Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Xing Ding, Koulin Su, Haibo Yan, Jinlong Liang, Weidong Sun. Effect of F-Rich Fluids on the A-Type Magmatism and Related Metal Mobilization: New Insights from the Fogang-Nankunshan-Yajishan Igneous Rocks in Southeast China. Journal of Earth Science, 2022, 33(3): 591-608. doi: 10.1007/s12583-022-1611-7
Citation: Xing Ding, Koulin Su, Haibo Yan, Jinlong Liang, Weidong Sun. Effect of F-Rich Fluids on the A-Type Magmatism and Related Metal Mobilization: New Insights from the Fogang-Nankunshan-Yajishan Igneous Rocks in Southeast China. Journal of Earth Science, 2022, 33(3): 591-608. doi: 10.1007/s12583-022-1611-7

Effect of F-Rich Fluids on the A-Type Magmatism and Related Metal Mobilization: New Insights from the Fogang-Nankunshan-Yajishan Igneous Rocks in Southeast China

doi: 10.1007/s12583-022-1611-7
More Information
  • Corresponding author: Xing Ding, xding@gig.ac.cn
  • Received Date: 10 Sep 2021
  • Accepted Date: 03 Jan 2022
  • About 45% of tungsten, ~20% of tin, and ~9% of fluorite of known world reserves are associated with Late Mesozoic igneous rocks, Southeast (SE) China. Here we demonstrate that Fogang granite, the largest inland batholith, is mainly of A2-type that is commonly found in post-orogenic settings and experienced plate subduction induced metasomatism. In contrast, the Yajishan syenite and Nankunshan granite intruding the Fogang granite ~20 Ma later are of A1-type formed in intraplate settings. We found that F-rich fluid fractionation, which could make the decline of Ga/Al ratio, total (Nb + Y + Ce + Zr) and Zr concentrations, Nb/Ta and Zr/Hf ratios, leads to chemical variations of a few Fogang granites changing from A2-type to highly fractionated or I- and S-type granitoids. Crystal and F-rich fluid fractionations, as well as crustal contamination most likely derived from the Fogang granite, result in some Nankunshan granites developing from A1-type into A2-type. These late- or post-magmatic processes should be taken into account carefully when discriminating the petrogenetic types of igneous rocks, especially for the A2-type suites. Combining with the distribution of 180–140 Ma A1- and A2-type igneous rocks, rare metal deposits, and fluorite deposits in SE China, we highlight the significant role of slab-released F-rich fluids in formation of A-type suites and subsequent chemical differentiation and rare metal and fluorine mineralization. A model of flat-slab northeastward rollback is thus proposed, in which the subduction front reached somewhere near Fogang and then started to roll back at ~165 Ma. The inland Jurassic granites of SE China represent a unique locality for formation of A-type suites and their associated mineralization. These granites are not anorogenic, but they are the result of slab rollback from a flat slab, founding of that slab at shallow levels, and metasomatism of by F-rich fluids related to slab heating by the asthenosphere.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S5) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1611-7.
