Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 6
Dec 2022
Turn off MathJax
Article Contents
Kazuhiko Fujita, Yoji Kanda, Takashi Hosono. Light is an Important Limiting Factor for the Vertical Distribution of the Largest Extant Benthic Foraminifer Cycloclypeus carpenteri. Journal of Earth Science, 2022, 33(6): 1460-1468. doi: 10.1007/s12583-022-1612-6
Citation: Kazuhiko Fujita, Yoji Kanda, Takashi Hosono. Light is an Important Limiting Factor for the Vertical Distribution of the Largest Extant Benthic Foraminifer Cycloclypeus carpenteri. Journal of Earth Science, 2022, 33(6): 1460-1468. doi: 10.1007/s12583-022-1612-6

Light is an Important Limiting Factor for the Vertical Distribution of the Largest Extant Benthic Foraminifer Cycloclypeus carpenteri

doi: 10.1007/s12583-022-1612-6
More Information
  • Corresponding author: Kazuhiko Fujita, fujitaka@sci.u-ryukyu.ac.jp
  • Received Date: 12 Dec 2021
  • Accepted Date: 05 Jan 2022
  • Issue Publish Date: 30 Dec 2022
  • Cycloclypeus carpenteri is the largest extant benthic foraminifer, dwelling in the deep euphotic zone (a water depth between 60 and 130 m) of the warm oligotrophic Indo-West Pacific. This foraminifer harbors diatom endosymbionts and the foraminifer-microalgal association acts like a holobiont. To verify that light is an important limiting factor controlling the vertical (depth) distribution of living Cycloclypeus holobionts, their physiological responses to light intensity were examined by short-term metabolic measurements and long-term incubations. Net oxygen production (OP) rates measured under different light levels using an oxygen microelectrode indicate that Cycloclypeus holobionts are daily net primary producers adapted to low light levels, with slight photoinhibition (reduced net OP rates relative to a light-saturated rate) over 100 μmol photons m-2 s-1. Long-term growth increments of asexually reproduced juveniles incubated for two months at different light levels ranging from 0 to 100 μmol photons m-2 s-1 show that Cycloclypeus holobionts are adapted to a low light level (~5 μmol photons m-2 s-1), but can be acclimatized to a certain low light ranges (< 50 μmol photons m-2 s-1). These experimental results confirm that light is an important environmental gradient affecting the vertical distribution of Cycloclypeus holobionts.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1612-6.
  • loading
  • Amano, A., Itaki, T., Katayama, H., 2011. Oceanographic Condition in the Southwest off the Okinawa Island. In: Arai, K., ed., Marine Geological and Geophysical Studies around Okinawa Island—Western off of Okinawa Island—Preliminary Reports on Researches in the 2010 Fiscal Year, GSJ Interim Report (55). Geological Survey of Japan, AIST, Tsukuba. 68–75 (in Japanese)
    Doo, S. S., Fujita, K., Byrne, M., et al., 2014. Fate of Calcifying Tropical Symbiont-Bearing Large Benthic Foraminifera: Living Sands in a Changing Ocean. The Biological Bulletin, 226(3): 169–186. https://doi.org/10.1086/bblv226n3p169
    Fujita, K., Fujimura, H., 2008. Organic and Inorganic Carbon Production by Algal Symbiont-Bearing Foraminifera on Northwest Pacific Coral-Reef Flats. The Journal of Foraminiferal Research, 38(2): 117–126. https://doi.org/10.2113/gsjfr.38.2.117
    Fujita, K., Okai, T., Hosono, T., 2014. Oxygen Metabolic Responses of Three Species of Large Benthic Foraminifers with Algal Symbionts to Temperature Stress. PLoS One, 9(3): e90304. https://doi.org/10.1371/journal.pone.0090304
