Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 6
Dec 2022
Turn off MathJax
Article Contents
Jiale Wang, Menggui Jin, Baojie Jia, Fengxin Kang. Numerical Investigation of Residence Time Distribution for the Characterization of Groundwater Flow System in Three Dimensions. Journal of Earth Science, 2022, 33(6): 1583-1600. doi: 10.1007/s12583-022-1623-3
Citation: Jiale Wang, Menggui Jin, Baojie Jia, Fengxin Kang. Numerical Investigation of Residence Time Distribution for the Characterization of Groundwater Flow System in Three Dimensions. Journal of Earth Science, 2022, 33(6): 1583-1600. doi: 10.1007/s12583-022-1623-3

Numerical Investigation of Residence Time Distribution for the Characterization of Groundwater Flow System in Three Dimensions

doi: 10.1007/s12583-022-1623-3
More Information
  • Corresponding author: Menggui Jin, mgjin@cug.edu.cn
  • Received Date: 26 Sep 2021
  • Accepted Date: 22 Jan 2022
  • Issue Publish Date: 30 Dec 2022
  • How to identify the nested structure of a three-dimensional (3D) hierarchical groundwater flow system is always a difficult problem puzzling hydrogeologists due to the multiple scales and complexity of the 3D flow field. The main objective of this study was to develop a quantitative method to partition the nested groundwater flow system into different hierarchies in three dimensions. A 3D numerical model with topography derived from the real geomatic data in Jinan, China was implemented to simulate groundwater flow and residence time at the regional scale while the recharge rate, anisotropic permeability and hydrothermal effect being set as climatic and hydrogeological variables in the simulations. The simulated groundwater residence time distribution showed a favorable consistency with the spatial distribution of flow fields. The probability density function of residence time with discontinuous segments indicated the discrete nature of time domain between different flow hierarchies, and it was used to partition the hierarchical flow system into shallow/intermediate/deep flow compartments. The changes in the groundwater flow system can be quantitatively depicted by the climatic and hydrogeological variables. This study provides new insights and an efficient way to analyze groundwater circulation and evolution in three dimensions from the perspective of time domain.

     

  • Electronic Supplementary Materials: Supplementary materials (Figs. S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1623-3.
  • loading
  • An, R., Jiang, X. -W., Wang, J. -Z., et al., 2015. A Theoretical Analysis of Basin-Scale Groundwater Temperature Distribution. Hydrogeology Journal, 23(2): 397–404. https://doi.org/10.1007/s10040-014-1197-y
    Appold, M. S., Monteiro, L. V. S., 2009. Numerical Modeling of Hydrothermal Zinc Silicate and Sulfide Mineralization in the Vazante Deposit, Brazil. Geofluids, 9(2): 96–115. https://doi.org/10.1111/j.1468-8123.2009.00245.x
    Bear, J., 1972. Dynamics of Fluids in Porous Media. Elsevier, New York
    Bresciani, E., Kang, P. K., Lee, S., 2019. Theoretical Analysis of Groundwater Flow Patterns near Stagnation Points. Water Resources Research, 55(2): 1624–1650. https://doi.org/10.1029/2018wr023508
    Cai, W., Gao, Z., Wang, Q., et al., 2013. Research on Connections between Jinan Karst Waters. Geological Publishing House, Beijing (in Chinese)
    Cao, G. L., Han, D. M., Currell, M., et al., 2016. Revised Conceptualization of the North China Basin Groundwater Flow System: Groundwater Age, Heat and Flow Simulations. Journal of Asian Earth Sciences, 127: 119–136. https://doi.org/10.1016/j.jseaes.2016.05.025
    Cornaton, F., Perrochet, P., 2006. Groundwater Age, Life Expectancy and Transit Time Distributions in Advective-Dispersive Systems: 1. Generalized Reservoir Theory. Advances in Water Resources, 29(9): 1267–1291. https://doi.org/10.1016/j.advwatres.2005.10.009
    Deming, D., 2002. Introduction to Hydrogeology. McGraw-Hill, New York
    Diersch, H. J. G., 2014. FEFLOW—Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer-Verlag, Berlin, Heidelberg
    Elaid, M., Hind, M., Abdelmadiid, B., et al., 2020. Contribution of Hydrogeochemical and Isotopic Tools to the Management of Upper and Middle Cheliff Aquifers. Journal of Earth Science, 31(5): 993–1006. https://doi.org/10.1007/s12583-020-1293-y
    Garven, G., 1989. A Hydrogeologic Model for the Formation of the Giant Oil Sands Deposits of the Western Canada Sedimentary Basin. American Journal of Science, 289(2): 105–166. https://doi.org/10.2475/ajs.289.2.105