  • loading
  • Adam, J., Green, T. H., Sie, S. H., 1993. Proton Microprobe Determined Partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between Experimentally Produced Amphiboles and Silicate Melts with Variable F Content. Chemical Geology, 109(1/2/3/4): 29–49. https://doi.org/10.1016/0009-2541(93)90060-v
    Bailey, J. C., 1977. Fluorine in Granitic Rocks and Melts: A Review. Chemical Geology, 19(1/2/3/4): 1–42. https://doi.org/10.1016/0009-2541(77)90002-x
    Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231–234. https://doi.org/10.1130/g37475.1
    Ballouard, C., Massuyeau, M., Elburg, M. A., et al., 2020. The Magmatic and Magmatic-Hydrothermal Evolution of Felsic Igneous Rocks as Seen through Nb-Ta Geochemical Fractionation, with Implications for the Origins of Rare-Metal Mineralizations. Earth-Science Reviews, 203: 103115. https://doi.org/10.1016/j.earscirev.2020.103115
    Bao, Z. W., Zhao, Z. H., 2003. Geochemistry and Tectonic Setting of the Fugang Aluminous A-Type Granite, Guangdong Province, China—A Preliminary Study. Geology-Geochemistry, 31(1): 52–61
    Carroll, M. R., Webster, J. D., 1994. Solubilities of Sulfur, Noble Gases, Nitrogen, Chlorine and Fluorine in Magmas. Reviews in Mineralogy and Petrology, 30(1): 231–279
    Černý, P., Ercit, T. S., 2005. The Classification of Granitic Pegmatites Revisited. The Canadian Mineralogist, 43(6): 2005–2026. https://doi.org/10.2113/gscanmin.43.6.2005
    Chen, B., Ma, X. H., Wang, Z. Q., 2014. Origin of the Fluorine-Rich Highly Differentiated Granites from the Qianlishan Composite Plutons (South China) and Implications for Polymetallic Mineralization. Journal of Asian Earth Sciences, 93: 301–314. https://doi.org/10.1016/j.jseaes.2014.07.022
    Chen, C., Ding, X., Li, R., et al., 2018. Crystal Fractionation of Granitic Magma during Its Non-Transport Processes: A Physics-Based Perspective. Science China Earth Sciences, 61(2): 190–204. https://doi.org/10.1007/s11430-016-9120-y
    Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was there Jurassic Paleo-Pacific Subduction in South China? Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1/2): 83–92. https://doi.org/10.1016/j.lithos.2008.06.009
    Chen, J. Y., Yang, J. H., 2015. Petrogenesis of the Fogang Highly Fractionated I-Type Granitoids: Constraints from Nb, Ta, Zr and Hf. Acta Petrologica Sinica, 31(3): 846–854 (in Chinese with English Abstract)
    Chen, P. R., Hua, R. M., Zhang, B. T., et al., 2002. Early Yanshanian Post-Orogenic Granitoids in the Nanling Region. Science in China Series D: Earth Sciences, 45(8): 755–768. https://doi.org/10.1007/bf02878432
    Chen, S. S., Yang, X. Y., Zhao, Z., et al., 2020. Geochronology and Geochemistry of the Intrusive Rocks in Yucun Au Deposit, Jiangnan Transition Belt, Eastern China: Constraints on Their Petrogenesis, Geodynamical Setting and Mineralization. Solid Earth Sciences, 5(4): 258–281. https://doi.org/10.1016/j.sesci.2020.10.003
    Chen, X. M., Wang, R. C., Liu, C. S., et al., 2002. Isotopic Dating and Genesis for Fogang Biotite Granites of Conghua Area, Guangdong Province. Geological Journal of China Universities, 8(3): 293–307 (in Chinese with English Abstract)
    Chen, Y. X., Li, H., Sun, W. D., et al., 2016. Generation of Late Mesozoic Qianlishan A2-Type Granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn Mineralization and Tectonic Evolution. Lithos, 266/267: 435–452. https://doi.org/10.1016/j.lithos.2016.10.010
    Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/bf00374895
    Deng, J. F., Mo, X. X., Zhao, H. L., et al., 2004. A New Model for the Dynamic Evolution of Chinese Lithosphere: 'Continental Roots-Plume Tectonics'. Earth-Science Reviews, 65(3/4): 223–275. https://doi.org/10.1016/j.earscirev.2003.08.001
