Citation: | Jiyong Li, Yanqing Xia, Xilong Zhang, Haoyuan Jiang, Tianzhu Lei, Yongchao Wang, Yanhong Liu, Shanpin Liu, Xiaobao Zhang. Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China. Journal of Earth Science, 2024, 35(4): 1130-1148. doi: 10.1007/s12583-021-1603-z |
Abundant mafic-felsic intrusions distributed in the Altyn Orogen record orogenic histories related to Proto-Tethys and Paleo-Tethys evolution. Zircon U-Pb dating of the intrusive rocks in the eastern Altyn Orogen identifies at least three major tectono-magmatic episodes, yielding ages of ~426, ~376–373 and ~269–254 Ma. The first two emplacement episodes correspond to the post-collisional magmatism in the Altyn Orogen. The ~426 Ma granitoids possess adakitic characteristics coupled with enriched isotopes, suggesting that they originated from partial melting of thickened lower continental crust induced by upwelling asthenospheric mantle after slab break-off of the South Altyn Ocean Plate. Next, the ~376–373 Ma mafic-intermediate rocks and coeval granitoids represent a large thermal event that involved mantle melting with induced new juvenile lower continental crust melting in a post-collisional extensional setting. Finally, the ~254 Ma diabase dykes intruded into the ~269 Ma granitoids, which were related to the widespread Late Paleozoic magmatism resulting from Paleo-Tethys Ocean subduction. Post-collisional magmatism in the Altyn Orogen significantly enhances understanding of the tectono-magmatic evolution in the northern Tibetan Plateau. The penetrative influence of Paleo-Tethys Ocean subduction was more extensive than previously thought.
Bao, W. H., Long, X. P., Yuan, C., et al., 2017. Paleozoic Adakitic Rocks in the Northern Altyn Tagh, Northwest China: Evidence for Progressive Crustal Thickening beneath the Dunhuang Block. Lithos, 272/273: 1–15. https://doi.org/10.1016/j.lithos.2016.12.006 |
Cao, Y. T., Liu, L., Wang, C., et al., 2019a. Timing and Nature of the Partial Melting Processes during the Exhumation of the Garnet-Bearing Biotite Gneiss in the Southern Altyn Tagh HP/UHP Belt, Western China. Journal of Asian Earth Sciences, 170: 274–293. https://doi.org/10.1016/j.jseaes.2018.11.005 |
Cao, Y. T., Liu, L., Wang, C., et al., 2019b. Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China: Petrological and Geochronological Evidence. Journal of Earth Science, 30(3): 603–620. https://doi.org/10.1007/s12583-019-0896-7 |
Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257–268. https://doi.org/10.1007/s11434-006-0257-7 |
Castillo, P. R., 2012. Adakite Petrogenesis. Lithos, 134/135: 304–316. https://doi.org/10.1016/j.lithos.2011.09.013 |
Chen, B., Jahn, B. M., Suzuki, K., 2013. Petrological and Nd-Sr-Os Isotopic Constraints on the Origin of High-Mg Adakitic Rocks from the North China Craton: Tectonic Implications. Geology, 41(1): 91–94. https://doi.org/10.1130/G33472.1 |
Chen, S., Niu, Y. L., Li, J. Y., et al., 2016. Syn-Collisional Adakitic Granodiorites Formed by Fractional Crystallization: Insights from Their Enclosed Mafic Magmatic Enclaves (MMEs) in the Qumushan Pluton, North Qilian Orogen at the Northern Margin of the Tibetan Plateau. Lithos, 248/249/250/251: 455–468. https://doi.org/10.1016/j.lithos.2016.01.033 |
Chen, S., Wang, X. H., Niu, Y. L., et al., 2017. Simple and Cost-Effective Methods for Precise Analysis of Trace Element Abundances in Geological Materials with ICP-MS. Science Bulletin, 62(4): 277–289. https://doi.org/10.1016/j.scib.2017.01.004 [PubMed] doi: 10.1016/j.scib.2017.01.004[PubMed |