    Hallock, P., 1988. Diversification in Algal Symbiont-Bearing Foraminifera: A Response to Oligotrophy? Revue de Paléobiologie, Spéc: 789–797
    Hallock, P., Forward, L. B., Hansen, H. J., 1986. Influence of Environment on the Test Shape of Amphistegina. The Journal of Foraminiferal Research, 16(3): 224–231. https://doi.org/10.2113/gsjfr.16.3.224
    Hallock, P., Seddighi, M., 2022. Why did some Larger Benthic Foraminifera Become so Large and Flat? Sedimentology, 69(1): 74–87. https://doi.org/10.1111/sed.12837
    Hallock, P., Talge, H. K., Cockey, E. M., et al., 1995. A New Disease in Reef-Dwelling Foraminifera: Implications for Coastal Sedimentation. The Journal of Foraminiferal Research, 25(3): 280–286. https://doi.org/10.2113/gsjfr.25.3.280
    Hohenegger, J., 2004. Depth Coenoclines and Environmental Considerations of Western Pacific Larger Foraminifera. The Journal of Foraminiferal Research, 34(1): 9–33. https://doi.org/10.2113/0340009
    Hohenegger, J., 2000. Remarks on West Pacific Nummulitidae (Foraminifera). The Journal of Foraminiferal Research, 30(1): 3–28. https://doi.org/10.2113/0300003
    Holzmann, M., Berney, C., Hohenegger, J., 2006. Molecular Identification of Diatom Endosymbionts in Nummulitid Foraminifera. Symbiosis, 42: 93–101
    Hosono, T., Fujita, K., Kayanne, H., 2012. Estimating Photophysiological Condition of Endosymbiont-Bearing Baculogypsina sphaerulata Based on the Holobiont Color Represented in CIE L*a*b* Color Space. Marine Biology, 159(12): 2663–2673. https://doi.org/10.1007/s00227-012-2024-4
    Iryu, Y., Nakamori, T., Matsuda, S., et al., 1995. Distribution of Marine Organisms and Its Geological Significance in the Modern Reef Complex of the Ryukyu Islands. Sedimentary Geology, 99(3/4): 243–258. https://doi.org/10.1016/0037-0738(95)00047-c
    Itaki, T., Amano, A., Katayama, H., et al., 2011. Bottom Sediments in West off the Okinawa Main Island (Around Kume-Zima and Kerama Islands). In: Arai, K., ed., Marine Geological and Geophysical Studies Around Okinawa Island—Western off of Okinawa Island—Preliminary Reports on Researches in the 2010 Fiscal Year, GSJ Interim Report (55). Geological Survey of Japan, AIST, Tsukuba. 57–67 (in Japanese)
    Jeffrey, S. W., Humphrey, G. F., 1975. New Spectrophotometric Equations for Determining Chlorophylls a, b, c1 and c2 in Higher Plants, Algae and Natural Phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2): 191–194. https://doi.org/10.1016/s0015-3796(17)30778-3
    Kawahata, H., Fujita, K., Iguchi, A., et al., 2019. Perspective on the Response of Marine Calcifiers to Global Warming and Ocean Acidification—Behavior of Corals and Foraminifera in a High CO2 World "Hot House". Progress in Earth and Planetary Science, 6: 5. https://doi.org/10.1186/s40645-018-0239-9
    Koba, M., 1978. Distribution and Environment of Recent Cycloclypeus. Science Reports of the Tohoku University, 7th Series (Geography), 28: 283–311
    Köhler-Rink, S., Kühl, M., 2001. Microsensor Studies of Photosynthesis and Respiration in the Larger Symbiont Bearing Foraminifera Amphistegina lobifera, and Amphisorus hemprichii. Ophelia, 55(2): 111–122. https://doi.org/10.1080/00785236.2001.10409478
    Krüger, R., Röttger, R., Lietz, R., et al., 1997. Biology and Reproductive Processes of the Larger Foraminiferan Cycloclypeus carpenteri (Protozoa, Nummulitidae). Archiv für Protistenkunde, 147(3/4): 307–321. https://doi.org/10.1016/s0003-9365(97)80057-7
    Langer, M. R., Hottinger, L., 2000. Biogeography of Selected "Larger" Foraminifera. Micropaleontology, 46: 105–126