    Ding, X., Chen, P. R., Chen, W. F., et al., 2006. Single Zircon LA-ICPMS U-Pb Dating of Weishan Granite (Hunan, South China) and Its Petrogenetic Significance. Science in China Series D: Earth Sciences, 49(8): 816–827. https://doi.org/10.1007/s11430-006-0816-4
    Ding, X., Lundstrom, C., Huang, F., et al., 2009. Natural and Experimental Constraints on Formation of the Continental Crust Based on Niobium-Tantalum Fractionation. International Geology Review, 51(6): 473–501. https://doi.org/10.1080/00206810902759749
    Ding, X., Sun, W. D., Wang, F. Y., et al., 2012. Single-Grain Mica Rb-Sr Isochron Ages and Mineral Chemistry for the Weishan Pluton in Hunan Province and Implications on Petrogenesis and Mineralization of Mesozoic Composite Granite in South China. Acta Petrologica Sinica, 28(12): 3823–3840 (in Chinese with English Abstract)
    Ding, X., Hu, Y. H., Zhang, H., et al., 2013. Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro. The Journal of Geology, 121(3): 255–274. https://doi.org/10.1086/669978
    Ding, X., Sun, W. D., Chen, W. F., et al., 2015. Multiple Mesozoic Magma Processes Formed the 240–185 Ma Composite Weishan Pluton, South China: Evidence from Geochronology, Geochemistry, and Sr-Nd Isotopes. International Geology Review, 57(9/10): 1189–1217. https://doi.org/10.1080/00206814.2014.905997
    Ding, X., Harlov, D. E., Chen, B., et al., 2018. Fluids, Metals, and Mineral/Ore Deposits. Geofluids, 2018: 1452409. https://doi.org/10.1155/2018/1452409
    Duc-Tin, Q., Audétat, A., Keppler, H., 2007. Solubility of Tin in (Cl, F)-Bearing Aqueous Fluids at 700 ℃, 140 MPa: A LA-ICP-MS Study on Synthetic Fluid Inclusions. Geochimica et Cosmochimica Acta, 71(13): 3323–3335. https://doi.org/10.1016/j.gca.2007.04.022
    Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134. https://doi.org/10.1016/0024-4937(90)90043-z
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
    Estrade, G., Béziat, D., Salvi, S., et al., 2014. Unusual Evolution of Silica- under- and -Oversaturated Alkaline Rocks in the Cenozoic Ambohimira-havavy Complex (Madagascar): Mineralogical and Geochemical Evidence. Lithos, 206/207: 361–383. https://doi.org/10.1016/j.lithos. 2014.08.008 doi: 10.1016/j.lithos.2014.08.008
    Gilder, S. A., Keller, G. R., Luo, M., et al., 1991. Eastern Asia and the Western Pacific Timing and Spatial Distribution of Rifting in China. Tectonophysics, 197(2/3/4): 225–243. https://doi.org/10.1016/0040-1951(91)90043-r
    Goodenough, K. M., Deady, E. A., Beard, C. D., et al., 2021. Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements. Journal of Earth Science, 32(6): 1332–1358. https://doi.org/10.1007/s12583-021-1500-5
    Guo, C. L., Wang, R. C., Yuan, S. D., et al., 2015. Geochronological and Geochemical Constraints on the Petrogenesis and Geodynamic Setting of the Qianlishan Granitic Pluton, Southeast China. Mineralogy and Petrology, 109(2): 253–282. https://doi.org/10.1007/s00710-014-0355-1
    He, J. J., Ding, X., Wang, Y. R., et al., 2015a. The Effects of Precipitation-Aging-Re-Dissolution and Pressure on Hydrolysis of Fluorine-Rich Titanium Complexes in Hydrothermal Fluids and Its Geological Implications. Acta Petrologica Sinica, 31(7): 1870–1878 (in Chinese with English Abstract)
    He, J. J., Ding, X., Wang, Y. R., et al., 2015b. The Effect of Temperature and Concentration on Hydrolysis of Fluorinerich Titanium Complexes in Hydrothermal Fluids: Constraints on Titanium Mobility in Deep Geological Processes. Acta Petrologica Sinica, 31(3): 802–810 (in Chinese with English Abstract)
    He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3/4): 621–641. https://doi.org/10.1016/j.lithos.2010.08.016
    Hong, D., Niu, Y. L., Xiao, Y. Y., et al., 2018. Origin of the Jurassic–Cretaceous Intraplate Granitoids in Eastern China as a Consequence of Paleo-Pacific Plate Subduction. Lithos, 322: 405–419. https://doi.org/10.1016/j.lithos.2018.10.027
