Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Limei Tang, Hanlin Chen, Chuanwan Dong, Fengyou Chu. Geochronology, Geochemistry and Its Tectonic Significance of Chahe Granites in Hainan Island. Journal of Earth Science, 2013, 24(4): 619-625. doi: 10.1007/s12583-013-0361-y
Citation: Peter Lunt, Xiwu Luan. SE Asian Cenozoic Larger Foraminifera: Taxonomic Questions, Apparent Radiation and Abrupt Extinctions. Journal of Earth Science, 2022, 33(6): 1378-1399. doi: 10.1007/s12583-022-1614-4

SE Asian Cenozoic Larger Foraminifera: Taxonomic Questions, Apparent Radiation and Abrupt Extinctions

doi: 10.1007/s12583-022-1614-4
More Information
  • Corresponding author: Xiwu Luan, xluan@sdust.edu.cn
  • Received Date: 23 Jan 2021
  • Accepted Date: 10 Jan 2022
  • Issue Publish Date: 30 Dec 2022
  • The Cenozoic larger foraminifera are important for biostratigraphy in SE Asia. This review examines the taxonomic inconsistencies of this group and especially the confusion over concepts of evolution, migration, radiation and extinction. It is proposed that from the Mediterranean to Indo-Pacific, Latest Eocene through Miocene, larger foraminifera populations were more homogenous than previously believed. Lineages show a slow morphological radiation interrupted by several extinctions. This pattern is superimposed on a long-term decline in larger foraminiferal abundance. The dating of the major biostratigraphic events are qualified. The main lineages of larger foraminifera can be classified by their evolutionary style. The classically "large" genera have highly peramorphic trends achieved through strong orthoselection, and these lineages were the most severely hit by a series of Mid-Eocene to Mid-Miocene extinction events. Other carbonate facies taxa that are traditionally grouped with the larger foraminifera are characterised by weak paramorphism, and these were much less affected by the extinction events. Some of these weakly peramorphic forms underwent Latest Miocene to recent radiation to and locally become rock-forming organisms. The three major and one minor larger foraminiferal extinction events since the Mid Eocene coincide with abrupt tectonic events across SE Asia. However, there are probably multiple causes for these extinctions, including global climatic changes.

     

  • Granitic magmatic rocks are widely distributed in Hainan Island, with multi-phase event characteristics. Granites since the Mesozoic are mainly intrusive rocks such as Hercynian–Indosinian granites (which take about 40% of the island), Yanshanian granite porphyry and granodiorite. The second eruption phase is Late Yanshanian acid volcanic rocks. Some researchers have done some research on Mesozoic granite in Hainan Island, such as Ge (2003) believed that Qiongzhong and Dan County batholith granitoids belong to high-K and calc-alkaline granitiods with potassium feldspar phenocrysts; meanwhile they had the native orientation construct, and were the product of tectonic evolution with compressionrelaxation- compression. Qiongzhong batholith formed in 237 Ma, maybe in the relaxation stage after the Indosinian collision orogeny peak stage, while the Dan County batholith formed in 186 Ma, which was the end stage of orogeny. Yun et al. (2005) and Li et al. (2005) believed that the Qiongzhong granites formed in 233 Ma, belonged to high-K calc-alkaline series, and formed in regional compression collision environment. Previous studies on Indosinian granites have focused on Triassic, but very few on the granite formed in Late Permian. This article will report petrology and geochemical characteristics of granites in Chahe area, southwest of Hainan Island, and its geochronology combined to discuss the tectonic significance.

    Chahe granites are exposed in Chahe Town in Changjiang City, Hainan Island (Fig. 1). The rocks are red, holocrystalline, medium to coarse-grained and massive structure. The main minerals are plagioclase, K-feldspar and quartz, and the minor minerals are biotites. On the rock surface, there can be seen red Kfeldspar, gray plagioclase and quartz. The plagioclase is platy, subhedral-anhedral, with cassette crystal twins and albite polysynthetic crystal, while the Kfeldspar is mainly microcline and microperthite, with the lattice crystal twins (Fig. 2a) and envelope crystal twins (Fig. 2b). The quartz is colorless and with irregular crystal, and the biotite is brown-light yellow. Accessory minerals are magnetite, allanite, phosphorite and zircon. The mafic minerals are late-stage crystals interstitial to the feldspar and quartz.

    Figure  1.  The geological sketch map of Chahe granite in Hainan Island.
    Figure  2.  Microphotographs showing the crystal twins of K-feldspar. (a) Lattice crystal twins; (b) envelope crystal twins.

    The zircons come from the granite above, and the specific sampling location is 19°14′10.5″N, 108°54′ 13.1″E. Zircons have been separated using standard density and magnetic separation techniques. Random zircon grains were handpicked under a Nikon binocular microscope and were mounted in epoxy in a 1.4 cm diameter circular grain mount. The mount was then polished to section the crystals in half for analysis. In order to characterize the internal structures of the zircons and to choose potential target sites for UPb dating, back scatter electron (BSE) images and cathodeluminescence (CL) images (Fig. 3) were obtained using a JEOLJXA-8100 microprobe at the State Key Laboratory of Mineral Deposit Research, Nanjing University, Nanjing. The operating conditions were: 15 k accelerating voltage, 20 n abeam current.

    Figure  3.  CL microphotographs, dating spots and 206Pb/238U ages of part representative zircons from granite in Chahe.