    Lee, J. J., McEnery, M. E., Garrison, J. R., 1980. Experimental Studies of Larger Foraminifera and Their Symbionts from the Gulf of Elat on the Red Sea. The Journal of Foraminiferal Research, 10(1): 31–47. https://doi.org/10.2113/gsjfr.10.1.31
    Lee, J. J., McEnery, M. E., Kuile, B. T., et al., 1989. Identification and Distribution of Endosymbiotic Diatoms in Larger Foraminifera. Micropaleontology, 35(4): 353. https://doi.org/10.2307/1485677
    Lee, M. J., Ellis, R., Lee, J. J., 1982. A Comparative Study of Photoadaptation in Four Diatoms Isolated as Endosymbionts from Larger Foraminifera. Marine Biology, 68(2): 193–197. https://doi.org/10.1007/bf00397606
    Leutenegger, S., 1984. Symbiosis in Benthic Foraminifera: Specificity and Host Adaptations. The Journal of Foraminiferal Research, 14(1): 16–35. https://doi.org/10.2113/gsjfr.14.1.16
    Narayan, G. R., Reymond, C. E., Stuhr, M., et al., 2022. Response of Large Benthic Foraminifera to Climate and Local Changes: Implications for Future Carbonate Production. Sedimentology, 69(1): 121–161. https://doi.org/10.1111/sed.12858
    Nobes, K., Uthicke, S., Henderson, R., 2008. Is Light the Limiting Factor for the Distribution of Benthic Symbiont Bearing Foraminifera on the Great Barrier Reef? Journal of Experimental Marine Biology and Ecology, 363(1/2): 48–57. https://doi.org/10.1016/j.jembe.2008.06.015
    Oron, S., Abramovich, S., Almogi-Labin, A., et al., 2018. Depth Related Adaptations in Symbiont Bearing Benthic Foraminifera: New Insights from a Field Experiment on Operculina ammonoides. Scientific Reports, 8: 9560. https://doi.org/10.1038/s41598-018-27838-8
    Prazeres, M., Renema, W., 2019. Evolutionary Significance of the Microbial Assemblages of Large Benthic Foraminifera. Biological Reviews of the Cambridge Philosophical Society, 94(3): 828–848. https://doi.org/10.1111/brv.12482
    Prazeres, M., Uthicke, S., Pandolfi, J. M., 2016a. Changing Light Levels Induce Photo-Oxidative Stress and Alterations in Shell Density of Amphistegina lobifera (Foraminifera). Marine Ecology Progress Series, 549: 69–78. https://doi.org/10.3354/meps11698
    Prazeres, M., Uthicke, S., Pandolfi, J. M., 2016b. Influence of Local Habitat on the Physiological Responses of Large Benthic Foraminifera to Temperature and Nutrient Stress. Scientific Reports, 6: 21936. https://doi.org/10.1038/srep21936
    R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
    Renema, W., 2015. Spatiotemporal Variation in Morphological Evolution in the Oligocene-Recent Larger Benthic Foraminifera Genus Cycloclypeus Reveals Geographically Undersampled Speciation. GeoResJ, 5: 12–22. https://doi.org/10.1016/j.grj.2014.11.001
    Reymond, C. E., Lloyd, A., Kline, D. I., et al., 2013. Decline in Growth of Foraminifer Marginopora rossi under Eutrophication and Ocean Acidifi-cation Scenarios. Global Change Biology, 19(1): 291–302. https://doi.org/10.1111/gcb.12035
    Ross, B. J., Hallock, P., 2019. Survival and Recovery of the Foraminifer Amphistegina gibbosa and Associated Diatom Endosymbionts Following up to 20 Months in Aphotic Conditions. Marine Micropaleontology, 149: 35–43. https://doi.org/10.1016/j.marmicro. 2019.03.013 doi: 10.1016/j.marmicro.2019.03.013
    Schmidt, C., Heinz, P., Kucera, M., et al., 2011. Temperature-Induced Stress Leads to Bleaching in Larger Benthic Foraminifera Hosting Endosymbiotic Diatoms. Limnology and Oceanography, 56(5): 1587–1602. https://doi.org/10.4319/lo.2011.56.5.1587