Cheng, F., Jolivet, M., Fu, S. T., et al., 2016. Large-Scale Displacement along the Altyn Tagh Fault (North Tibet) since Its Eocene Initiation: Insight from Detrital Zircon U-Pb Geochronology and Subsurface Data. Tectonophysics, 677/678: 261–279. https://doi.org/10.1016/j.tecto.2016.04.023 |
Cheng, F., Jolivet, M., Hallot, E., et al., 2017. Tectono-Magmatic Rejuvenation of the Qaidam Craton, Northern Tibet. Gondwana Research, 49: 248–263. https://doi.org/10.1016/j.gr.2017.06.004 |
Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021–1024. https://doi.org/10.1130/g19796.1 |
Darby, B. J., Ritts, B. D., Yue, Y. J., et al., 2005. Did the Altyn Tagh Fault Extend beyond the Tibetan Plateau? Earth and Planetary Science Letters, 240(2): 425–435. https://doi.org/10.1016/j.epsl.2005.09.011 |
Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85–102. https://doi.org/10.1016/0012-821x(94)00237-s |
Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662–665. https://doi.org/10.1038/347662a0 |
Dong, J. L., Song, S. G., Su, L., et al., 2020. Early Devonian Mafic Igneous Rocks in the East Kunlun Orogen, NW China: Implications for the Transition from the Proto- to Paleo-Tethys Oceans. Lithos, 376/377: 105771. https://doi.org/10.1016/j.lithos.2020.105771 |
Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40. https://doi.org/10.1016/j.gr.2015.06.009 |
Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002 |
Fu, C. L., Yan, Z., Aitchison, J. C., et al., 2020. Multiple Subduction Processes of the Proto-Tethyan Ocean: Implication from Cambrian Intrusions along the North Qilian Suture Zone. Gondwana Research, 87: 207–223. https://doi.org/10.1016/j.gr.2020.06.007 |
Fu, D., Huang, B., Johnson, T. E., et al., 2022. Boninitic Blueschists Record Subduction Initiation and Subsequent Accretion of an Arc–Forearc in the Northeast Proto-Tethys Ocean. Geology, 50(1): 10–15. https://doi.org/10.1130/g49457.1 |
Gai, Y. S., Liu, L., Wang, C., et al., 2017. Discovery of Coesite in Eclogite from Keqike Jianggalesayi: New Evidence for Ultrahigh-Pressure Metamorphism in South Altyn Tagh, Northwestern China. Science Bulletin, 62(15): 1048–1051. https://doi.org/10.1016/j.scib.2017.07.008 [PubMed] doi: 10.1016/j.scib.2017.07.008[PubMed |
Gao, J., Klemd, R., Long, L. L., et al., 2009. Adakitic Signature Formed by Fractional Crystallization: An Interpretation for the Neo-Proterozoic Meta-Plagiogranites of the NE Jiangxi Ophiolitic Mélange Belt, South China. Lithos, 110(1/2/3/4): 277–293. https://doi.org/10.1016/j.lithos.2009.01.009 |
Gao, X. F., Xiao, P. X., Guo, L., et al., 2011. Opening of an Early Paleozoic Limited Oceanic Basin in the Northern Altyn Area: Constraints from Plagiogranites in the Hongliugou-Lapeiquan Ophiolitic Mélange. Science China Earth Sciences, 54(12): 1871–1879. https://doi.org/10.1007/s11430-011-4332-9 |
Gehrels, G. E., Yin, A., Wang, X. F., 2003a. Detrital-Zircon Geochronology of the Northeastern Tibetan Plateau. Geological Society of America Bulletin, 115(7): 881–896. https://doi.org/10.1130/0016-7606(2003)115<0881:dgotnt>2.0.co;2 doi: 10.1130/0016-7606(2003)115<0881:dgotnt>2.0.co;2 |
Gehrels, G. E., Yin, A., Wang, X. F., 2003b. Magmatic History of the Northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 108(B9): 2423. https://doi.org/10.1029/2002jb001876 |
Guo, F., Nakamuru, E., Fan, W. M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. Journal of Petrology, 48(4): 661–692. https://doi.org/10.1093/petrology/egl077 |
Hsü, K. J., Yao, Y. Y., Li, J. L., et al., 1992. Geology of the Beishan Mountains and the Tectonic Evolution of Northwest China. Eclogae Geologicae Helvetiae, 85: 213–225 |
Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1/2): 1–13. https://doi.org/10.1016/j.chemgeo.2008.02.014 |
Janoušek, V., Konopásek, J., Ulrich, S., et al., 2010. Geochemical Character and Petrogenesis of Pan-African Amspoort Suite of the Boundary Igneous Complex in the Kaoko Belt (NW Namibia). Gondwana Research, 18(4): 688–707. https://doi.org/10.1016/j.gr.2010.02.014 |
Kang, L., Xiao, P. X., Gao, X. F., et al., 2015. Age, Petrogenesis and Tectonic Implications of Early Devonian Bimodal Volcanic Rocks in the South Altyn, NW China. Journal of Asian Earth Sciences, 111: 733–750. https://doi.org/10.1016/j.jseaes.2015.06.004 |
Li, J. H., Zhao, G. C., Johnston, S. T., et al., 2020. Contributions of Triassic Tectonism to Build the Northern Tibetan Plateau: Insights from Tectonic Evolution of the Jinhongshan Range, Central Altyn Tagh Fault System. Tectonics, 39(12): e2020TC006129. https://doi.org/10.1029/2020tc006438 |
Li, S. Z., Zhao, S. J., Liu, X., et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37–75. https://doi.org/10.1016/j.earscirev.2017.01.011 |
Li, W., Neubauer, F., Liu, Y. J., et al., 2013. Paleozoic Evolution of the Qimantagh Magmatic Arcs, Eastern Kunlun Mountains: Constraints from Zircon Dating of Granitoids and Modern River Sands. Journal of Asian Earth Sciences, 77: 183–202. https://doi.org/10.1016/j.jseaes.2013.08.030 |
Li, Y. S., Santosh, M., Zhang, J. X., et al., 2021. Tracking a Continental Deep Subduction and Exhumation from Granulitized Kyanite Eclogites in the South Altyn Tagh, Northern Qinghai-Tibet Plateau, China. Lithos, 382/383: 105954. https://doi.org/10.1016/j.lithos.2020.105954 |
Li, Y. S., Zhang, J. X., Yu, S. Y., et al., 2015. Origin of Early Paleozoic Garnet Peridotite and Associated Garnet Pyroxenite in the South Altyn Tagh, NW China: Constraints from Geochemistry, SHRIMP U-Pb Zircon Dating and Hf Isotopes. Journal of Asian Earth Sciences, 100: 60–77. https://doi.org/10.1016/j.jseaes.2015.01.004 |
Liu, C. H., Wu, C. L., Gao, Y. H., et al., 2016. Age, Composition, and Tectonic Significance of Palaeozoic Granites in the Altyn Orogenic Belt, China. International Geology Review, 58(2): 131–154. https://doi.org/10.1080/00206814.2015.1056757 |
Liu, L., Che, Z. C., Wang, Y., et al., 1998. The Evidence of Sm-Nd Isochron Age for the Early Paleozoic Ophiolite in Mangya Area, Altun Mountains. Chinese Science Bulletin, 43: 754–756. https://doi.org/10.1007/bf02898953 |
Liu, L., Kang, L., Cao, Y. T., et al., 2015. Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn, NW China. Science China Earth Sciences, 58(9): 1513–1522. https://doi.org/10.1007/s11430-015-5151-1 |
Liu, L., Wang, C., Cao, Y. T., et al., 2012. Geochronology of Multi-Stage Metamorphic Events: Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China. Lithos, 136/137/138/139: 10–26. https://doi.org/10.1016/j.lithos.2011.09.014 |
Liu, L., Wang, C., Chen, D. L., et al., 2009. Petrology and Geochronology of HP-UHP Rocks from the South Altyn Tagh, Northwestern China. Journal of Asian Earth Sciences, 35(3/4): 232–244. https://doi.org/10.1016/j.jseaes.2008.10.007 |
Liu, L., Zhang, J. F., Cao, Y. T., et al., 2018. Evidence of Former Stishovite in UHP Eclogite from the South Altyn Tagh, Western China. Earth and Planetary Science Letters, 484: 353–362. https://doi.org/10.1016/j.epsl.2017.12.023 |