    Zircon U-Pb analyses have been carried out at the State Key Laboratory of Mineral Deposit Research, Nanjing University, Nanjing. An agilent 7500a ICPMS equipped with new wave research 213 nm laser ablation system was used. The laser system delivers a beam of 213 nm UV light from a frequencyquintupled Nd: YAG laser. The ablated material is transported in a He carrier gas through 3 mm i.d. PVC tubing and then combined with Ar in a 30 cm3 mixing chamber prior to entering the ICP-MS for isotopic quantification. Analyses were carried out with a beam diameter of 30–40 μm, 5 Hz repetition rate, and energy of 10–20 J/cm2. Data acquisition for each analysis took 100 s (40 s on background, 60 s on signal). Raw count rates for 206Pb, 207Pb, 208Pb, 232Th and 238U were collected for age determination. Mass discrimination of the mass spectrometer and residual elemental fractionation were corrected by calibration against a homogeneous zircon standard, GEMOC/GJ-1 (609 Ma). Samples are analyzed in 'runs' of ca. 14 analyses, which include 10 unknowns, bracketed by 4 analyses of the standard. Detailed analytical procedures are similar to those described by Jackson et al. (2004). The raw ICP-MS data were exported in ASCII format and processed using GLITTER (ver. 4.0, Macquarie University). The age calculations and plotting of concordia diagrams were made using isoplot (ver. 2.49). The concentrations of U and Th in each analytical spot were derived by comparison of background-corrected count rates with mean count rates on the GJ-1 standard, which has well-known mean U and Th contents of 230 ppm and 15 ppm. A weighted mean 207Pb/206Pb age of 610±11 (2σ, n=8) Ma of GJ-1 was obtained during this study, which is in good agreement with a highly precise 207Pb/206Pb age of 608.5±0.4 Ma by TIMS analysis of Jackson et al. (2004).

    Major elements were analyzed using an ARL9800XP+X-ray fluorescence spectrometer (XRF) at the Centre of Modern Analysis, Nanjing University, following the procedures described by Franzini et al. (1972), and the analytical precision is generally less than 2%. Trace and REE elements were measured in the State Key Laboratory of Mineral Deposit Research, Nanjing University, using Finnigan Element II ICPMS, with precision better than 10% for most of the elements analyzed. The detailed analytical procedure followed Gao et al. (2003). The Sr and Nd isotopic compositions were measured using an England VG354 isotope mass spectrograph at the Centre of Modern Analysis, Nanjing University.

    Eighteen zircons U-Pb age dating results were got, and their analyses were carried out (Table 1). CL photos, dating spots and 206Pb/238U ages of part representative zircons are provided in Fig. 3. According to the CL photos (Fig. 3), the zircons of the granites are euhedral and have obvious magma ring. From 18 dating results, the Th/U ratios of all of the zircons are above 0.4, and have the feature of the classical magma zircons (Wu and Zheng, 2004), and lack any inherited cores. All of the analyses plot on or near the concordia curve (Fig. 4) and yield the 206Pb/238U age within 245±3 to 255±3 Ma. The weighted mean age for the seventeen analyses is 251±1.4 Ma (MSWD=0.89), which records the age of granite in Chahe, Hainan Island.

    Table  1.  LA-ICP-MS U-Pb dating results of zircon from granite in Chahe
     | Show Table
    DownLoad: CSV
    Figure  4.  U-Pb concordia diagram for zircons for the granite in Chahe.

    The major and trace element analyses for representative samples from Chahe granites are listed in Table 2. The rocks have higher SiO2 contents (75.4 wt.%), and are alkali-rich, with K2O+Na2O ranging from 8.40 wt.% to 8.49 wt.%, and K2O/Na2O ratio ranging from 1.42 to 1.59, Fe2O3 ranging from 1.42 wt.% to 1.64 wt.%, whereas poor in MgO content (0.01 wt.%) and CaO content 0.87 wt.% to 0.96 wt.%. The A/CNK ratio is ranging from 1.09 to 1.11, with A.I. ranging from 0.83 to 0.86. It belongs to peraluminous granite. The rocks from Chahe can be contrasted to typical A-type granites (Eby, 1992), which also cont alkali mafic minerals and are rich in SiO2, alkali, Fe2O3 while depleted in MgO and CaO.

    Table  2.  Major (wt.%) and trace element (ppm) analytical results from Chahe granites
     | Show Table
    DownLoad: CSV

    The trace and rare elements results (Table 2 and Fig. 5) suggest that, Chahe granites have the characteristic of very low Sr and high Yb, with Sr content ranging from 23×10-6 to 24×10-6, Yb content ranging from 4.72×10-6 to 8.35×10-6. Depleting Sr is the main feature, meanwhile poor in Ba, P, Ti and Eu. The samples have flat REE chondrite-normalized patterns, with obvious negative Eu anomalies, whose shape like a swallow, and should belong to A-type granites (Zhang et al., 2008).

    Figure  5.  Chondrite-normalized REE diagrams (a) and MORB-normalized spidergrams (b) for Chahe granites (chondrite values after Boynton, 1984; MORB values after Pearce et al., 1983).

    Previous studies show that, granites with very low Sr and high-Yb formed in very low pressure setting, which represent the product of crust thinning (Zhang et al., 2008; Wu F Y et al., 2007; Eby, 1992; Whalen et al., 1987). In Fig. 6, Chahe granites samples are basically in the region of A-type granites, and belong to A2-type granites, which are similar to the average continental crust and island arc basalt, the magma is from continental crust or derived by island arc magma, produced in the post-collision or postorogenic tectonic setting (Eby, 1992).

    Figure  6.  10 000× Ga/A1 versus Na2O+K2O, K2O/MgO, Zr and Nb diagrams of syenite in Fenjiezhou (a), (b), (c) and (d), after Whalen et al. (1987), and Nb-Y-3Ga, Nb-Y-Ce diagrams (e) and (f), after Eby (1992).

    At present, there are many different cognitions about the tectonic evolution of Hainan Island. Yang et al. (1989) thought that Hainan Island was the cracking block of Australia, Zhang et al. (1997) thought that Hainan Island was the part of SE China, but both of them also thought that the southern and northern two parts of Hainan Island were connected by the Jiusuo-Lingshui fault. Li et al. (2000a, b) thought that the southern part of Hainan Island was belonged to SE China, and the northern part belonged to Indo-China Peninsula, there was an ancient ocean between the two parts, which were connected by Changjiang-Qionghai fault. Liu et al. (2006) proposed the existence of a 'South Hainan Island suture', and indicated that there were two ancient oceans among the southern, middle and northern of Hainan Island, called southern ocean and northern ocean of Hainan Island. Now though the suture zone of each block of Hainan Island can't be identified consistently, most of the scholars think that the collision time was Triassic. The garnet acmite syenite from Sanya in Hainan Island formed in 244±7 Ma, and was in post-orogenic extensional setting (Xie et al., 2005), while the Wanning hornblende gabbro in Hainan Island formed in 241 Ma, and also was in post-orogenic setting (Tang et al., 2010), suggesting that Hainan Island was in post-orogenic extensional setting in Early Triassic, which means the collision time must be more earlier.

