Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 6
Dec 2022
Turn off MathJax
Article Contents
Shuzhong Shen, Junxuan Fan, Xiangdong Wang, Feifei Zhang, Yukun Shi, Shuhan Zhang. How to Build a High-Resolution Digital Geological Timeline?. Journal of Earth Science, 2022, 33(6): 1629-1632. doi: 10.1007/s12583-022-1315-z
Citation: Shuzhong Shen, Junxuan Fan, Xiangdong Wang, Feifei Zhang, Yukun Shi, Shuhan Zhang. How to Build a High-Resolution Digital Geological Timeline?. Journal of Earth Science, 2022, 33(6): 1629-1632. doi: 10.1007/s12583-022-1315-z

How to Build a High-Resolution Digital Geological Timeline?

doi: 10.1007/s12583-022-1315-z
More Information
  • Corresponding author: Shuzhong Shen, szshen@nju.edu.cn
  • Received Date: 04 Oct 2022
  • Accepted Date: 10 Oct 2022
  • Issue Publish Date: 30 Dec 2022
  • The final publication is available at Springer via https://doi.org/10.1007/s12583-022-1315-z.
    Data Source: This article from "Shen, S. Z., Fan, J. X., Wang, X. D., et al., 2022. How to Build a High-Resolution Digital Geological Timeline? Earth Science, 47(10): 3766–3769 (in Chinese)"
  • loading
  • Aubry, M. P., Ouda, K., Dupuis, C., et al., 2007. The Global Standard Stratotype-Section and Point (GSSP) for the Base of the Eocene Series in the Dababiya Section (Egypt). Episodes, 30(4): 271–286. https://doi.org/10.18814/epiiugs/2007/v30i4/003
    Burgess, S. D., Bowring, S. A., Shen, S. Z., 2014. High-Precision Timeline for Earth's most Severe Extinction. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3316–3321. https://doi.org/10.1073/pnas.1317692111
    Chen, J. T., Montañez, I. P., Zhang, S., et al., 2022. Marine Anoxia Linked to Abrupt Global Warming during Earth's Penultimate Icehouse. Proceedings of the National Academy of Sciences of the United States of America, 119(19): e2115231119. https://doi.org/10.1073/pnas. 2115231119 doi: 10.1073/pnas.2115231119
    Chlupáč, I., Jaeger, H., Zikmundova, J., 1972. The Silurian-Devonian Boundary in the Barrandian. Bulletin of Canadian Petroleum Geology, 20(1): 104–174
    Davydov, V. I., 2020. Shift in the Paradigm for GSSP Boundary Definition. Gondwana Research, 86: 266–286.https://doi.org/10.1016/ j.gr.2020.06.005 doi: 10.1016/j.gr.2020.06.005
    Deng, Y. Y., Fan, J. X., Zhang, S. H., et al., 2021. Timing and Patterns of the Great Ordovician Biodiversification Event and Late Ordovician Mass Extinction: Perspectives from South China. Earth-Science Reviews, 220: 103743. https://doi.org/10.1016/j.earscirev.2021.103743
    Fan, J. X., Chen, Q., Melchin, M. J., et al., 2013. Quantitative Stratigraphy of the Wufeng and Lungmachi Black Shales and Graptolite Evolution during and after the Late Ordovician Mass Extinction. Palaeogeo-graphy, Palaeoclimatology, Palaeoecology, 389: 96–114. https://doi.org/10.1016/j.palaeo.2013.08.005
    Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiver-sity. Science, 367(6475): 272–277. https://doi.org/10.1126/science.aax4953
    Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2020. Geologic Time Scale 2020, Volumes 1, 2. Elsevier, Amsterdam, Oxford, Cambridge
    Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2012. The Geologic Time Scale. Elsevier, Amsterdam, Oxford, Cambridge
    Guo, H. D., 2017. Big Data Drives the Development of Earth Science. Big Earth Data, 1(1/2): 1–3. https://doi.org/10.1080/20964471.2017.1405925
    Gutjahr, M., Ridgwell, A., Sexton, P. F., et al., 2017. Very Large Release of Mostly Volcanic Carbon during the Palaeocene–Eocene Thermal Maxi-mum. Nature, 548(7669): 573–577. https://doi.org/10.1038/nature23646
    Hou, M. C., Chen, A. Q., Ogg, J. G., et al., 2019. China Paleogeography: Current Status and Future Challenges. Earth-Science Reviews, 189: 177–193. https://doi.org/10.1016/j.earscirev.2018.04.004
    Hou, Z. S., Fan, J. X., Henderson, C. M., et al., 2020. Dynamic Palaeogeographic Reconstructions of the Wuchiapingian Stage (Loping-ian, Late Permian) for the South China Block. Palaeogeography, Palaeo-climatology, Palaeoecology, 546: 109667. https://doi.org/10.1016/j.palaeo.2020.109667