    Hsü, K. J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1/2/3/4): 9–39. https://doi.org/10.1016/0040-1951(90)90186-c
    Hu, R. Z., Zhou, M. F., 2012. Multiple Mesozoic Mineralization Events in South China—An Introduction to the Thematic Issue. Mineralium Deposita, 47(6): 579–588. https://doi.org/10.1007/s00126-012-0431-6
    Jahn, B. M., Chen, P. Y., Yen, T. P., 1976. Rb-Sr Ages of Granitic Rocks in Southeastern China and Their Tectonic Significance. Geological Society of America Bulletin, 87(5): 763–776. https://doi.org/10.1130/0016-7606(1976)87763:raogri>2.0.co;2 doi: 10.1130/0016-7606(1976)87763:raogri>2.0.co;2
    Jia, D. L., Yan, G. S., Ye, T. Z., et al., 2013. Zircon U-Pb Dating, Hf Isotopic Compositions and Petrochemistry of the Guangshan Granitic Complex in Shaoxing Area of Zhejiang Province and Its Geological Significance. Acta Petrologica Sinica, 29(12): 4087–4103 (in Chinese with English Abstract)
    Jiang, X. Y., Li, H., Ding, X., et al., 2018. Formation of A-Type Granites in the Lower Yangtze River Belt: A Perspective from Apatite Geochemistry. Lithos, 304–307: 125–134. https://doi.org/10.1016/j.lithos.2018.02.005
    Jiang, Y. H., Zhao, P., Zhou, Q., et al., 2011. Petrogenesis and Tectonic Implications of Early Cretaceous S- and A-Type Granites in the Northwest of the Gan-Hang Rift, SE China. Lithos, 121(1/2/3/4): 55–73. https://doi.org/10.1016/j.lithos.2010.10.001
    Keppler, H., 1993. Influence of Fluorine on the Enrichment of High Field Strength Trace Elements in Granitic Rocks. Contributions to Mineralogy and Petrology, 114(4): 479–488. https://doi.org/10.1007/bf00321752
    King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371–391. https://doi.org/10.1093/petroj/38.3.371
    Li, C. Y., Zhang, H., Wang, F. Y., et al., 2012. The Formation of the Dabaoshan Porphyry Molybdenum Deposit Induced by Slab Rollback. Lithos, 150: 101–110. https://doi.org/10.1016/j.lithos.2012.04.001
    Li, C. Y., Hao, X. L., Liu, J. Q., et al., 2017. The Formation of Luoboling Porphyry Cu-Mo Deposit: Constraints from Zircon and Apatite. Lithos, 272/273: 291–300. https://doi.org/10.1016/j.lithos.2016.12.003
    Li, C. Y., Jiang, Y. H., Zhao, Y., et al., 2018. Trace Element Analyses of Fluid Inclusions Using Laser Ablation ICP-MS. Solid Earth Sciences, 3(1): 8–15. https://doi.org/10.1016/j.sesci.2017.12.001
    Li, H., Ling, M. X., Li, C. Y., et al., 2012. A-Type Granite Belts of Two Chemical Subgroups in Central Eastern China: Indication of Ridge Subduction. Lithos, 150: 26–36. https://doi.org/10.1016/j.lithos.2011.09.021
    Li, H., Watanabe, K., Yonezu, K., 2014. Geochemistry of A-Type Granites in the Huangshaping Polymetallic Deposit (South Hunan, China): Implications for Granite Evolution and Associated Mineralization. Journal of Asian Earth Sciences, 88: 149–167. https://doi.org/10.1016/j.jseaes.2014.03.004
    Li, X. H., Li, W. X., Li, Z. X., 2007a. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873–1885. https://doi.org/10.1007/s11434-007-0259-0
    Li, X. H., Li, Z. X., Li, W. X., et al., 2007b. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1/2): 186–204. https://doi.org/10.1016/j.lithos.2006.09.018
    Li, X. H., Long, W. G., Li, Q. L., et al., 2010. Penglai Zircon Megacrysts: a Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostandards and Geoanalytical Research, 34(2): 117–134. https://doi.org/10.1111/j.1751-908x.2010.00036.x
    Li, Z. L., Hu, R. Z., Yang, J. S., et al., 2007. He, Pb and S Isotopic Constraints on the Relationship between the A-Type Qitianling Granite and the Furong Tin Deposit, Hunan Province, China. Lithos, 97(1/2): 161–173. https://doi.org/10.1016/j.lithos.2006.12.009
    Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179–182. https://doi.org/10.1130/g23193a.1