Liu, Y. J., Neubauer, F., Genser, J., et al., 2007. Geochronology of the Initiation and Displacement of the Altyn Strike-Slip Fault, Western China. Journal of Asian Earth Sciences, 29(2/3): 243–252. https://doi.org/10.1016/j.jseaes.2006.03.002 |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082 |
Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4 |
Long, X. P., Yuan, C., Sun, M., et al., 2014. New Geochemical and Combined Zircon U-Pb and Lu-Hf Isotopic Data of Orthogneisses in the Northern Altyn Tagh, Northern Margin of the Tibetan Plateau: Implication for Archean Evolution of the Dunhuang Block and Crust Formation in NW China. Lithos, 200/201: 418–431. https://doi.org/10.1016/j.lithos.2014.05.008 |
Ludwig, K. R., 2012. User's Manual for Isoplot Version 3.75–4.15: A Geochronological Toolkit for Microsoft Excel. Berkley Geochronological Center Special Publication, Berkley |
MacPherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3): 581–593. https://doi.org/10.1016/j.epsl.2005.12.034 |
Mattinson, C. G., Menold, C. A., Zhang, J. X., et al., 2007. High- and Ultrahigh-Pressure Metamorphism in the North Qaidam and South Altyn Terranes, Western China. International Geology Review, 49(11): 969–995. https://doi.org/10.2747/0020-6814.49.11.969 |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9 |
Niu, Y. L., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3/4): 471–483. https://doi.org/10.1016/s0012-821x(97)00048-4 |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/BF00384745 |
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891–931. https://doi.org/10.1093/petrology/36.4.891 |
Richards, J. P., Kerrich, R., 2007. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4): 537–576. https://doi.org/10.2113/gsecongeo.102.4.537 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 659. https://doi.org/10.1016/B0-08-043751-6/03016-4 |
Searle, M. P., Elliott, J. R., Phillips, R. J., et al., 2011. Crustal-Lithospheric Structure and Continental Extrusion of Tibet. Journal of the Geological Society, 168(3): 633–672. https://doi.org/10.1144/0016-76492010-139 |
Şengör, A. M. C., 1984. The Cimmeride Orogenic System and the Tectonics of Eurasia. Geological Society of America Special Papers, 195: 1–74. https://doi.org/10.1130/spe195-p1 |
Şengör, A. M. C., 1989. The Tethyside Orogenic System: An Introduction. In: Tectonic Evolution of the Tethyan Region. Springer, Dordrecht. 1–22.https://doi.org/10.1007/978-94-009-2253-2_1 |
Song, S. G., Bi, H. Z., Qi, S. S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043–2060. https://doi.org/10.1093/petrology/egy089 |
Song, S. G., Niu, Y. L., Su, L., et al., 2013. Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 23(4): 1378–1401. https://doi.org/10.1016/j.gr.2012.02.004 |
Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263–281. https://doi.org/10.1007/s004100050155 |
Sun, P., Niu, Y. L., Guo, P. Y., et al., 2019. Multiple Mantle Metasomatism beneath the Leizhou Peninsula, South China: Evidence from Elemental and Sr-Nd-Pb-Hf Isotope Geochemistry of the Late Cenozoic Volcanic Rocks. International Geology Review, 61(14): 1768–1785. https://doi.org/10.1080/00206814.2018.1548307 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
Vervoort, J. D., Patchett, P. J., Blichert-Toft, J., et al., 1999. Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System. Earth and Planetary Science Letters, 168(1/2): 79–99. https://doi.org/10.1016/s0012-821x(99)00047-3 |
Wang, C. M., Tang, H. S., Zheng, Y., et al., 2019. Early Paleozoic Magmatism and Metallogeny Related to Proto-Tethys Subduction: Insights from Volcanic Rocks in the Northeastern Altyn Mountains, NW China. Gondwana Research, 75: 134–153. https://doi.org/10.1016/j.gr.2019.04.009 |
