., Fanning, C. M., Hervé, F., et al., 2016. Characterisation and Tracing of Permian Magmatism in the South-Western Segment of the Gondwanan Margin; U-Pb Age, Lu-Hf and O Isotopic Compositions of Detrital Zircons from Metasedimentary Complexes of Northern Antarctic Peninsula and Western Patagonia. Gondwana Research, 36: 1–13. https://doi.org/10.1016/j.gr.2015.07.014
    Castillo, P., Fanning, C. M., Pankhurst, R. J., et al., 2017. Zircon O- and Hf-Isotope Constraints on the Genesis and Tectonic Significance of Permian Magmatism in Patagonia. Journal of the Geological Society, 174(5): 803–816. https://doi.org/10.1144/jgs2016-152
    Castillo, P., Fanning, C. M., Riley, T. R., 2020. Zircon O and Hf Isotopic Constraints on the Genesis of Permian–Triassic Magmatic and Metamorphic Rocks in the Antarctic Peninsula and Correlations with Patagonia. Journal of South American Earth Sciences, 104: 102848. https://doi.org/10.1016/j.jsames.2020.102848
    Castillo, P., Lacassie, J. P., Augustsson, C., et al., 2015. Petrography and Geochemistry of the Carboniferous–Triassic Trinity Peninsula Group, West Antarctica: Implications for Provenance and Tectonic Setting. Geological Magazine, 152(4): 575–588. https://doi.org/10.1017/s0016756814000454
    Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10): 875–878. https://doi.org/10.1130/g32945.1
    Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1/2/3/4): 1–37. https://doi.org/10.1016/0009-2541(93)90140-e
    Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9
    Craddock, J. P., Fitzgerald, P., Konstantinou, A., et al., 2017. Detrital Zircon Provenance of Upper Cambrian–Permian Strata and Tectonic Evolution of the Ellsworth Mountains, West Antarctica. Gondwana Research, 45: 191–207. https://doi.org/10.1016/j.gr.2016.11.011
    Dickinson, W. R., Gehrels, G. E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test Against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1/2): 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    Dott, R. H. J., 1963. Dynamics of Subaqueous Gravity Depositional Processes. AAPG Bulletin, 47(1): 104–128. https://doi.org/10.1306/bc743973-16be-11d7-8645000102c1865d
    Elliot, D. H., Fanning, C. M., Hulett, S. R. W., 2015. Age Provinces in the Antarctic Craton: Evidence from Detrital Zircons in Permian Strata from the Beardmore Glacier Region, Antarctica. Gondwana Research, 28(1): 152–164. https://doi.org/10.1016/j.gr.2014.03.013
    Fanning, C. M., Hervé, F., Pankhurst, R. J., et al., 2011. Lu-Hf Isotope Evidence for the Provenance of Permian Detritus in Accretionary Complexes of Western Patagonia and the Northern Antarctic Peninsula Region. Journal of South American Earth Sciences, 32(4): 485–496. https://doi.org/10.1016/j.jsames.2011.03.007
    Flowerdew, M. J., Millar, I. L., Curtis, M. L., et al., 2007. Combined U-Pb Geochronology and Hf Isotope Geochemistry of Detrital Zircons from Early Paleozoic Sedimentary Rocks, Ellsworth-Whitmore Mountains Block, Antarctica. Geological Society of America Bulletin, 119(3/4): 275–288. https://doi.org/10.1130/b25891.1
    Floyd, P. A., Leveridge, B. E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4): 531–542. https://doi.org/10.1144/gsjgs.14 4.4.0531 doi: 10.1144/gsjgs.144.4.0531
    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of the People's Republic of China, 2010. Methods for Chemical Analysis of Silicate Rocks―Part 28: Determination of 16 Major and Minor Elements Content (GB/T 14506.28-2010), Standards Press of China, Beijing (in Chinese)