    Liang, J. L., Ding, X., Sun, X. M., et al., 2009. Nb/Ta Fractionation Observed in Eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology, 268(1/2): 27–40. https://doi.org/10.1016/j.chemgeo.2009.07.006
    Ling, M. X., Wang, F. Y., Ding, X., et al., 2009. Cretaceous Ridge Subduction along the Lower Yangtze River Belt, Eastern China. Economic Geology, 104(2): 303–321. https://doi.org/10.2113/gsecongeo.104.2.303
    Liu, C. S., Chen, X. M., Wang, R. C., et al., 2003. Characteristic and Origin of the Shiling Sodalite Syenite, Conghua City, Guangdong Province. Geological Review, 49(1): 28–39 (in Chinese with English Abstract)
    Liu, C. S., Chen, X. M., Wang, R. C., et al., 2005. Isotopic Dating and Origin of Complexly Zoned Micas for A-Type Nankunshan Aluminous Granite. Geological Review, 51(2): 193–200, 227. https://doi.org/10.16509/j.georeview.2005.02.014 (in Chinese with English Abstract)
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Ludwig, K. R., 1991. ISOPLOT: A Plotting and Regression Program for Radiogenic-Isotope Data. US Geological Survey Open-File Report: 39
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
    Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2007. Large-Scale Tungsten-Tin Mineralization in the Nanling Region, South China: Metallogenic Ages and Corresponding Geodynamic Processes. Acta Petrologica Sinica, 23(10): 2329–2338 (in Chinese with English Abstract)
    Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267–294. https://doi.org/10.1007/s00126-012-0446-z
    Pfänder, J. A., Jung, S., Münker, C., et al., 2012. A Possible High Nb/Ta Reservoir in the Continental Lithospheric Mantle and Consequences on the Global Nb Budget—Evidence from Continental Basalts from Central Germany. Geochimica et Cosmochimica Acta, 77: 232–251. https://doi.org/10.1016/j.gca.2011.11.017
    Pirajno, F., 2008. Hydrothermal Processes and Mineral Systems. Springer
    Rapp, J. F., Klemme, S., Butler, I. B., et al., 2010. Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids: An Experimental Investigation. Geology, 38(4): 323–326. https://doi.org/10.1130/g30753.1
    Rudnick, R. L., Gao, S., 2004. Composition of the Continental Crust. In: Holland, H., Turekian, K. K., eds. Treatise on Geochemistry. Elsevier, Amsterdam. 3: 1–64
    Salters, V. J. M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5): Q05B07. https://doi.org/10.1029/2003gc000597
    Salvi, S., Fontan, F., Monchoux, P., et al., 2000. Hydrothermal Mobilization of High Field Strength Elements inAlkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco). Economic Geology, 95(3): 559–576. https://doi.org/10.2113/gsecongeo.95.3.559
    Schmitt, A. K., Emmermann, R., Trumbull, R. B., et al., 2000. Petrogenesis and 40Ar/39Ar Geochronology of the Brandberg Complex, Namibia: Evidence for a Major Mantle Contribution in Metaluminous and Peralkaline Granites. Journal of Petrology, 41(8): 1207–1239. https://doi.org/10.1093/petrology/41.8.1207
    Shao, T. B., Xia, Y., Ding, X., et al., 2020. Zircon Saturation Model in Silicate Melts: a Review and Update. Acta Geochimica, 39(3): 387–403. https://doi.org/10.1007/s11631-019-00384-4
    Sheng, J. F., Liu, L. J., Wang, D. H., et al., 2015. A Preliminary Review of Metallogenic Regularity of Tungsten Deposits in China. Acta Geologica Sinica—English Edition, 89(4): 1359–1374. https://doi.org/10.1111/1755-6724.12533
    Shu, L. S., Zhou, X. M., Deng, P., et al., 2009. Mesozoic Tectonic Evolution of the Southeast China Block: New Insights from Basin Analysis. Journal of Asian Earth Sciences, 34(3): 376–391. https://doi.org/10.1016/j.jseaes.2008.06.004
    Skjerlie, K. P., Johnston, A. D., 1992. Vapor-Absent Melting at 10 kbar of a Biotite- and Amphibole-Bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 20(3): 263–266. https://doi.org/10.1130/0091-7613(1992)0200263:vamako>2.3.co;2 doi: 10.1130/0091-7613(1992)0200263:vamako>2.3.co;2