    Li, M. S., Huang, C. J., Hinnov, L., et al., 2016. Obliquity-Forced Climate during the Early Triassic Hothouse in China. Geology, 44(8): 623–626. https://doi.org/10.1130/g37970.1
    Ma, X. G., Carranza, E. J. M., Wu, C. L., et al., 2012. Ontology-Aided Annotation, Visualization, and Generalization of Geological Time-Scale Information from Online Geological Map Services. Computers & Geosciences, 40: 107–119. https://doi.org/10.1016/j.cageo.2011.07.018
    Molina, E., Alegret, L., Arenillas, I., et al., 2006. The Global Boundary Stratotype Section and Point for the Base of the Danian Stage (Paleocene, Paleogene, "Tertiary", Cenozoic) at El Kef, Tunisia—Original Definition and Revision. Episodes, 29(4): 263–273. https://doi.org/10.18814/epiiugs/2006/v29i4/004
    Penn, J. L., Deutsch, C., 2022. Avoiding Ocean Mass Extinction from Climate Warming. Science, 376(6592): 524–526.https://doi.org/10.1126/ science.abe9039 doi: 10.1126/science.abe9039
    Penn, J. L., Deutsch, C., Payne, J. L., et al., 2018. Temperature-Dependent Hypoxia Explains Biogeography and Severity of End-Permian Marine Mass Extinction. Science, 362(6419): eaat1327. https://doi.org/10.1126/science.aat1327
    Sadler, P. M., Cooper, R. A., Melchin, M., 2009. High-Resolution, Early Paleozoic (Ordovician-Silurian) Time Scales. Geological Society of America Bulletin, 121(5/6): 887–906. https://doi.org/10.1130/b26357.1
    Schmitz, B., Pujalte, V., Molina, E., et al., 2011. The Global Stratotype Sections and Points for the Bases of the Selandian (Middle Paleocene) and Thanetian (Upper Paleocene) Stages at Zumaia, Spain. Episodes, 34(4): 220–243. https://doi.org/10.18814/epiiugs/2011/v34i4/002
    Schneer, C., 1989. Geology, Time and History. Earth Sciences History, 8(2): 103–105. https://doi.org/10.17704/eshi.8.2.n871088718k50220
    Shen, S. Z., Cao, C. Q., Zhang, H., et al., 2013. High-Resolution δ13Ccarb Chemostratigraphy from Latest Guadalupian through Earliest Triassic in South China and Iran. Earth and Planetary Science Letters, 375: 156–165. https://doi.org/10.1016/j.epsl.2013.05.020
    Suganuma, Y., Okada, M., Head, M. J., et al., 2021. Formal Ratification of the Global Boundary Stratotype Section and Point (GSSP) for the Chibanian Stage and Middle Pleistocene Subseries of the Quaternary System: The Chiba Section, Japan. Episodes, 44(3): 317–347. https://doi.org/10.18814/epiiugs/2020/020080
    Wang, C. S., Hazen, R. M., Cheng, Q. M., et al., 2021. The Deep-Time Digital Earth Program: Data-Driven Discovery in Geosciences. National Science Review, 8(9): nwab027. https://doi.org/10.1093/nsr/nwab027
    Wang, T. T., Ramezani, J., Wang, C. S., et al., 2016. High-Precision U-Pb Geochronologic Constraints on the Late Cretaceous Terrestrial Cyclostratigraphy and Geomagnetic Polarity from the Songliao Basin, Northeast China. Earth and Planetary Science Letters, 446: 37–44. https://doi.org/10.1016/j.epsl.2016.04.007
    Weissert, H., Joachimski, M., Sarnthein, M., 2008. Chemostratigraphy. Newsletters on Stratigraphy, 42(3): 145–179. https://doi.org/10.1127/0078-0421/2008/0042-0145
    Wang, P. X., Tian, J., Huang, E. Q., 2018. Earth Systems and Evolution. Science Press, Beijing (in Chinese with English Abstract)
    Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2013. Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 4: 2452. https://doi.org/10.1038/ncomms3452
    Zhang, M., Qin, H. F., He, K., et al., 2021. Magnetostratigraphy across the End-Permian Mass Extinction Event from the Meishan Sections, South-eastern China. Geology, 49(11): 1289–1294. https://doi.org/10.1130/g49072.1
    Zhong, Y. T., Huyskens, M. H., Yin, Q. Z., et al., 2021. High-Precision Geochronological Constraints on the Duration of 'Dinosaur Pompeii' and the Yixian Formation. National Science Review, 8(6): nwab063. https://doi.org/10.1093/nsr/nwab063
    Zhu, J., Poulsen, C. J., Tierney, J. E., 2019. Simulation of Eocene Extreme Warmth and High Climate Sensitivity through Cloud Feedbacks. Science Advances, 5(9): eaax1874. https://doi.org/10.1126/sciadv.aax1874
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views(154) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return