    Chahe granites mentioned in this article formed in 251 Ma, and have all the mineralogy and geochemistry features which are consistent with A-type granite as talked above, such as richness in SiO2, alkali, Fe2O3 while depleted in MgO and CaO, with low Sr and high Yb, and all the samples were in A-type region in the type diagrams. Since A-type can be recognized as the typical product of post-orogenic setting, then the forming of Chahe granites suggests that Hainan Island was already in post-orogenic setting in Late Permian.

    ACKNOWLEDGMENTS: We are grateful to editorial's suggestions. This study was supported by the Basic Scientific Research Specific Foundation of Second Institute of Oceanography (No. JT1104), the China Postdoctoral Science Foundation (No. 2011M500991) and the State Oceanic Administration Foundation of China (No. 2013335). We are thankful to Hainan Provincial Institute of Geological Survey for field-work assistance, and to Profs. X S Xu, W L Zhang, and B Wu, for the LA-ICP-MS zircon dating and electron probe testing, which were done in the State Key Laboratory for Mineral Deposits Research, Nanjing University.
  • Abdulsamad, E. O., Barbieri, R., 1999. Foraminiferal Distribution and Palaeoecological Interpretation of the Eocene–Miocene Carbonates at al Jabal al Akhdar (Northeast Libya). Journal of Micropalaeontology, 18(1): 45–65. https://doi.org/10.1144/jm.18.1.45
    Abdulsamad, E. O., Bu-Argoub, F. M., Tmalla, A. F. A., 2009. A Stratigraphic Review of the Eocene to Miocene Rock Units in the al Jabal al Akhdar, NE Libya. Marine and Petroleum Geology, 26(7): 1228–1239. https://doi.org/10.1016/j.marpetgeo.2008.06.003
    Adams, C. G., 1965. The Foraminifera and Stratigraphy of the Melinau Limestone, Sarawak, and Its Importance in Tertiary Correlation. Quarterly Journal of the Geological Society, 121(1/2/3/4): 283–338. https://doi.org/10.1144/gsjgs.121.1.0283
    Adams, C. G., 1970. A Reconsideration of the East Indian Letter Classification of the Tertiary. Bulletins of the British Museum (Natural History), 19(3): 1–137
    Adams, C. G., 1983. Speciation, Phylogenesis, Tectonism, Climate and Eustasy: Factors in the Evolution of Cenozoic Larger Foraminifera. In: Sims, R. W., Price, J. H., Whalley, P. E. S., eds., Evolution, Time and Space: The Emergence of the Biosphere, Academic Press, London, New York. 255–289
    Adams, C. G., 1984. Neogene Larger Foraminifera, Evolutionary and Geological Events in the Context of Datum Planes. Pacific Neogene Datum Planes. University of Tokyo Press, Tokyo. 47–68
    Adams, C. G., Haak, R., 1962. The Stratigraphical Succession in the Batu Gading Area, Middle Baram, North Sarawak. In: The Geology and Mineral Resources of the Suai-Baram Area, North Sarawak. Geological Survey Department British Territories, Borneo. 141–150
    Adams, C. G., Frame, P., 1979. Observations on Cycloclypeus (Cycloclypeus) Carpenter and Cycloclypeus (Katacycloclypeus) Tan (Foraminifera). Bulletin of the British Museum of Natural History (Geology), 32(1): 3–17
    Allan, T., Trotter, J. A., Whitford, D. J., et al., 2000. Strontium Isotope Stratigraphy and the Oligocene-Miocene T-Letter "Stages" in Papua New Guinea. Papua New Guinea's Petroleum Industry in the 21st Century: Proceedings of the Fourth PNG Petroleum Convention. May 29–31, 2000, Port Moresby, PNG. 155–168
    Amato, V., Drooger, C. W., 1969. How to Measure the Angle γ in the Miogypsinidae. Revista Española de Micropaleontologia, 1(1): 19–244
    Banner, F. T., Hodgkinson, R. L., 1991. A Revision of the Foraminiferal Subfamily Heterostegininae. Revista Española de Micropaleontologia, XXIII(2): 101–140
    Banner, F. T., Samuel, M. A., 1995. Alanlordia, a New Genus of Acervuline Foraminifera from the Neogene of Indonesia. Journal of Micropalaeon-tology, 14(2): 107–117. https://doi.org/10.1144/jm.14.2.107
    Berggren, W. A., Kent, D. V., Flynn, J. J., 1985. Jurassic to Paleogene: Part 2. Palaeogene Geochronology and Chronostratigraphy. In: Snelling, N. J., ed., The Chronology of the Geological Record (Memoir 10). Geological Society of London, London. 141–186
    Berggren, W. A., Prothero, D. R., 1992. Eocene-Oligocene Climatic and Biotic Evolution: An Overview. In: Prothero, D. R., Berggren, W. A., eds., Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton. 1–28
    Berggren, W. A., Kent, D. V., Swisher, C. C. III, et al., 1995. A Revised Cenozoic Geochronology and Chronostratigraphy. In: Berggren, W. A., Kent, D. V., Aubry, M. -P., et al., eds., Geochronology Time Scales and Global Correlation (54). SEPM Special Publication, 54: 129–212. https://doi.org/10.2110/pec.95.04.0129
    BouDagher-Fadel, M. K., Banner, F. T., 1999. Revision of the Stratigraphic Significance of the Oligocene-Miocene "Letter-Stages". Revue de Micropaléontologie, 42(2): 93–97. https://doi.org/10.1016/s0035-1598(99)90095-8
