Citation: | Ming Shao, Tianzhu Lei, Shuncun Zhang, Shengyin Zhang, Yu Pei, Sen Song. Effects of Volcanic Activity on Organic Matter Sources and the Paleoenvironment: Geochemical Evidence from Upper Carboniferous Source Rocks (Batamayineishan Formation) in Eastern Junggar, NW China. Journal of Earth Science, 2024, 35(5): 1482-1498. doi: 10.1007/s12583-022-1620-6 |
The mudstone, gray tuffite and carbonaceous shale in the Upper Carboniferous Batamayineishan Formation (Bashan Formation) are essential source rocks for the volcanic reservoir in eastern Junggar, northwestern China. The kerogen components, vitrinite reflectance, Rock-Eval pyrolysis, lipid biomarkers and isotope compositions were measured to understand the provenance and depositional environment of Bashan Formation under the background of volcanic activities. There were 10 and 4 periods of volcanic eruptions identified in the wells CS and DZ, respectively. The source rocks developed in the late or intermittent phase of volcanic activity. The original island arcs of the Early Carboniferous evolved into the Wucaiwan sag and the Dishuiquan sag in the Bashan Formation. The Wucaiwan sag inherited the restricted, closed residual sea, which had a slightly anoxic and hypersaline environment. The Dishuiquan sag was generally an oxidizing lacustrine environment, influenced by a marine transgression that may have occurred at the end of the DZⅢ period during the Late Carboniferous. Although the total organic matter decreased due to the volcanic eruption, ash could cause an increase of aquatic organisms, coinciding with increases in salinity and reducibility in the Dishuiquan sag.
Abarghani, A., Ostadhassan, M., Bubach, B., et al., 2019. Estimation of Thermal Maturity in the Bakken Source Rock from a Combination of Well Logs, North Dakota, USA. Marine and Petroleum Geology, 105: 32–44. https://doi.org/10.1016/j.marpetgeo.2019.04.005 |
Bechtel, A., Jia, J. L., Strobl, S. A. I., et al., 2012. Palaeoenvironmental Conditions during Deposition of the Upper Cretaceous Oil Shale Sequences in the Songliao Basin (NE China): Implications from Geochemical Analysis. Organic Geochemistry, 46: 76–95. https://doi.org/10.1016/j.orggeochem.2012.02.003 |
Behar, F., Beaumont, V., Penteado, H. L. de B., 2001. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science & Technology, 56(2): 111–134. https://doi.org/10.2516/ogst:2001013 |
Bray, E. E., Evans, E. D., 1961. Distribution of N-Paraffins as a Clue to Recognition of Source Beds. Geochimica et Cosmochimica Acta, 22(1): 2–15. https://doi.org/10.1016/0016-7037(61)90069-2 |
Buckles, L. K., Weijers, J. W. H., Verschuren, D., et al., 2014. Sources of Core and Intact Branched Tetraether Membrane Lipids in the Lacustrine Environment: Anatomy of Lake Challa and Its Catchment, Equatorial East Africa. Geochimica et Cosmochimica Acta, 140: 106–126. https://doi.org/10.1016/j.gca.2014.04.042 |
Cai, K. D., Sun, M., Yuan, C., et al., 2012. Carboniferous Mantle-Derived Felsic Intrusion in the Chinese Altai, NW China: Implications for Geodynamic Change of the Accretionary Orogenic Belt. Gondwana Research, 22(2): 681–698. https://doi.org/10.1016/j.gr.2011.11.008 |
Cao, Y., Kang, Z. Q., Yang, F., et al., 2022. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Bangba District, Western Segment of the Central Lhasa Subterrane. Journal of Earth Science, 33(3): 681–695. https://doi.org/10.1007/s12583-022-1634-0 |
Carroll, A. R., 1998. Upper Permian Lacustrine Organic Facies Evolution, Southern Junggar Basin, NW China. Organic Geochemistry, 28(11): 649–667. https://doi.org/10.1016/s0146-6380(98)00040-0 |