    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of the People's Republic of China, 2010. Methods for Chemical Analysis of Silicate Rocks―Part 30: Determination of 44 Elements (GB/T 14506.30-2010). Standards Press of China, Beijing (in Chinese)
    Goodge, J. W., Fanning, C. M., Brecke, D. M., et al., 2010. Continuation of the Laurentian Grenville Province across the Ross Sea Margin of East Antarctica. The Journal of Geology, 118(6): 601–619. https://doi.org/10.1086/656385
    Halpern, M., 1965. The Geology of the General Bernardo O'Higgins Area, Northwest Antarctic Peninsula1. Hadley, B., ed., Geology and Paleontology of the Antarctic. American Geophysical Union, Washington, D. C. https://doi.org/10.1029/ar006p0177
    Harker, A., 1950. Metamorphism, Methuen and Co., London
    Harrison, C. G. A., Barron, E. J., Hay, W. W., 1979. Mesozoic Evolution of the Antarctic Peninsula and the Southern Andes. Geology, 7(8): 374. https://doi.org/10.1130/0091-7613(1979)7374:meotap>2.0.co;2 doi: 10.1130/0091-7613(1979)7374:meotap>2.0.co;2
    Hawkesworth, C., Dhuime, B., Pietranik, A., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167: 229–248 doi: 10.1144/0016-76492009-072
    Hayashi, K. I., Fujisawa, H., Holland, H. D., et al., 1997. Geochemistry of Approximately 1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115 doi: 10.1016/S0016-7037(97)00214-7
    Herron, M. M., 1988. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. SEPM Journal of Sedimentary Research, 58(5): 820–829. https://doi.org/10.1306/212f8e77-2b24-11d7-8648000102c1865d
    Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481–492 (in Chinese with English Abstract)
    Hyden, G., Tanner, P. W. G., 1981. Late Palaeozoic–Early Mesozoic Fore-Arc Basin Sedimentary Rocks at the Pacific Margin in Western Antarctica. Geologische Rundschau, 70(2): 529–541. https://doi.org/10.1007/bf01822133
    Loske, W. P., Miller, H., Kramm, U., 1988. U-Pb Systematics of Detrital Zircons from Low-Grade Metamorphic Sandstones of the Trinity Peninsula Group (Antarctica). Journal of South American Earth Sciences, 1(3): 301–307. https://doi.org/10.1016/0895-9811(88)90008-9
    McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 203–236. https://doi.org/10.1029/2000gc000109
    McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Special Paper of the Geological Society of America, 284: 21–40. https://doi.org/10.1130/spe284-p21
    Millar, I. L., Pankhurst, R. J., Fanning, C. M., 2002. Basement Chronology of the Antarctic Peninsula: Recurrent Magmatism and Anatexis in the Palaeozoic Gondwana Margin. Journal of the Geological Society, 159(2): 145–157. https://doi.org/10.1144/0016-764901-020
    Miller, H., 1983. The Position of Antarctica within Gondwana in the Light of Palaeozoic Orogenic Development. In: Oliver, R. L., James, P. R., Jago, J. B., eds., Antarctic Earth Science. Australian Academy of Science, Canberra
    Nelson, D. A., Cottle, J. M., 2017. Long-Term Geochemical and Geodynamic Segmentation of the Paleo-Pacific Margin of Gondwana: Insight from the Antarctic and Adjacent Sectors. Tectonics, 36(12): 3229–3247. https://doi.org/10.1002/2017tc004611
    Pankhurst, R. J., Rapela, C. W., Fanning, C. M., et al., 2006. Gondwanide Continental Collision and the Origin of Patagonia. Earth-Science Reviews, 76(3/4): 235–257. https://doi.org/10.1016/j.earscirev.2006.0 2.001 doi: 10.1016/j.earscirev.2006.02.001
    Pankhurst, R. J., Rapela, C. W., López de Luchi, M. G., et al., 2014. The Gondwana Connections of Northern Patagonia. Journal of the Geological Society, 171(3): 313–328. https://doi.org/10.1144/jgs2013-081