    BouDagher-Fadel, M. K., Price, G. D., 2013. The Phylogenetic and Palaeo-geographic Evolution of the Miogypsinid Larger Benthic Foraminifera. Journal of the Geological Society, 170(1): 185–208. https://doi.org/10.1144/jgs2011-149
    BouDagher-Fadel, M. K., Price, G. D., 2017. The Paleogeographic Evolution of the Orthophragminids of the Paleogene. Journal of Foraminiferal Research, 47(4): 337–357. https://doi.org/10.2113/gsjfr.47.4.337
    Bromfield, K., Renema, W., 2011. Comparison of 87Sr/86Sr Isotope and Biostratigraphic Ages of Uplifted Fossil Reefs in the Indo-Pacific: Indonesia, Papua New Guinea and Fiji. Australian Journal of Earth Sciences, 58(1): 61–73. https://doi.org/10.1080/08120099.2011.534816
    Cahuzac, B., Poignant, A., 1997. Essai de Biozonation de l'Oligo-Miocene dans les Bassins Européens à l'aide des Grands Foraminifères Néritiques. Bulletin de la Société Géologique de France, 168(2): 155–169
    Chaproniere, G. C. H., 1975. Palaeoecology of Oligo-Miocene Larger Foraminiferida, Australia. Alcheringa: An Australasian Journal of Pa-laeontology, 1(1): 37–58. https://doi.org/10.1080/03115517508619479
    Chaproniere, G. C. H., 1980. Biometrical Studies of Early Neogene Larger Foraminiferida from Australia and New Zealand. Alcheringa: An Australasian Journal of Palaeontology, 4(3): 153–181. https://doi.org/10.1080/03115518008618929
    Chaproniere, G. C. H., 1981. Australasian Mid-Tertiary Larger Foraminiferal Associations and Their Bearing on the East Indian Letter Classification. BMR Journal of Australian Geology & Geophysics, 6: 145–151
    Chaproniere, G. C. H., 1984. Oligocene and Miocene Larger Foraminiferida from Australia and New Zealand (Ⅵ). Australian Government Publishing Service, Canberra. 98
    Cole, W. S., 1954. Larger Foraminifera and Smaller Diagnostic Foraminifera from Bikini Drill Holes. U.S. Geological Survey Professional Paper, 260-O: 569–608
    Cole, W. S., 1957a. Larger Foraminifera from Eniwetok Drill Holes. U.S. Geological Survey Professional Paper, 260-V: 743–784
    Cole, W. S., 1957b. Larger foraminifera [of Saipan, Mariana Islands]. U.S. Geological Survey Professional Paper, 280-I: 321–357
    Cole, W. S., 1960. Upper Eocene and Oligocene Larger Foraminifera from Viti Levu, Fiji. U.S. Geological Survey Professional Paper, 374-A: 1–6
    Cole, W. S., 1963. Tertiary Larger Foraminifera from Guam. U.S. Geological Survey Professional Paper, 403-E: 1–28
    Cotton, L. J., Pearson, P. N., 2011. Extinction of Larger Benthic Foraminifera at the Eocene/Oligocene Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3/4): 281–296. https://doi.org/10.1016/j.palaeo.2011.09.008
    Cotton, L. J., Pearson, P. N., Renema, W., 2014. Stable Isotope Stratigraphy and Larger Benthic Foraminiferal Extinctions in the Melinau Limestone, Sarawak. Journal of Asian Earth Sciences, 79: 65–71. https://doi.org/10.1016/j.jseaes.2013.09.025
    Crotty, K. J., Engelhardt, D. W., 1993. Larger Foraminifera and Palyno-morphs of the Upper Malawa and Lower Tonasa Formations, South-western Sulawesi Island, Indonesia. Proceedings of the International Symposium on Biostratigraphy of Mainland Southeast Asia: Facies and Paleontology. Indonesian Petroleum Association. 71–82
    Drooger, C. W., 1963. Evolutionary Trends in Miogypsinidae. In: Evolutionary Trends in Foraminifera. Elsevier, Amsterdam. 315–349
    Drooger, C. W., 1993. Radial Foraminifera: Morphometrics and Evolution (41). Afd. Natuurkunde, Eerste Reeks, Deel 41, Amsterdam. 241
    Drooger, C. W., Raju, D. S. N., 1978. Early Miogypsinoides in Kutch, Western India (Ⅰ-Ⅱ). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen (B), 81: 186–219
    Fermont, W. J. J., 1977. Biometrical Investigations of the Genus Operculina in Recent Sediments of the Gulf of Eliat. Utrecht Micropaleontological Bulletins 15: 149–164
    Fermont, W. J. J., 1982. Discocydinidae from Ein Avedat (Israel). Utrecht Micropaleontological Bulletins, 27: 1–173
    Gold, D. P., White, L. T., Gunawan, I., et al., 2017. Relative Sea-Level Change in Western New Guinea Recorded by Regional Biostratigraphic Data. Marine and Petroleum Geology, 86: 1133–1158. https://doi.org/10.1016/j.marpetgeo.2017.07.016
    Gould, S. J., Eldredge, N., 1977. Punctuated Equilibria: The Tempo and Mode of Evolution Reconsidered. Paleobiology, 3(2): 115–151. https://doi.org/10.1017/s0094837300005224
    Gradstein, F. M., Ogg, J. G., Smith, A. G., 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge. 500
    Hassl, D. A., Hansen, T. A., 1996. Timing of Latest Eocene Molluscan Extinction Patterns in Mississppi. PALAIOS, 11(5): 487–494. https://doi.org/10.2307/3515214
    Hallock, P., 1985. Why are Larger Foraminifera Large? Paleobiology, 11(2): 195–208. https://doi.org/10.1017/s0094837300011507