Casilli, A., Silva, R. C., Laakia, J., et al., 2014. High Resolution Molecular Organic Geochemistry Assessment of Brazilian Lacustrine Crude Oils. Organic Geochemistry, 68: 61–70. https://doi.org/10.1016/j.orggeochem.2014.01.009 |
Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691–703. https://doi.org/10.1016/s1367-9120(03)00118-4 |
Cheng, D. W., Zhou, C. M., Zhang, Z. J., et al., 2022. Paleo-Environment Reconstruction of the Middle Permian Lucaogou Formation, Southeastern Junggar Basin, NW China: Implications for the Mechanism of Organic Matter Enrichment in Ancient Lake. Journal of Earth Science, 33(4): 963–976. https://doi.org/10.1007/s12583-020-1073-8 |
Connan, J., Cassou, A. M., 1980. Properties of Gases and Petroleum Liquids Derived from Terrestrial Kerogen at Various Maturation Levels. Geochimica et Cosmochimica Acta, 44(1): 1–23. https://doi.org/10.1016/0016-7037(80)90173-8 |
D4239-12, A., 2008. Standard Test Methods for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion Methods. ASTM International, West Conshohocken |
El-Khadragy, A. A., Shazly, T. F., Mousa, D. A., et al., 2018. Integration of Well Log Analysis Data with Geochemical Data to Evaluate Possible Source Rock. Case Study from GM-ALEF-1 Well, Ras Ghara Oil Field, Gulf of Suez-Egypt. Egyptian Journal of Petroleum, 27(4): 911–918. https://doi.org/10.1016/j.ejpe.2018.01.005 |
Fang, J. S., Chan, O., Joeckel, R. M., et al., 2006. Biomarker Analysis of Microbial Diversity in Sediments of a Saline Groundwater Seep of Salt Basin, Nebraska. Organic Geochemistry, 37(8): 912–931. https://doi.org/10.1016/j.orggeochem.2006.04.007 |
Feng, Y. L., Zhang, Y. J., Wang, R. J., et al., 2011. Dolomites Genesis and Hydrocarbon Enrichment of the Fengcheng Formation in the Northwestern Margin of Junggar Basin. Petroleum Exploration and Development, 38(6): 685–692 (in Chinese with English Abstract) |
Farrimond, P., Taylor, A., TelnÆs, N., 1998. Biomarker Maturity Parameters: The Role of Generation and Thermal Degradation. Organic Geochemistry, 29(5–7): 1181–1197. https://doi.org/10.1016/s0146-6380(98)00079-5 |
Fu, X. G., Jian, W., Zeng, Y. H., et al., 2009. Geochemical and Palynological Investigation of the Shengli River Marine Oil Shale (China): Implications for Paleoenvironment and Paleoclimate. International Journal of Coal Geology, 78(3): 217–224. https://doi.org/10.1016/j.coal.2009.02.001 |
Gonçalves, P. A., da Silva, T. F., Mendonça Filho, J. G., et al., 2015. Palynofacies and Source Rock Potential of Jurassic Sequences on the Arruda Sub-Basin (Lusitanian Basin, Portugal). Marine and Petroleum Geology, 59: 575–592. https://doi.org/10.1016/j.marpetgeo.2014.10.009 |
Gonçalves, P. A., Mendonça Filho, J. G., da Silva, T. F., et al., 2014. The Mesozoic–Cenozoic Organic Facies in the Lower Tagus Sub-Basin (Lusitanian Basin, Portugal): Palynofacies and Organic Geochemistry Approaches. Marine and Petroleum Geology, 52: 42–56. https://doi.org/10.1016/j.marpetgeo.2014.01.015 |
Gonçalves, P. A., Mendonça Filho, J. G., Mendonça, J. O., et al., 2013. Paleoenvironmental Characterization of a Jurassic Sequence on the Bombarral Sub-Basin (Lusitanian Basin, Portugal): Insights from Palynofacies and Organic Geochemistry. International Journal of Coal Geology, 113: 27–40. https://doi.org/10.1016/j.coal.2013.03.009 |
Grice, K., Schouten, S., Nissenbaum, A., et al., 1998. A Remarkable Paradox: Sulfurised Freshwater Algal (Botryococcus Braunii) Lipids in an Ancient Hypersaline Euxinic Ecosystem. Organic Geochemistry, 28(3/4): 195–216. https://doi.org/10.1016/s0146-6380(97)00127-7 |