Wang, C., Liu, L., Xiao, P. X., et al., 2014. Geochemical and Geochronologic Constraints for Paleozoic Magmatism Related to the Orogenic Collapse in the Qimantagh-South Altyn Region, Northwestern China. Lithos, 202/203: 1–20. https://doi.org/10.1016/j.lithos.2014.05.016 |
Wang, C., Liu, L., Yang, W. Q., et al., 2013. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China. Precambrian Research, 230: 193–208. https://doi.org/10.1016/j.precamres.2013.02.003 |
Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210/211: 181–198. https://doi.org/10.1016/j.lithos.2014.10.006 |
Wang, Q., Li, X. H., Jia, X. H., et al., 2012. Late Early Cretaceous Adakitic Granitoids and Associated Magnesian and Potassium-Rich Mafic Enclaves and Dikes in the Tunchang-Fengmu Area, Hainan Province (South China): Partial Melting of Lower Crust and Mantle, and Magma Hybridization. Chemical Geology, 328: 222–243. https://doi.org/10.1016/j.chemgeo.2012.04.029 |
Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609–2636. https://doi.org/10.1016/j.gca.2007.03.008 |
Wu, C. L., Chen, H. J., Wu, D., et al., 2018. Paleozoic Granitic Magmatism and Tectonic Evolution of the South Altun Block, NW China: Constraints from Zircon U-Pb Dating and Lu-Hf Isotope Geochemistry. Journal of Asian Earth Sciences, 160: 168–199. https://doi.org/10.1016/j.jseaes.2018.04.019 |
Wu, C. L., Gao, Y. H., Li, Z. L., et al., 2014. Zircon SHRIMP U-Pb Dating of Granites from Dulan and the Chronological Framework of the North Qaidam UHP Belt, NW China. Science China Earth Sciences, 57(12): 2945–2965. https://doi.org/10.1007/s11430-014-4958-5 |
Wu, C. L., Wooden, J. L., Robinson, P. T., et al., 2009. Geochemistry and Zircon SHRIMP U-Pb Dating of Granitoids from the West Segment of the North Qaidam. Science in China Series D: Earth Sciences, 52(11): 1771–1790. https://doi.org/10.1007/s11430-009-0147-3 |
Wu, C. L., Wu, D., Mattinson, C., et al., 2019. Petrogenesis of Granitoids in the Wulan Area: Magmatic Activity and Tectonic Evolution in the North Qaidam, NW China. Gondwana Research, 67: 147–171. https://doi.org/10.1016/j.gr.2018.09.010 |
Wu, C., Liu, C. F., Fan, S. Y., et al., 2020. Structural Analysis and Tectonic Evolution of the Western Domain of the Eastern Kunlun Range, Northwest Tibet. GSA Bulletin, 132(5/6): 1291–1315. https://doi.org/10.1130/b35388.1 |
Wu, C., Yin, A., Zuza, A. V., et al., 2016. Pre-Cenozoic Geologic History of the Central and Northern Tibetan Plateau and the Role of Wilson Cycles in Constructing the Tethyan Orogenic System. Lithosphere, 8(3): 254–292. https://doi.org/10.1130/l494.1 |
Wu, C., Zuza, A. V., Chen, X. H., et al., 2019a. Tectonics of the Eastern Kunlun Range: Cenozoic Reactivation of a Paleozoic-Early Mesozoic Orogen. Tectonics, 38(5): 1609–1650. https://doi.org/10.1029/2018tc005370 |
Wu, C., Zuza, A. V., Yin, A., et al., 2017. Geochronology and Geochemistry of Neoproterozoic Granitoids in the Central Qilian Shan of Northern Tibet: Reconstructing the Amalgamation Processes and Tectonic History of Asia. Lithosphere, 9(4): 609–636. https://doi.org/10.1130/L640.1 |
Wu, C., Zuza, A. V., Yin, A., et al., 2021. Punctuated Orogeny during the Assembly of Asia: Tectonostratigraphic Evolution of the North China Craton and the Qilian Shan from the Paleoproterozoic to Early Paleozoic. Tectonics, 40(4): e2020TC006503. https://doi.org/10.1029/2020tc006503 |
Wu, C., Zuza, A. V., Zhou, Z. G., et al., 2019b. Mesozoic–Cenozoic Evolution of the Eastern Kunlun Range, Central Tibet, and Implications for Basin Evolution during the Indo-Asian Collision. Lithosphere, 11(4): 524–550. https://doi.org/10.1130/l1065.1 |