    Hallock, P., Glenn, E. C., 1986. Larger Foraminifera: A Tool for Paleoenvironmental Analysis of Cenozoic Carbonate Depositional Facies. PALAIOS, 1(1): 55. https://doi.org/10.2307/3514459
    Hallock, P., Premoli Silva, I., Boersma, A., 1991. Similarities between Planktonic and Larger Foraminiferal Evolutionary Trends through Paleogene Paleoceanographic Changes. Palaeogeography, Palaeoclima-tology, Palaeoecology, 83(1/2/3): 49–64. https://doi.org/10.1016/0031-0182(91)90075-3
    Hansen, T. A., 1987. Extinction of Late Eocene to Oligocene Molluscs: Relationship to Shelf Area, Temperature Changes, and Impact Events. PALAIOS, 2(1): 69. https://doi.org/10.2307/3514573
    Haq, B. U., Al-Qahtani, A. M., 2005. Phanerozoic Cycles of Sea-Level Change on the Arabian Platform. GeoArabia 10: 127–160 doi: 10.2113/geoarabia1002127
    Hashimoto, W., Matsumaru, K., Kurihara, K., 1977. Larger Foraminifera from the Philippines, V. Larger Foraminifera from Cenozoic Limestones in the Mansalay Vicinity, Oriental Mindoro, with an Appendix "An Orbitoid-Bearing Limestone from Barahid, Bongabong. Geology and Palaeontology of Southeast Asia, 18: 59–76
    Hohenegger, J., 2000. Remarks on West Pacific Nummulitidae (Foraminifera). The Journal of Foraminiferal Research, 30(1): 3–28. https://doi.org/10.2113/0300003
    Ho, K. F., 1973. Morphometric Trend in Lepidocyclina and Its Application to Time Stratigraphy in N.W. Borneo. Shell Report Exp. 529
    Hottinger, L., 1977. Foraminiferes Operculiniformes. Memoires du Museum National d'Histoire Naturelle, Ser. C, Sei. Terre, 40: 1–159
    Hottinger, L., Romero, J., Caus, E., 2001. Architecture and Revision of the Pellatispirines, Planispiral Canaliferous Foraminifera from the Late Eocene Tethys. Micropaleontology, 47(2): 35–77
    Krijnen, W. F., 1931. Het Genus Spiroclypeus in her Indo-Pacifische Gebied. Verhandelingen van het Geologisch en Mijnbouwkundig Genootschap voor Nederland en Koloniën, Ⅺ: 77–112
    Laagland, H., 1990. Cycloclypeus in the Mediterranean Oligocene. Utrecht Micropaleontological Bulletins, 39: 171
    Lapre, J. F., Thornton, M. S., 1970. Carbonate Stratigraphy of the SE Platform Complex, Central Luconia Province. Shell report Exp. R. 1741
    Less, G., Özcan, E., 2008. The Late Eocene Evolution of Nummulitid Foraminifer Spiroclypeus in the Western Tethys. Acta Palaeontologica Polonica, 53(2): 303–316. https://doi.org/10.4202/app.2008.0211
    Leupold, W., van der Vlerk, I. M., 1931. The Tertiary. Leidsche Geologische Mededelingen, 5: 611–648
    Levit, G. S., Olsson, L., 2006. "Evolution on Rails": Mechanisms and Levels of Orthogenesis. Annals of the History and Philosophy of Biology, 11: 99–138
    Liechti, P., 1960. The Geology of Sarawak, Brunei and the Western Part of North Borneo (Bulletin 3). Geological Survey Department British Territories in Borneo, Kuching Sarawak
    Lunt, P., 1984. The Biostratigraphy and Palaeoecology of the Oligo-Miocene Terra Limestone, Western Cyprus: [Dissertation]. University College London, London. 90
    Lunt, P., 2003. Biogeography of some Eocene Larger Foraminifera, and Their Application in Distinguishing Geological Plates. Palaeontologica Electronica, 6(1): 1–22
    Lunt, P., 2013. The Sedimentary Geology of Java. Indonesian Petroleum Association, Jakarta. 346
    Lunt, P., 2021a. Biological Evolution of SE Asian Carbonates, Based on Their Microfossil Content. SEPM Special Publication, Cenozoic Isolated Carbonate Platforms-Focus Southeast Asia, https://doi.org/10.2110/sepmsp.114.07
    Lunt, P., 2021b. Tectono-Stratigraphic Framework of Luconia Carbonates. SEPM Special Publication, Cenozoic Isolated Carbonate Platforms-Focus Southeast Asia, https://doi.org/10.2110/sepmsp.114.08
    Lunt, P., Allan, T., 2004. A History and Application of Larger Foraminifera in Indonesian Biostratigraphy, Calibrated to Isotopic Dating. GRDC Workshop on Micropalaeontology. 112
    Lunt, P., Burgon, G., Baky, A., 2009. The Pemali Formation of Central Java and Equivalents: Indicators of Sedimentation on an Active Plate Margin. Journal of Asian Earth Sciences, 34(1): 100–113. https://doi.org/10.1016/j.jseaes.2008.03.006
    Lunt, P., Renema, W., 2014. On the Heterostegina-Tansinhokella-Spiroclypeus Lineages in SE Asia. Berita Sedimentologi, 30: 6–31
    Lunt, P., Woodroof, P., 2021. Tectono-Stratigraphic Controls on Cenozoic SE Asian Carbonates. SEPM Special Publication, Cenozoic Isolated Carbonate Platforms-Focus Southeast Asia, https://doi.org/10.2110/sepmsp.114.06
    Lyell, C., 1833. Principles of Geology, Volumes 1–3. John Murray, London
    MacArthur, R., Wilson, E. O., 1967. The Theory of Island Biogeography. Princeton University Press
    McArthur, J. M., Howarth, R. J., 2004. Strontium Isotope Stratigraphy. In: Gradstein, F. M., Ogg, J. G., Smith, A. G., eds., A Geologic Time Scale 2004. Cambridge University Press, Cambridge. 96–105