    Gil-Márquez, J. M., De la Torre, B., Mudarra, M., et al., 2020. Complementary Use of Dating and Hydrochemical Tools to Assess Mixing Processes Involving Centenarian Groundwater in a Geologically Complex Alpine Karst Aquifer. Hydrological Processes, 34(20): 3981–3999. https://doi.org/10.1002/hyp.13848
    Gleeson, T., Manning, A. H., 2008. Regional Groundwater Flow in Mountainous Terrain: Three-Dimensional Simulations of Topographic and Hydrogeologic Controls. Water Resources Research, 44(10): W10403. https://doi.org/10.1029/2008wr006848
    Goderniaux, P., Davy, P., Bresciani, E., et al., 2013. Partitioning a Regional Groundwater Flow System into Shallow Local and Deep Regional Flow Compartments. Water Resources Research, 49(4): 2274–2286. https://doi.org/10.1002/wrcr.20186
    Haitjema, H. M., 1995. On the Residence Time Distribution in Idealized Groundwatersheds. Journal of Hydrology, 172(1): 127–146. https://doi.org/10.1016/0022-1694(95)02732-5
    Haitjema, H. M., Mitchell-Bruker, S., 2005. Are Water Tables a Subdued Replica of the Topography? Ground Water, 43(6): 781–786. https://doi.org/10.1111/j.1745-6584.2005.00090.x
    Herbert, A. W., Jackson, C. P., Lever, D. A., 1988. Coupled Groundwater Flow and Solute Transport with Fluid Density Strongly Dependent Upon Concentration. Water Resources Research, 24(10): 1781–1795. https://doi.org/10.1029/wr024i010p01781
    Jiang, X. -W., Wang, X. -S., Wan, L., et al., 2011. An Analytical Study on Stagnation Points in Nested Flow Systems in Basins with Depth-Decaying Hydraulic Conductivity. Water Resources Research, 47(1): W01512. https://doi.org/10.1029/2010wr009346
    Jiang, X. -W., Wan, L., Ge, S. M., et al., 2012. A Quantitative Study on Accumulation of Age Mass around Stagnation Points in Nested Flow Systems. Water Resources Research, 48(12): W12502. https://doi.org/10.1029/2012wr012509
    Jiang, L. Q., Sun, R., Liang, X., 2021. Predicting Groundwater Flow and Solute Transport in the Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150–4160. https://doi.org/10.3799/dqkx.2020.268 (in Chinese with English Abstract)
    Kagabu, M., Shimada, J., Delinom, R., et al., 2011. Groundwater Flow System under a Rapidly Urbanizing Coastal City as Determined by Hydrogeochemistry. Journal of Asian Earth Sciences, 40(1): 226–239. https://doi.org/10.1016/j.jseaes.2010.07.012
    Kang, F. X., Jin, M. G., Qin, P. R., 2011. Sustainable Yield of a Karst Aquifer System: A Case Study of Jinan Springs in Northern China. Hydrogeology Journal, 19(4): 851–863. https://doi.org/10.1007/s10040-011-0725-2
    Kirchheim, R. E., Gastmans, D., Chang, H. K., et al., 2019. The Use of Isotopes in Evolving Groundwater Circulation Models of Regional Continental Aquifers: The Case of the Guarani Aquifer System. Hydrological Processes, 33(17): 2266–2278. https://doi.org/10.1002/hyp.13476
    Kolbe, T., Marçais, J., Thomas, Z., et al., 2016. Coupling 3D Groundwater Modeling with CFC-Based Age Dating to Classify Local Groundwater Circulation in an Unconfined Crystalline Aquifer. Journal of Hydrology, 543: 31–46. https://doi.org/10.1016/j.jhydrol.2016.05.020
    Land, L., Timmons, S., 2016. Evaluation of Groundwater Residence Time in a High Mountain Aquifer System (Sacramento Mountains, USA): Insights Gained from Use of Multiple Environmental Tracers. Hydrogeology Journal, 24(4): 787–804. https://doi.org/10.1007/s10040-016-1400-4
    Lapworth, D. J., MacDonald, A. M., Tijani, M. N., et al., 2013. Residence Times of Shallow Groundwater in West Africa: Implications for Hydrogeology and Resilience to Future Changes in Climate. Hydrogeology Journal, 21(3): 673–686. https://doi.org/10.1007/s10040-012-0925-4
    Li, Z., Kang, F., Liu, G., et al., 2013. Jinan Geothermal and Hot Springs. Geological Publishing House, Beijing (in Chinese)
    Li, Y., Wang, J. L., Jin, M. G., et al., 2021. Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data. Earth Science, 46(7): 2583–2593. https://doi.org/10.3799/dqkx.2020.236 (in Chinese with English Abstract)
    Liang, X., Quan, D. J., Jin, M., et al., 2013. Numerical Simulation of Groundwater Flow Patterns Using Flux as Upper Boundary. Hydro-logical Processes, 27(24): 3475–3483. https://doi.org/10.1002/hyp.9477
    Liang, X., Zhang, R., Jin, M. G., 2015. Groundwater Flow Systems: Theory, Application and Investigation. Geological Publishing House, Beijing (in Chinese)
    Liu, Y. J., Ma, T., Chen, J., et al., 2020. Compaction Simulator: A Novel Device for Pressure Experiments of Subsurface Sediments. Journal of Earth Science, 31(5): 1045–1050. https://doi.org/10.1007/s12583-020-1334-6