Wu, L., Xiao, A. C., Yang, S. F., et al., 2012. Two-Stage Evolution of the Altyn Tagh Fault during the Cenozoic: New Insight from Provenance Analysis of a Geological Section in NW Qaidam Basin, NW China. Terra Nova, 24(5): 387–395. https://doi.org/10.1111/j.1365-3121.2012.01077.x |
Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111–1114.https://doi.org/10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2 |
Yan, Z., Fu, C. L., Aitchison, J. C., et al., 2019. Retro-Foreland Basin Development in Response to Proto-Tethyan Ocean Closure, NE Tibet Plateau. Tectonics, 38(12): 4229–4248. https://doi.org/10.1029/2019tc005560 |
Ye, X. T., Zhang, C. L., Wang, Q., et al., 2020. Subduction Initiation of Proto-Tethys Ocean and Back-Arc Extension in the Northern Altun Mountains, Northwestern China: Evidence from High-Mg Diorites and A-Type Rhyolites. Lithos, 376/377: 105748. https://doi.org/10.1016/j.lithos.2020.105748 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Yin, A., Rumelhart, P. E., Butler, R., et al., 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114(10): 1257–1295.https://doi.org/10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2 doi: 10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2 |
Yu, L., Sun, F. Y., Li, L., et al., 2019. Geochronology, Geochemistry, and Sr-Nd-Hf Isotopic Compositions of Mafic-Ultramafic Intrusions in the Niubiziliang Ni-(Cu) Sulfide Deposit, North Qaidam Orogenic Belt, NW China: Implications for Magmatic Source, Geodynamic Setting, and Petrogenesis. Lithos, 326: 158–173. https://doi.org/10.1016/j.lithos.2018.12.027 |
Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2014. Combined Rutile-Zircon Thermometry and U-Pb Geochronology: New Constraints on Early Paleozoic HP/UHT Granulite in the South Altyn Tagh, North Tibet, China. Lithos, 200: 241–257. https://doi.org/10.1016/j.lithos.2014.05.006 |
Zhang, J. X., Yu, S. Y., Mattinson, C. G., 2017. Early Paleozoic Polyphase Metamorphism in Northern Tibet, China. Gondwana Research, 41: 267–289. https://doi.org/10.1016/j.gr.2015.11.009 |
Zhang, Q. C., Wu, Z. H., Chen, X. H., et al., 2019. Proto-Tethys Oceanic Slab Break-Off: Insights from Early Paleozoic Magmatic Diversity in the West Kunlun Orogen, NW Tibetan Plateau. Lithos, 346/347: 105147. https://doi.org/10.1016/j.lithos.2019.07.014 |
Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262–286. https://doi.org/10.1016/j.earscirev.2018.10.003 |
Zhao, S. J., Li, S. Z., Liu, X., et al., 2015. The Northern Boundary of the Proto-Tethys Ocean: Constraints from Structural Analysis and U-Pb Zircon Geochronology of the North Qinling Terrane. Journal of Asian Earth Sciences, 113: 560–574. https://doi.org/10.1016/j.jseaes.2015.09.005 |
Zheng, K., Wu, C. L., Lei, M., et al., 2019. Petrogenesis and Tectonic Implications of Granitoids from Western North Altun, Northwest China. Lithos, 340/341: 255–269. https://doi.org/10.1016/j.lithos.2019.05.019 |
Zhu, W., Wu, C. D., Wang, J. L., et al., 2017. Heavy Mineral Compositions and Zircon U-Pb Ages of Cenozoic Sandstones in the SW Qaidam Basin, Northern Tibetan Plateau: Implications for Provenance and Tectonic Setting. Journal of Asian Earth Sciences, 146: 233–250. https://doi.org/10.1016/j.jseaes.2017.05.023 |
Zuza, A. V., Wu, C., Reith, R. C., et al., 2018. Tectonic Evolution of the Qilian Shan: An Early Paleozoic Orogen Reactivated in the Cenozoic. GSA Bulletin, 130(5/6): 881–925. https://doi.org/10.1130/b31721.1 |