He, D. F., Chen, X. F., Kuang, J., et al., 2010. Distribution of Carboniferous Source Rocks and Petroleum Systems in the Junggar Basin. Petroleum Exploration and Development, 37(4): 397–408 (in Chinese with English Abstract) |
Hou, H. H., Shao, L. Y., Li, Y. H., et al., 2022. Effect of Paleoclimate and Paleoenvironment on Organic Matter Accumulation in Lacustrine Shale: Constraints from Lithofacies and Element Geochemistry in the Northern Qaidam Basin, NW China. Journal of Petroleum Science and Engineering, 208: 109350. https://doi.org/10.1016/j.petrol.2021.109350 |
Hou, H. H., Shao, L. Y., Tang, Y., et al., 2023. Coal Seam Correlation in Terrestrial Basins by Sequence Stratigraphy and Its Implications for Paleoclimate and Paleoenvironment Evolution. Journal of Earth Science, 34(2): 556–570. https://doi.org/10.1007/s12583-020-1069-4 |
Hu, B., Jia, S., Qiu, C. G., et al., 2019. Petroleum Geological Characteristics and Exploration Potential of Kerio Basin in East African Rift System. Geological Survey of China, 6(1): 26–33 (in Chinese with English Abstract) |
Hunt, J. M., 1996. Petroleum Geochemistry and Geology. W. H. Freeman and Co., New York |
Innes, H. E., Bishop, A. N., Head, I. M., et al., 1997. Preservation and Diagenesis of Hopanoids in Recent Lacustrine Sediments of Priest Pot, England. Organic Geochemistry, 26(9/10): 565–576. https://doi.org/10.1016/s0146-6380(97)00017-x |
ISO 7404-2, 2009. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite, Part 2: Preparation of Coal Samples. ISO-International Organization for Standardization, Geneva |
ISO 7404-3, 2009. Methods for the Petrographic Analysis of Coals, Part 3: Method of Determining Maceral Group Composition. ISO-International Organization for Standardization, Geneva |
ISO 7404-5, 2009. Methods for the Petrographic Analysis of Coals, Part 5: Method of Determining Microscopically the Reflectance of Vitrinite. ISO-International Organization for Standardization, Geneva |
Jiang, Z. S., 1983. Perhydro Carotenes in Karamay Crude Oil and Their Geochemical Characteristics. Oil & Gas Geology, 4(2): 151–159 (in Chinese with English Abstract) |
Júnior, G. R. S., Santos, A. L. S., Lima, S. G., et al., 2013. Evidence for Euphotic Zone Anoxia during the Deposition of Aptian Source Rocks Based on Aryl Isoprenoids in Petroleum, Sergipe-Alagoas Basin, Northeastern Brazil. Organic Geochemistry, 63(5): 94–104. https://doi.org/10.1016/j.orggeochem.2013.07.009 |
Li, D., He, D. F., Santosh, M., et al., 2014. Petrogenesis of Late Paleozoic Volcanics from the Zhaheba Depression, East Junggar: Insights into Collisional Event in an Accretionary Orogen of Central Asia. Lithos, 184: 167–193. https://doi.org/10.1016/j.lithos.2013.10.003 |
Li, D., He, D. F., Santosh, M., et al., 2015. Tectonic Framework of the Northern Junggar Basin Part Ⅰ: The Eastern Luliang Uplift and Its Link with the East Junggar Terrane. Gondwana Research, 27(3): 1089–1109. https://doi.org/10.1016/j.gr.2014.08.015 |
Li, T. J., Huang, Z. L., Chen, X., et al., 2021. Paleoenvironment and Organic Matter Enrichment of the Carboniferous Volcanic-Related Source Rocks in the Malang Sag, Santanghu Basin, NW China. Petroleum Science, 18(1): 29–53. https://doi.org/10.1007/s12182-020-00514-1 |
Lichtfouse, E., Elbisser, B., Balesdent, J., et al., 1994. Isotope and Molecular Evidence for Direct Input of Maize Leaf Wax N-Alkanes into Crop Soils. Organic Geochemistry, 22(2): 349–351. https://doi.org/10.1016/0146-6380(94)90181-3 |
Liu, C. Y., Huang, L., Zhang, D. D., et al., 2018. Genetic Causes of Oil-Rich and Oil-Poor Reservoirs: Implications from Two Cenozoic Basins in the Eastern North China Craton. Science China Earth Sciences, 61(12): 1910–1931. https://doi.org/10.1007/s11430-017-9271-6 |