    Mohler, W. A., 1950. Flosculinella reicheli n. sp. aus dem Tertiär e5 von Borneo. Schweiz. Naturf. Ges., Verh. (Soc. Helv. Sci. Nat. Actes). 129
    Morley Davies, A., Eames, F. E., Savage, R. J. G., 1971. Tertiary Faunas. George Allen & Unwin Ltd., London. 1018
    Morley, R. J., 2000. Origin and Evolution of Tropical Rain Forests. Wiley & Sons, London. 362
    Moss, S. J., Chambers, J. L. C., 1999. Tertiary Facies Architecture in the Kutai Basin, Kalimantan, Indonesia. Journal of Asian Earth Sciences, 17(1/2): 157–181. https://doi.org/10.1016/s0743-9547(98)00035-x
    Muhar, A., 1957. Micropalaeontologishe Onderzoek van Monsters Afkomstig van het Geologishe Onderzoek Tuban. B.P.M. Unpublished Report Gr. Sb. 1770: 22
    Ozawa, T., 1975. Evolution of Lepidolina Multiseptata (Permian Foraminifer) in East Asia. Memoirs of the Faculty of Science, Kyūsyū University Series D, Geology, 23(2): 117–164. https://doi.org/10.5109/1544173
    Özcan, E., Less, G., 2009. First Record of the Co-Occurrence of Western Tethyan and Indo-Pacific Larger Foraminifera in the Burdigalian of the Mediterranean Province. The Journal of Foraminiferal Research, 39(1): 23–39. https://doi.org/10.2113/gsjfr.39.1.23
    Özcan, E., Less, G., Báldi-Beke, M., et al., 2009. Oligo-Miocene Foraminiferal Record (Miogypsinidae, Lepidocyclinidae and Nummu-litidae) from the Western Taurides (SW Turkey): Biometry and Implications for the Regional Geology. Journal of Asian Earth Sciences, 34(6): 740–760. https://doi.org/10.1016/j.jseaes.2008.11.002
    Perrin, C., 2002. Tertiary: The Emergence of Modern Reef Ecosystems. In: Kiessling, W., Flügel, E., Golonka, J., eds., Phanerozoic Reef Patterns. SEPM Special Publication, 72: 587–621
    Perch-Nielsen, K., 1985. Cenozoic Calcareous Nannofossils. In: Bolli, H. M., Saunders, J. B., Perch-Nielsen, K., eds., Plankton Stratigraphy. Cambridge University Press, Cambridge. 427–554
    Prothero, D. R., 1994. The Late Eocene-Oligocene Extinctions. Annual Review of Earth and Planetary Sciences, 22: 145–165. https://doi.org/10.1146/annurev.ea.22.050194.001045
    Prothero, D. R., Swisher, C. C., 1992. Magnetostratigraphy and Geochrono-logy of the Terrestrial Eocene-Oligocene Transition in North America. Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press. 46–73. https://doi.org/10.1515/9781400862924.46
    Racey, A., 1994. Biostratigraphy and Palaeobiogeographic Significance of Tertiary Nummulitids (Foraminifera) from Northern Oman. In: Simmons, M. D., ed., Micropalaeontology and Hydrocarbon Exploation in the Middle East. Chapman and Hall, London. 343–367
    Racey, A., 1995. Lithostratigraphy and Larger Foraminiferal (Nummulitid) Biostratigraphy of the Tertiary of Northern Oman. Micropaleontology, 41: 1–123. https://doi.org/10.2307/1485849
    Raju, D. S. N., 1974. Study of Indian Miogypsinidae. Utrecht Micropaleontological Bulletins, 9: 148
    Renema, W., 2002. Larger Foraminfera as Marine Environmental Indicators. Scripta Geologica, 124: 1–260
    Renema, W., 2015. Spatiotemporal Variation in Morphological Evolution in the Oligocene-Recent Larger Benthic Foraminifera Genus Cycloclypeus Reveals Geographically Undersampled Speciation. GeoResJ, 5: 12–22. https://doi.org/10.1016/j.grj.2014.11.001
    Renema, W., Troelstra, S. R., 2001. Larger Foraminifera Distribution on a Mesotrophic Carbonate Shelf in SW Sulawesi (Indonesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 175(1/2/3/4): 125–146. https://doi.org/10.1016/s0031-0182(01)00389-3
    Renema, W., Bellwood, D. R., Braga, J. C., et al., 2008. Hopping Hotspots: Global Shifts in Marine Biodiversity. Science, 321(5889): 654–657. https://doi.org/10.1126/science.1155674
    Renema, W., Warter, V., Novak, V., et al., 2015. Ages of Miocene Fossil Localities in the Northern Kutai Basin (East Kalimantan, Indonesia). PALAIOS, 30(1): 26–39. https://doi.org/10.2110/palo.2013.127
    Sarkar, S., 2018. The Enigmatic Palaeocene-Eocene Coralline Distichoplax: Approaching the Structural Complexities, Ecological Affinities and Extinction Hypotheses. Marine Micropaleontology, 139: 72–83. https://doi.org/10.1016/j.marmicro.2017.12.001
    Saw, B. B., Schlaich, M., Pöppelreiter, M. C., et al., 2019. Facies, Depositional Environments, and Anatomy of the Subis Build-up in Sarawak, Malaysia: Implications on other Miocene Isolated Carbonate Build-ups. Facies, 65(3): 1–14. https://doi.org/10.1007/s10347-019-0571-6
    Schaub, H., 1981. Nummulites et Assilines de la Tethys Paleogene: Taxinomie, Phylogenese et Biostratigraphie. Memoires Suisses de Paleontologie, 104/105/106: 1–236
    Serra-Kiel, J., Hottinger, L., Caus, E., et al., 1998. Larger Foraminiferal Biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Societe Geologique de France, 169(2): 281–299
    Serra-Kiel, J., Gallardo-Garcia, A., Razin, P., et al., 2016. Middle Eocene-Early Miocene Larger Foraminifera from Dhofar (Oman) and Socotra Island (Yemen). Arabian Journal of Geosciences, 9(5): 1–95. https://doi.org/10.1007/s12517-015-2243-3