    Pankhurst, R. J., Rapela, C. W., Loske, W. P., et al., 2003. Chronological Study of the Pre-Permian Basement Rocks of Southern Patagonia. Journal of South American Earth Sciences, 16(1): 27–44. https://doi.org/10.1016/S0895-9811(03)00017-8
    Pankhurst, R. J., Rapela, C. W., Saavedra, J., et al., 1998. The Famatinian Magmatic Arc in the Central Sierras Pampeanas: An Early to Mid-Ordovician Continental Arc on the Gondwana Margin. Geological Society, London, Special Publications, 142(1): 343–367. https://doi.org/10.1144/gsl.sp.1998.142.01.17
    Paulsen, T. S., Encarnación, J., Grunow, A. M., et al., 2015. Detrital Mineral Ages from the Ross Supergroup, Antarctica: Implications for the Queen Maud Terrane and Outboard Sediment Provenance on the Gondwana Margin. Gondwana Research, 27(1): 377–391. https://doi.org/10.1016/j.gr.2013.10.006
    Pettijohn, F. J., Potter, P. E., Siever, R., 1972. Sand and Sandstone. Springer, Berlin
    Pupin, J. P., 1980. Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73(3): 207–220. https://doi.org/10.1007/bf00381441
    Riley, T. R., Flowerdew, M. J., Whitehouse, M. J., 2012. U-Pb Ion-Microprobe Zircon Geochronology from the Basement Inliers of Eastern Graham Land, Antarctic Peninsula. Journal of the Geological Society, 169(4): 381–393. https://doi.org/10.1144/0016-76492011-142
    Roser, B. P., Cooper, R. A., Nathan, S., et al., 1996. Reconnaissance Sandstone Geochemistry, Provenance, and Tectonic Setting of the Lower Paleozoic Terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics, 39(1): 1–16. https://doi.org/10.1080/00288306.1996.9514690
    Roser, B. P., Korsch, R. J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5): 635–650. https://doi.org/10.1086/62 9071 doi: 10.1086/629071
    Roser, B. P., Korsch, R. J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67(1/2): 119–139. https://doi.org/10.1016/0009-2541(88)90010-1
    Shen, W. Z., Shu, L. S., Xiang, L., et al., 2009. Geochemical Characteristics of Early Paleozoic Sedimentary Rocks in the Jinggangshan Area, Jiangxi Province and the Constraining to the Sedimentary Environment. Acta Petrologica Sinica, 25(10): 2442–2458 (in Chinese with English Abstract)
    Smellie, J. L., 1991. Stratigraphy, Provenance and Tectonic Setting of (?)Late Palaeozoic–Triassic Sedimentary Sequences in Northern Graham Land and South Scotia Ridge, In: Thomson, M. R. A., Crame, J. A., Thomson, J. W., eds., Geological Evolution of Antarctica. Cambridge University Press, Cambridge
    Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford
    Thomson, M. R. A., 1975. First Marine Triassic Fauna from the Antarctic Peninsula. Nature, 257(5527): 577–578. https://doi.org/10.1038/257577a0
    Tokarski, A., 1989. Structural Development of Legoupil Formation an Cape Legoupil, Antarctic Peninsula. Polish Polar Research, 10(4): 587–603
    Vaughan, A. P. M., Storey, B. C., 2000. The Eastern Palmer Land Shear Zone: A New Terrane Accretion Model for the Mesozoic Development of the Antarctic Peninsula. Journal of the Geological Society, 157(6): 1243–1256. https://doi.org/10.1144/jgs.157.6.1243
    Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    Yang, Z. Y., Lang, X. H., Tang, J. X., et al., 2017. Geochemical Characteristics of the Jurassic Sandstones in the Xiongcun Copper-Gold Deposit, Tibet: Constraints on Tectonic Setting. Acta Geologica Sinica, 91(9): 1985–2003 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views(260) PDF downloads(158) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return