    Smith, M. E., Carroll, A. R., Jicha, B. R., et al., 2014. Paleogeographic Record of Eocene Farallon Slab Rollback beneath Western North America. Geology, 42(12): 1039–1042. https://doi.org/10.1130/g36025.1
    Stegman, D. R., Freeman, J., Schellart, W. P., et al., 2006. Influence of Trench Width on Subduction Hinge Retreat Rates in 3-D Models of Slab Rollback. Geochemistry, Geophysics, Geosystems, 7(3): Q03012. https://doi.org/10.1029/2005gc001056
    Stepanov, A. S., Hermann, J., 2013. Fractionation of Nb and Ta by Biotite and Phengite: Implications for the "Missing Nb Paradox". Geology, 41(3): 303–306. https://doi.org/10.1130/g33781.1
    Su, K. L., Ding, X., Huang, Y. G., et al., 2015. Compositional Differentiation of Early Cretaceous Yajishan Syenitic Complex and Its Petrogenesis. Acta Petrologica Sinica, 31(3): 829–845 (in Chinese with English Abstract)
    Sun, S. J., Yang, X. Y., Wang, G. J., et al., 2019. In situ Elemental and Sr-O Isotopic Studies on Apatite from the Xu-Huai Intrusion at the Southern Margin of the North China Craton: Implications for Petrogenesis and Metallogeny. Chemical Geology, 510: 200–214. https://doi.org/10.1016/j.chemgeo.2019.02.010
    Sun, S. J., Zhang, R. Q., Cong, Y. N., et al., 2020. Analogous Diagenetic Conditions of Dark Enclave and Its Host Granite Derived by Magma Mixing: Evidence for a Post-Mixing Magmatic Process. Lithos, 356/357: 105373. https://doi.org/10.1016/j.lithos.2020.105373
    Sun, W. D., Huang, R. F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97–131. https://doi.org/10.1016/j.oregeorev.2014.09.004
    Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4): 533–542. https://doi.org/10.1016/j.epsl.2007.08.021
    Sun, W. D., Yang, X. Y., Fan, W. M., et al., 2012. Mesozoic Large Scale Magmatism and Mineralization in South China: Preface. Lithos, 150: 1–5. https://doi.org/10.1016/j.lithos.2012.06.028
    Sun, W. D., Li, C. Y., Hao, X. L., et al., 2016. Oceanic Anoxic Events, Subduction Style and Molybdenum Mineralization. Solid Earth Sciences, 1(2): 64–73. https://doi.org/10.1016/j.sesci.2015.11.001
    Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261–280. https://doi.org/10.1086/629302
    Thomas, R., Förster, H. J., Rickers, K., et al., 2005. Formation of Extremely F-Rich Hydrous Melt Fractions and Hydrothermal Fluids during Differentiation of Highly Evolved Tin-Granite Magmas: A Melt/Fluid-Inclusion Study. Contributions to Mineralogy and Petrology, 148(5): 582–601. https://doi.org/10.1007/s00410-004-0624-9
    Wang, F. Y., Ling, M. X., Ding, X., et al., 2011. Mesozoic Large Magmatic Events and Mineralization in SE China: Oblique Subduction of the Pacific Plate. International Geology Review, 53(5/6): 704–726. https://doi.org/10.1080/00206814.2010.503736
    Wang, K. X., Sun, T., Chen, P. R., et al., 2013. The Geochronological and Geochemical Constraints on the Petrogenesis of the Early Mesozoic A-Type Granite and Diabase in Northwestern Fujian Province. Lithos, 179: 364–381. https://doi.org/10.1016/j.lithos.2013.07.016
    Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478: 164–182. https://doi.org/10.1016/j.chemgeo.2017.09.033
    Wang, L. Z., Xu, C., Zhao, Z., et al., 2015. Petrological and Geochemical Characteristics of Zhaibei Granites in Nanling Region, Southeast China: Implications for REE Mineralization. Ore Geology Reviews, 64: 569–582. https://doi.org/10.1016/j.oregeorev.2014.04.004
    Wang, Q., Zhao, Z. H., Jian, P., et al., 2005. Geochronology of Cretaceous A-Type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China: Constraints for Late-Mesozoic Tectonic Evolution. Acta Petrologica Sinica, 21(3): 795–808 (in Chinese with English Abstract)