    Singh, S. D., Raju, D. S. N., 2018. Morphometric Data on Miogypsina (Lepidosemicyclina) Bifida, Foraminifera from L-Ⅲ Reservoir, Mumbai Offshore, India. Journal of the Geological Society of India, 91(3): 329–333. https://doi.org/10.1007/s12594-018-0858-1
    Stanley, S. M., Hardie, L. A., 1998. Secular Oscillations in the Carbonate Mineralogy of Reef-Building and Sediment-Producing Organisms Driven by Tectonically Forced Shifts in Seawater Chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144(1/2): 3–19. https://doi.org/10.1016/s0031-0182(98)00109-6
    Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford
    Swisher, C. C. III, Prothero, D. R., 1990. Single-Crystal 40Ar/39Ar Dating of the Eocene-Oligocene Transition in North America. Science, 249(4970): 760–762. https://doi.org/10.1126/science.249.4970.760
    Tan, S. H., 1932. On the Genus Cycloclypeus Carpenter Part 1. and an Appendix on the Heterostegines of Tjimanggoe, S. Bantam, Java. Wetenschappelijke Mededelingen Dienst van den Mijnbouw in Nederlandsch-Indië, 19: 1–194
    Vahrenkamp, V. C., 1996. Growth and Demise of the Miocene Central Luconia Carbonate Province: Implications for Regional Geology and Reservoir Production Behaviour. Sarawak Shell Report
    van Bemmelen, R. W., 1949. The Geology of Indonesia. Government Printing Office, Hague, Netherlands. 997
    van der Vlerk, I. M., 1924. Foraminiferen uit het Tertiair van Java. Weteenschappelijke Mededeelingen Dienst Mijnbouw Ned. Indie, 1: 1–13
    van der Vlerk, I. M., 1959. Problems and Principles of Tertiary and Quaternary Stratigraphy. Quarterly Journal of the Geological Society, 115(1/2/3/4): 49–64. https://doi.org/10.1144/gsl.jgs.1959.115.01.04
    van der Vlerk, I. M., 1963. Biometric Research on Lepidocyclina. Micropaleontology, 9: 425–426. https://doi.org/10.2307/1484502
    van der Vlerk, I. M., 1973. An Improved Method of Biometric Research. Proc. Kon. Ned. Akad. Wet., B76(4): 245–259
    van der Vlerk, I. M., Umbgrove, J. H. F., 1927. Tertiaire Gidsforaminiferen uit Nederlandsch Oost-Indië. Wetenschappelijke Mededelingen Dienst van den Mijnbouw in Nederlandsch-Indië, 6: 1–31
    van der Vlerk, I. M., Postuma, J. A., 1967. Oligo-Miocene Lepidocyclinas and Planktonic Foraminifera from East Java and Madura. Proceedings of the Koninklijke Nederlandse Academie van Wetenschappen, 70(B): 392–399
    van Gorsel, J. T., Lunt, P., Morley, R. J., 2014. Introduction to Cenozoic Biostratigraphy of Indonesia-SE Asia. Berita Sedimentologi, 29: 4–40
    van Vessem, E. J., 1978. Study of Lepidocylinidae from South East Asia, particularly from Java and Borneo. Utrecht Micropaleontological Bulletins, 19: 1–163
    Visser, W. A., Hermes, J. J., 1962. Geological Results of the Search for Oil in Netherlands New Guinea (20). Nederlandsche Nieuw Guinee Petroleum Maatschappij, Deltf
    Wade, B. S., 2004. Planktonic Foraminiferal Biostratigraphy and Mechanisms in the Extinction of Morozovella in the Late Middle Eocene. Marine Micropaleontology, 51(1/2): 23–38. https://doi.org/10.1016/j.marmicro.2003.09.001
    Wade, B. S., Pearson, P. N., Berggren, W. A., et al., 2011. Review and Revision of Cenozoic Tropical Planktonic Foraminiferal Biostrati-graphy and Calibration to the Geomagnetic Polarity and Astronomical Time Scale. Earth-Science Reviews, 104(1/2/3): 111–142. https://doi.org/10.1016/j.earscirev.2010.09.003
    Westerhold, T., Marwan, N., Drury, A. J., et al., 2020. An Astronomically Dated Record of Earth's Climate and Its Predictability over the Last 66 Million Years. Science, 369(6509): 1383–1387. https://doi.org/10.1126/science.aba6853
    White, L. T., Hall, R., Armstrong, R. A., et al., 2017. The Geological History of the Latimojong Region of Western Sulawesi, Indonesia. Journal of Asian Earth Sciences, 138: 72–91. https://doi.org/10.1016/j.jseaes.2017.02.005
    Wilson, M. E. J., 2002. Cenozoic Carbonates in Southeast Asia: Implications for Equatorial Carbonate Development. Sedimentary Geology, 147(3/4): 295–428. https://doi.org/10.1016/S0037-0738(01)00228-7
    Wilson, M. E. J., 2008. Global and Regional Influences on Equatorial Shallow-Marine Carbonates during the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 265(3/4): 262–274. https://doi.org/10.1016/j.palaeo.2008.05.012
    Yabe, H., Hanzawa, S., 1928. Tertiary Foraminiferous Rocks of Taiwan (Formosa). Proceedings of the Imperial Academy, 4(9): 533–536. https://doi.org/10.2183/pjab1912.4.533
    Zeiza, A., Simaeys, V. S., Musgrove, F., et al., 2012. The Impact of Differential Subsidence Rates in Shallow Water Carbonate, Reservoir Quality: An Example from the East Java Basin, Indonesia. Proceedings Indonesian Petroleum Association Convention, 36: 1–13
  • Relative Articles