    Schmidt, C., Kucera, M., Uthicke, S., 2014. Combined Effects of Warming and Ocean Acidification on Coral Reef Foraminifera Marginopora vertebralis and Heterostegina depressa. Coral Reefs, 33(3): 805–818. https://doi.org/10.1007/s00338-014-1151-4
    Schmidt, C., Morard, R., Prazeres, M., et al., 2016. Retention of High Thermal Tolerance in the Invasive Foraminifera Amphistegina lobifera from the Eastern Mediterranean and the Gulf of Aqaba. Marine Biology, 163(11): 1–13. https://doi.org/10.1007/s00227-016-2998-4
    Sinutok, S., Hill, R., Doblin, M. A., et al., 2011. Warmer more Acidic Conditions Cause Decreased Productivity and Calcification in Subtro-pical Coral Reef Sediment-Dwelling Calcifiers. Limnology and Oceanography, 56(4): 1200–1212. https://doi.org/10.4319/lo.2011. 56.4.1200 doi: 10.4319/lo.2011.56.4.1200
    Sinutok, S., Hill, R., Kühl, M., et al., 2014. Ocean Acidification and Warming Alter Photosynthesis and Calcification of the Symbiont-Bearing Foraminifera Marginopora vertebralis. Marine Biology, 161(9): 2143–2154. https://doi.org/10.1007/s00227-014-2494-7
    Stuhr, M., Reymond, C. E., Rieder, V., et al., 2017. Reef Calcifiers are Adapted to Episodic Heat Stress but Vulnerable to Sustained Warming. PLoS One, 12(7): e0179753. https://doi.org/10.1371/journal.pone.0179753
    Toki, T., Furukawa, M., Yoshimura, H., et al., 2011. Geochemical and Geological Investigations in the Area around the Southern Ryukyu Islands—Report on RN10 Cruise by T/S Nagasaki-Maru. Bulletin of Faculty of Science, University of the Ryukyus, (91): 9–19
    Tsuji, Y., 1993. Tide Influenced High Energy Environments and Rhodolith-Associated Carbonate Deposition on the Outer Shelf and Slope off the Miyako Islands, Southern Ryukyu Island Arc, Japan. Marine Geology, 113(3/4): 255–271. https://doi.org/10.1016/0025-3227(93)90021-m
    Uthicke, S., Fabricius, K. E., 2012. Productivity Gains do not Compensate for Reduced Calcification under Near-Future Ocean Acidification in the Photosynthetic Benthic Foraminifer Species Marginopora vertebralis. Global Change Biology, 18(9): 2781–2791. https://doi.org/10.1111/j.1365-2486.2012.02715.x
    Uthicke, S., Vogel, N., Doyle, J., et al., 2012. Interactive Effects of Climate Change and Eutrophication on the Dinoflagellate-Bearing Benthic Foraminifer Marginopora vertebralis. Coral Reefs, 31(2): 401–414. https://doi.org/10.1007/s00338-011-0851-2
    Vogel, N., Uthicke, S., 2012. Calcification and Photobiology in Symbiont-Bearing Benthic Foraminifera and Responses to a High CO2 Environment. Journal of Experimental Marine Biology and Ecology, 424/425: 15–24. https://doi.org/10.1016/j.jembe.2012.05.008
    Walker, R. A., Hallock, P., Torres, J. J., et al., 2011. Photosynthesis and Respiration in Five Species of Benthic Foraminifera that Host Algal Endosymbionts. The Journal of Foraminiferal Research, 41(4): 314–325. https://doi.org/10.2113/gsjfr.41.4.314
    Williams, D. E., Hallock, P., 2004. Bleaching in Amphistegina gibbosa d'Orbigny (Class Foraminifera): Observations from Laboratory Experiments Using Visible and Ultraviolet Light. Marine Biology, 145(4): 641–649. https://doi.org/10.1007/s00227-004-1351-5
    Ziegler, M., Uthicke, S., 2011. Photosynthetic Plasticity of Endosymbionts in Larger Benthic Coral Reef Foraminifera. Journal of Experimental Marine Biology and Ecology, 407(1): 70–80. https://doi.org/10.1016/j.jembe.2011.07.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(136) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return