    Wang, R. C., Yu, A. P., Chen, J., et al., 2012. Cassiterite Exsolution with Ilmenite Lamellae in Magnetite from the Huashan Metaluminous Tin Granite in Southern China. Mineralogy and Petrology, 105(1/2): 71–84. https://doi.org/10.1007/s00710-012-0194-x
    Wang, R. C., Xie, L., Chen, J., et al., 2013. Tin-Carrier Minerals in Metaluminous Granites of the Western Nanling Range (Southern China): Constraints on Processes of Tin Mineralization in Oxidized Granites. Journal of Asian Earth Sciences, 74: 361–372. https://doi.org/10.1016/j.jseaes.2012.11.029
    Wang, X. B., Wu, J., Cai, M. H., et al., 2013. Geochemical Characteristics and Sr-Nd-Hf Isotopic Composition of the Yanshanian Granite Porphyries in the Hehuaping Area of Southern Hunan and Their Geological Significance. Geology and Exploration, 49(2): 300–312 (in Chinese with English Abstract)
    Wang, Y. R., Chou, I. -M., 1987. Characteristics of Hydrolysis of the Complex Na2SnF6 in Hydrothermal Solutions—An Experimental Study. Chinese Journal of Geochemistry, 6(4): 372–382. https://doi.org/10.1007/bf02872266
    Wang, Y. Y., Xiao, Y. L., 2018. Fluid-Controlled Element Transport and Mineralization in Subduction Zones. Solid Earth Sciences, 3(4): 87–104. https://doi.org/10.1016/j.sesci.2018.06.003
    Wang, Z., Chen, B., Ma, X., 2014. Petrogenesis of the Late Mesozoic Guposhan Composite Plutons from the Nanling Range, South China: Implications for W-SN Mineralization. American Journal of Science, 314(1): 235–277. https://doi.org/10.2475/01.2014.07
    Webster, J. D., 1990. Partitioning of F between H2O and CO2 Fluids and Topaz Rhyolite Melt. Contributions to Mineralogy and Petrology, 104(4): 424–438. https://doi.org/10.1007/bf01575620
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Williams-Jones, A. E., Migdisov, A. A., 2015. Experimental Constraints on the Transport and Deposition of Metals in Ore-Forming Hydrothermal Systems. Society of Economic Geologists, Inc., Special Publication, 18. 350
    Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126. https://doi.org/10.1016/j.chemgeo.2006.05.003
    Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201–1219. https://doi.org/10.1007/s11430-016-5139-1
    Xiong, X. L., Zhu, J. C., Rao, B., et al., 1999. Phase Relations in the Albite Granite H2O-HF System and the Genesis of Topaz-Bearing Granitic Rocks. Geological Review, 45(3): 313–322. https://doi.org/10.16509/j.georeview.1999.03.015 (in Chinese with English Abstract)
    Xu, X. S., Lu, W. M., He, Z. Y., 2007. Age and Generation of Fogang Granite Batholith and Wushi Diorite-Hornblende Gabbro Body. Science in China Series D: Earth Sciences, 50(2): 209–220. https://doi.org/10.1007/s11430-007-2068-3
    Xu, X. S., Zhang, M., Zhu, K. Y., et al., 2012. Reverse Age Zonation of Zircon Formed by Metamictisation and Hydrothermal Fluid Leaching. Lithos, 150: 256–267. https://doi.org/10.1016/j.lithos.2011.12.014
    Xuan, Y. S., Yuan, S. D., Yuan, Y. B., et al., 2014. Zircon U-Pb Age, Geochemistry and Petrogenesis of Jianfengling Pluton in Southern Hunan Province. Mineral Deposits, 33(6): 1379–1390. https://doi.org/10.16111/j.0258-7106.2014.06.015 (in Chinese with English Abstract)
    Yan, H. B., He, J. J., Liu, X. W., et al., 2020. Thermodynamic Investigation of the Hydrolysis Behavior of Fluorozirconate Complexes at 423.15–773.15 K and 100 MPa. Journal of Solution Chemistry, 49(6): 836–848. https://doi.org/10.1007/s10953-020-00993-1
    Yan, H. B., Ding, X., Ling, M. X., et al., 2021a. Three Late-Mesozoic Fluorite Deposit Belts in Southeast China and Links to Subduction of the (Paleo-) Pacific Plate. Ore Geology Reviews, 129: 103865. https://doi.org/10.1016/j.oregeorev.2020.103865