    [1]Lidong Zhang, Changzhou Deng, Yao Tang, Xinran Ni, Bizheng Yang, Shanshan Liang, Weipeng Liu, Jishuang Ding, Xiaohui Zeng. Pyrite Geochemistry and S-Hg Isotopes Reveal the Ore Genesis of the Hydrothermal Vein-type Cuiluan Ag-Pb-Zn Deposit in NE China[J]. Journal of Earth Science. doi: 10.1007/s12583-025-0201-x
    [2]Si-Wen Zhang, Feng Wang, Ren-Yi Jia, Wen-Liang Xu, Yi-Ni Wang, De-Bin Yang, Hai-Hong Zhang. Trench-perpendicular mantle flow recorded by late Mesozoic intraplate magmatism and implications for the formation of the eastern Asian big mantle wedge[J]. Journal of Earth Science. doi: 10.1007/s12583-025-0220-7
    [3]Zhuang Duan, Lujun Lin, Jianguo Li, Qiwei Feng, Yong Li, Zenghui Zhou, Siyuan Li, Jingjing Gong, Jianzhou Yang, Chunjia Li, Wenlong Liu, Fan Yang. Garnet U-Pb dating of the Qingshuitang wollastonite deposit, Guposhan ore district, Nanling Range: Implications for the timing of mineralization and ore genesis[J]. Journal of Earth Science. doi: 10.1007/s12583-025-0235-0
    [4]Kyiazbek Asilbekov, Rustam Orozbaev, Etienne Skrzypek, Christoph Hauzenberger, Elena Ivleva, Daniela Gallhofer, Jian-Feng Gao, Nikolay Pak, Anatoliy Shevkunov, Anatoliy Bashkirov, Aizat Zhaanbaeva. Age and petrogenesis of the newly discovered Early Permian granite 3 in the Kumtor gold field, Kyrgyz Tien-Shan[J]. Journal of Earth Science. doi: 10.1007/s12583-024-0085-1
    [5]Pu Zhang, Shitou Wu, Tingyong Li, Zhe Zhang, Zhaofeng Zhang. Improving U-Pb Dating Accuracy for High-U Stalagmites in Quaternary Records[J]. Journal of Earth Science. doi: 10.1007/s12583-025-0262-x
    [6]Zewen ZHANG, Yongsheng CHENG, Zhuobin XU, Fanglai WAN, Yao ZHOU, Yezheng LI, Xiangyang LI, Dexing ZENG. Genetic Relation Between Granite and Pegmatite and Their Metallogenic Significance in Renli Nb-Ta Deposit, Northeast Hunan, China: Evidence from Coltan U-Pb Dating, Hf Isotopes and Geochemistry[J]. Journal of Earth Science. doi: 10.1007/s12583-025-0233-2
    [7]Tao Jiang, Guoqing Wang, Yilong Li, Ke Wang, Haitian Zhang, Limin Zhao, Jiao Wang, Xiujuan Bai, Fraukje M. Brouwer. Petrogenesis of Early Paleozoic Supracrustal Rocks in Southeastern Yunnan: Constraints on Intracontinental Orogeny in the South China Craton[J]. Journal of Earth Science. doi: 10.1007/s12583-024-0133-x
    [8]Hua Li, Ming Wang, Jiqing Li, Haikui Tong, Jiaxiang Dong, Minggang Tian, Xiaolin Chen, Leguang Li, Ting Xie, Xiong Li, Yuying Che. Geochemistry and Zircon U-Pb and Hf Isotopes of Early Devonian Hardawu Granites in the Eastern Segment of the Ultrahigh-Pressure Metamorphic Belt, Northern Qaidam Basin[J]. Journal of Earth Science, 2024, 35(3): 866-877. doi: 10.1007/s12583-022-1791-1
    [9]Ji-Biao Zhang, Xiao-Zhong Ding, Yan-Xue Liu. Zircon SHRIMP U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ~1.0 Ga A-Type Felsic Rocks in the Southwestern Yangtze Block, South China: Petrogenesis and Tectonic Implications[J]. Journal of Earth Science, 2023, 34(2): 504-517. doi: 10.1007/s12583-020-1090-7
    [10]Ruiying Zhang, Wenhao Ao, Yan Zhao. U-Pb Zircon Ages and Geochemistry of the Metasedimentary Rocks from the Foping Area in the South Qinling Belt: Evidence for Early Devonian Amalgamation between North China and South China Blocks[J]. Journal of Earth Science, 2023, 34(4): 1112-1127. doi: 10.1007/s12583-022-1608-2
    [11]Xu Lin, Chang’an Li, Jing Liu-Zeng, Jovliet Marc, Haijin Liu, Lingling Li, Chengwei Hu, Xiaokang Chen, Jixin Chen. Detrital zircon U-Pb age analysis of Late Pliocene deposits from the lower Yangtze River, South China: Implications for sedimentary provenance and evolution of the Yangtze River[J]. Journal of Earth Science. doi: 10.1007/s12583-023-1961-9
    [12]Liangliang Huang, Liyuan Wang, Hong-Rui Fan, Musen Lin, Wenhui Zhang. Late Early-Cretaceous Magma Mixing in the Langqi Island, Fujian Province, China: Evidences from Petrology, Geochemistry and Zircon Geochronology[J]. Journal of Earth Science, 2020, 31(3): 468-480. doi: 10.1007/s12583-019-1022-6
    [13]Xiaohu He, Hong Zhong, Zhifang Zhao, Shucheng Tan, Weiguang Zhu, Siqi Yang, Wenjun Hu, Zhong Tang, Congfa Bao. U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries:Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling[J]. Journal of Earth Science, 2018, 29(4): 920-938. doi: 10.1007/s12583-018-0788-2
    [14]Chao Chen, Xinbiao Lü, Chunming Wu, Xiao Jiang, Chen Mao. Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint[J]. Journal of Earth Science, 2018, 29(1): 114-129. doi: 10.1007/s12583-017-0808-7
    [15]Anxia Chen, Duo Zhou, Qingkui Zhang, Zhongzhu Yang. Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia[J]. Journal of Earth Science, 2018, 29(1): 78-92. doi: 10.1007/s12583-017-0817-6
    [16]Pradit Nulay, Chongpan Chonglakmani, Qinglai Feng. Petrography, geochemistry and U-Pb detrital zircon dating of the clastic Phu Khat Formation in the Nakhon Thai region, Thailand: Implications for provenance and geotectonic setting[J]. Journal of Earth Science, 2016, 27(3): 329-349. doi: 10.1007/s12583-016-0667-7
    [17]Adi Maulana, Kotaro Yonezu, Koichiro Watanabe. Geochemistry of Rare Earth Elements (REE) in the Weathered Crusts from the Granitic Rocks in Sulawesi Island, Indonesia[J]. Journal of Earth Science, 2014, 25(3): 460-472. doi: 10.1007/s12583-014-0449-z
    [18]Muhammad Sajid, Mohammad Arif, M Tahir Shah. Petrogenesis of Granites from the Utla Area of Gadoon, North-West Pakistan: Implications from Petrography and Geochemistry[J]. Journal of Earth Science, 2014, 25(3): 445-459. doi: 10.1007/s12583-014-0435-5
    [19]Shuo Zhao, Wenliang Xu*, Wei Wang, Jie Tang, Yihan Zhang. Geochronology and Geochemistry of Middle–Late Ordovician Granites and Gabbros in the Erguna Region, NE China: Implications for the Tectonic Evolution of the Erguna Massif[J]. Journal of Earth Science, 2014, 25(5): 841-853. doi: 10.1007/s12583-014-0476-9
    [20]V. N. Golubev, I. V. Chernyshev, B. T. Kochkin, N. N. Tarasov, G. V. Ochirova, A. V. Chugaev. Uranium Isotope Variations (234U/238U and 238U/235U) and Behavior of U-Pb Isotope System in the Vershinnoe SandstoneType Uranium Deposit, Vitim Uranium Ore District, Russia[J]. Journal of Earth Science. doi: doi.org/10.1007/s12583-021-1436-9
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 47.3 %FULLTEXT: 47.3 %META: 51.6 %META: 51.6 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %China: 57.0 %China: 57.0 %Reserved: 7.9 %Reserved: 7.9 %Russian Federation: 13.7 %Russian Federation: 13.7 %United States: 17.7 %United States: 17.7 %其他ChinaReservedRussian FederationUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(453) PDF downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return