Liu, W., Liu, X. J., Liu, L. J., 2013. Underplating Generated A- and I-Type Granitoids of the East Junggar from the Lower and the Upper Oceanic Crust with Mixing of Mafic Magma: Insights from Integrated Zircon U-Pb Ages, Petrography, Geochemistry and Nd-Sr-Hf Isotopes. Lithos, 179: 293–319. https://doi.org/10.1016/j.lithos.2013.08.009 |
Meyers, P. A., Lallier-Vergés, E., 1999. Lacustrine Sedimentary Organic Matter Records of Late Quaternary Paleoclimates. Journal of Paleolimnology, 21(3): 345–372. https://doi.org/10.1023/a:1008073732192 |
Moldowan, W., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. AAPG Bulletin, 69: 1255–1268. https://doi.org/10.1306/ad462bc8-16f7-11d7-8645000102c1865d |
Peters, K. E., 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 70(3): 318–329. https://doi.org/10.1306/94885688-1704-11d7-8645000102c1865d |
Peters, K. E., Moldowan, J., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, Prentice Hall |
Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History, Cambridge University Press, London |
Shalaby, M. R., Jumat, N., Lai, D., et al., 2019. Integrated TOC Prediction and Source Rock Characterization Using Machine Learning, Well Logs and Geochemical Analysis: Case Study from the Jurassic Source Rocks in Shams Field, NW Desert, Egypt. Journal of Petroleum Science and Engineering, 176: 369–380. https://doi.org/10.1016/j.petrol.2019.01.055 |
Song, Z. G., Qin, Y., George, S. C., et al., 2013. A Biomarker Study of Depositional Paleoenvironments and Source Inputs for the Massive Formation of Upper Cretaceous Lacustrine Source Rocks in the Songliao Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 137–151. https://doi.org/10.1016/j.palaeo.2012.12.007 |
Tao, K. Y., Cao, J., Chen, X., et al., 2020. Deep Hydrocarbons in the Northwestern Junggar Basin (NW China): Geochemistry, Origin and Implications for the Oil vs. Gas Generation Potential of Post-Mature Saline Lacustrine Source Rocks. Marine and Petroleum Geology, 109: 623–640. https://doi.org/10.1016/j.marpetgeo.2019.06.041 |
Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer-Verlag, Berlin |
Tomazic, M. L., Poklepovich, T. J., Nudel, C. B., et al., 2014. Incomplete Sterols and Hopanoids Pathways in Ciliates: Gene Loss and Acquisition during Evolution as a Source of Biosynthetic Genes. Molecular Phylogenetics and Evolution, 74: 122–134. https://doi.org/10.1016/j.ympev.2014.01.026 |
U. S. E. P. A., 2002. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments. Ecological Risk Assessment Support Center, Las Vegas |
Volkman, J. K., 2005. Sterols and Other Triterpenoids: Source Specificity and Evolution of Biosynthetic Pathways. Organic Geochemistry, 36(2): 139–159. https://doi.org/10.1016/j.orggeochem.2004.06.013 |
Wang, J. Q., Liu, C. Y., Li, H., et al., 2017. Geochronology, Potential Source and Regional Implications of Tuff Intervals in Chang-7 Member of Yanchang Formation, South of Ordos Basin. Acta Sedimentologica Sinica, 35(4): 691–704 (in Chinese with English Abstract) |
Wang, S. R., Song, D. F., He, D. F., 2013. The Enrichment Effect of Organic Materials by Volcanic Ash in Sediments of the Santanghu Basin and the Evolutionary Pattern of Tuffaceous Source Rocks. Acta Petrolei Sinica, 34(6): 1077–1087 (in Chinese with English Abstract) |
Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia: A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3/4): 303–341. https://doi.org/10.1016/j.earscirev.2012.04.001 |