    Yan, H. B., Sun, W. D., Liu, J. F., et al., 2021b. Thermodynamic Properties of Ruthenium (IV) Chloride Complex and the Transport of Ruthenium in Magmatic-Hydrothermal Fluids. Ore Geology Reviews, 131: 104043. https://doi.org/10.1016/j.oregeorev.2021.104043
    Yang, J. H., Peng, J. T., Zhao, J. H., et al., 2012. Petrogenesis of the Xihuashan Granite in Southern Jiangxi Province, South China: Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd Isotopes. Acta Geologica Sinica—English Edition, 86(1): 131–152. https://doi.org/10.1111/j.1755-6724.2012.00617.x
    Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2012. Geochronology, Geochemistry and Tectonic Significance of Two Early Cretaceous A-Type Granites in the Gan-Hang Belt, Southeast China. Lithos, 150: 155–170. https://doi.org/10.1016/j.lithos.2012.01.028
    Yao, Y., Chen, J., Lu, J. J., et al., 2014. Geology and Genesis of the Hehuaping Magnesian Skarn-Type Cassiterite-Sulfide Deposit, Hunan Province, Southern China. Ore Geology Reviews, 58: 163–184. https://doi.org/10.1016/j.oregeorev.2013.10.012
    Zhang, R. Q., Lu, J. J., Wang, R. C., et al., 2013. Contrasting W and Sn Mineralization Events and Related Granitoids in Wangxianling-Hehuaping Area, Nanling Range, South China. In: Mineral Deposit Research for a High-Tech World, 12th SGA Biennial Meeting, Uppsala, Sweden. 1343–1346
    Zhang, R. Q., Lu, J. J., Wang, R. C., et al., 2015. Constraints of in situ Zircon and Cassiterite U-Pb, Molybdenite Re-Os and Muscovite 40Ar-39Ar Ages on Multiple Generations of Granitic Magmatism and Related W-Sn Mineralization in the Wangxianling Area, Nanling Range, South China. Ore Geology Reviews, 65: 1021–1042. https://doi.org/10.1016/j.oregeorev.2014.09.021
    Zhang, Z. J., Zuo, R. G., Cheng, Q. M., 2015. The Mineralization Age of the Makeng Fe Deposit, South China: Implications from U-Pb and Sm-Nd Geochronology. International Journal of Earth Sciences, 104(3): 663–682. https://doi.org/10.1007/s00531-014-1096-4
    Zhang, Z. K., Ling, M. X., Lin, W., et al., 2020. "Yanshanian Movement" Induced by the Westward Subduction of the Paleo-Pacific Plate. Solid Earth Sciences, 5(2): 103–114. https://doi.org/10.1016/j.sesci. 2020.04.002 doi: 10.1016/j.sesci.2020.04.002
    Zhao, K. D., Jiang, S. Y., Yang, S. Y., et al., 2012. Mineral Chemistry, Trace Elements and Sr-Nd-Hf Isotope Geochemistry and Petrogenesis of Cailing and Furong Granites and Mafic Enclaves from the Qitianling Batholith in the Shi-Hang Zone, South China. Gondwana Research, 22(1): 310–324. https://doi.org/10.1016/j.gr.2011.09.010
    Zhao, W. W., Zhou, M. F., Li, Y. H. M., et al., 2017. Genetic Types, Mineralization Styles, and Geodynamic Settings of Mesozoic Tungsten Deposits in South China. Journal of Asian Earth Sciences, 137: 109–140. https://doi.org/10.1016/j.jseaes.2016.12.047
    Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269–287. https://doi.org/10.1016/s0040-1951(00)00120-7
    Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26–33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
    Zhou, Y., Liang, X. Q., Wu, S. C., et al., 2015. Isotopic Geochemistry, Zircon U-Pb Ages and Hf Isotopes of A-Type Granites from the Xitian W-Sn Deposit, SE China: Constraints on Petrogenesis and Tectonic Significance. Journal of Asian Earth Sciences, 105: 122–139. https://doi.org/10.1016/j.jseaes.2015.03.006
    Zhu, W. G., Zhong, H., Li, X. H., et al., 2010. The Early Jurassic Mafic-Ultramafic Intrusion and A-Type Granite from Northeastern Guangdong, SE China: Age, Origin, and Tectonic Significance. Lithos, 119(3/4): 313–329. https://doi.org/10.1016/j.lithos.2010.07.005
    Zhuang, W. M., Chen, S. Q., Huang, Y. Y., 2000. Geological and Geochemical Characteristics of Fogang Composite Pluton and Its Source Rock. Guangdong Geology, 15: 1–12 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(238) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return