Wu, W. T., Grana, D., 2017. Integrated Petrophysics and Rock Physics Modeling for Well Log Interpretation of Elastic, Electrical, and Petrophysical Properties. Journal of Applied Geophysics, 146: 54–66. https://doi.org/10.1016/j.jappgeo.2017.09.007 |
Xiao, W. J., Han, C. M., Liu, W., et al., 2014. How many Sutures in the Southern Central Asian Orogenic Belt: Insights from East Xinjiang–West Gansu (NW China)? Geoscience Frontiers, 5(4): 525–536. https://doi.org/10.1016/j.gsf.2014.04.002 |
Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2/3): 253–273. https://doi.org/10.1016/j.gr.2010.01.007 |
Xu, X. W., Jiang, N., Li, X. H., et al., 2015. Spatial-Temporal Framework for the Closure of the Junggar Ocean in Central Asia: New SIMS Zircon U-Pb Ages of the Ophiolitic Mélange and Collisional Igneous Rocks in the Zhifang Area, East Junggar. Journal of Asian Earth Sciences, 111: 470–491. https://doi.org/10.1016/j.jseaes.2015.06.017 |
Yang, G. X., Li, Y. J., Si, G. H., et al., 2010. LA-ICP-MS Zircon U-Pb Dating of Kubusunan Granodiorite and the Enclaves from Kalamaili Area in Eastern Junggar, Xinjiang, and Its Geological Implications. Earth Science, 35(4): 597–610 (in Chinese with English Abstract) |
Yang, X. F., He, D. F., Wang, Q. C., et al., 2012. Provenance and Tectonic Setting of the Carboniferous Sedimentary Rocks of the East Junggar Basin, China: Evidence from Geochemistry and U-Pb Zircon Geochronology. Gondwana Research, 22(2): 567–584. https://doi.org/10.1016/j.gr.2011.11.001 |
Yang, X., Li, H., Yue, Y., et al., 2018. The Strata and Palaeo-Geomorphology Framework at the End of Neoproterozoic and Development Mode of Source Rocks at the Beginnig of Cambrian. Nature Gas Geoscience, 28(2): 189–198. https://doi.org/10.1016/j.jnggs.2018.02.003 |
Yang, Y. Q., Qiu, L. W., Wan, M., et al., 2019. Depositional Model for a Salinized Lacustrine Basin: The Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, NW China. Journal of Asian Earth Sciences, 178: 81–95. https://doi.org/10.1016/j.jseaes.2018.08.021 |
Zhang, L. X., Liu, Y. Q., Xiang, H., et al., 2018. Characteristics and Origin of Tuffaceous Tight Oil: Based on a Reference of Tight Oil in Permain Pingdiquan Formation in Huoshaoshan Oil Field, Junggar Basin. Acta Sedimentologica Sinica, 36(4): 768–776 (in Chinese with English Abstract) |
Zhang, S. H., Liu, C. Y., Liang, H., et al., 2018. Paleoenvironmental Conditions, Organic Matter Accumulation, and Unconventional Hydrocarbon Potential for the Permian Lucaogou Formation Organic-Rich Rocks in Santanghu Basin, NW China. International Journal of Coal Geology, 185: 44–60. https://doi.org/10.1016/j.coal.2017.11.012 |
Zhang, S. Y., Wu, T., Zhang, S. C., et al., 2015. Organofacies and Paleoenvironment of Lower Carboniferous Mudstones (Dishuiquan Formation) in Eastern Junggar, NW China. International Journal of Coal Geology, 150/151: 7–18. https://doi.org/10.1016/j.coal.2015.08.004 |
Zhang, Z. J., Yuan, X. J., Wang, M. S., et al., 2018. Alkaline-Lacustrine Deposition and Paleoenvironmental Evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China. Petroleum Exploration and Development, 45(6): 1036–1049. https://doi.org/10.1016/s1876-3804(18)30107-1 |
Zou, C. N., Jia, C. Z., Zhao, W. Z., et al., 2005. Accumulation Dynamics and Distribution of Litho-Stratigraphic Reservoirs in South Songliao Basin. Petroleum Exploration and Development, 32(4): 125–130 (in Chinese with English Abstract) |
Zou, C. N., Zhang, G. Y., Zhu, R. K., et al., 2013. Chapter 1-Exploration History and Features of Volcanic Reservoirs. In: Zou, C. N., Zhu, R. K., Yuan, X. J., et al., eds, Volcanic Reservoirs in Petroleum Exploration. Elsevier, New York |