    Maasland, M., 1957. Theory of Fluid Flow through Anisotropic Media. In: Luthin, J. N., ed., Drainage of Agricultural Lands. American Society of Agronomy, Wisconsin Madison
    Magri, F., Akar, T., Gemici, U., et al., 2010. Deep Geothermal Groundwater Flow in the Seferihisar-Balçova Area, Turkey: Results from Transient Numerical Simulations of Coupled Fluid Flow and Heat Transport Processes. Geofluids, 10(3): 388–405. https://doi.org/10.1111/j.1468-8123.2009.00267.x
    Mao, X. M., Zhu, D. B., Ndikubwimana, I., et al., 2021. The Mechanism of High-Salinity Thermal Groundwater in Xinzhou Geothermal Field, South China: Insight from Water Chemistry and Stable Isotopes. Journal of Hydrology, 593: 125889. https://doi.org/10.1016/j.jhydrol.2020.125889
    Marklund, L., Wörman, A., 2011. The Use of Spectral Analysis-Based Exact Solutions to Characterize Topography-Controlled Groundwater Flow. Hydrogeology Journal, 19(8): 1531–1543. https://doi.org/10.1007/s10040-011-0768-4
    Moran-Ramírez, J., Morales-Arredondo, J. I., Armienta-Hernández, M. A., et al., 2020. Quantification of the Mixture of Hydrothermal and Fresh Water in Tectonic Valleys. Journal of Earth Science, 31(5): 1007–1015. https://doi.org/10.1007/s12583-020-1294-x
    Ophori, D. U., 2004. A Simulation of Large-Scale Groundwater Flow and Travel Time in a Fractured Rock Environment for Waste Disposal Purposes. Hydrological Processes, 18(9): 1579–1593. https://doi.org/10.1002/hyp.1407
    Seidel, T., König, C., Schäfer, M., et al., 2014. Intuitive Visualization of Transient Groundwater Flow. Computers & Geosciences, 67: 173–179. https://doi.org/10.1016/j.cageo.2014.03.004
    Tóth, Á., Havril, T., Simon, S., et al., 2016. Groundwater Flow Pattern and Related Environmental Phenomena in Complex Geologic Setting Based on Integrated Model Construction. Journal of Hydrology, 539: 330–344. https://doi.org/10.1016/j.jhydrol.2016.05.038
    Tóth, Á., Galsa, A., Mádl-Szőnyi, J., 2020. Significance of Basin Asymmetry and Regional Groundwater Flow Conditions in Preliminary Geothermal Potential Assessment—Implications on Extensional Geothermal Plays. Global and Planetary Change, 195: 103344. https://doi.org/10.1016/j.gloplacha.2020.103344
    Tóth, J., 1963. A Theoretical Analysis of Groundwater Flow in Small Drainage Basins. Journal of Geophysical Research, 68(16): 4795–4812. https://doi.org/10.1029/jz068i016p04795
    Tóth, J., 1999. Groundwater as a Geologic Agent: An Overview of the Causes, Processes, and Manifestations. Hydrogeology Journal, 7(1): 1–14. https://doi.org/10.1007/s100400050176
    Tóth, J., 2009. Gravitational Systems of Groundwater Flow. Cambridge University Press, New York
    Wang, J. -Z., Wörman, A., Bresciani, E., et al., 2016. On the Use of Late-Time Peaks of Residence Time Distributions for the Characterization of Hierarchically Nested Groundwater Flow Systems. Journal of Hydrology, 543: 47–58. https://doi.org/10.1016/j.jhydrol.2016.04.034
    Wang, J. L., Jin, M. G., Jia, B. J., et al., 2015. Hydrochemical Characteristics and Geothermometry Applications of Thermal Groundwater in Northern Jinan, Shandong, China. Geothermics, 57: 185–195. https://doi.org/10.1016/j.geothermics.2015.07.002
    Wang, J. L., Jin, M. G., Lu, G. P., et al., 2016. Investigation of Discharge-Area Groundwaters for Recharge Source Characterization on Different Scales: The Case of Jinan in Northern China. Hydrogeology Journal, 24(7): 1723–1737. https://doi.org/10.1007/s10040-016-1428-5
    Wang, J. J., Liang, X., Ma, B., et al., 2021. Using Isotopes and Hydrogeochemistry to Characterize Groundwater Flow Systems within Intensively Pumped Aquifers in an Arid Inland Basin, Northwest China. Journal of Hydrology, 595: 126048. https://doi.org/10.1016/j.jhydrol.2021.126048
    Wang, X. -S., Wan, L., Jiang, X. -W., et al., 2017. Identifying Three-Dimensional Nested Groundwater Flow Systems in a Tóthian Basin. Advances in Water Resources, 108: 139–156. https://doi.org/10.1016/j.advwatres.2017.07.016
    Welch, L. A., Allen, D. M., 2012. Consistency of Groundwater Flow Patterns in Mountainous Topography: Implications for Valley Bottom Water Replenishment and for Defining Groundwater Flow Boundaries. Water Resources Research, 48(5): W05526. https://doi.org/10.1029/2011wr010901
    Xiao, Z. C., Wang, S., Qi, S. H., et al., 2020. Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China. Journal of Earth Science, 31(1): 141–158. https://doi.org/10.1007/s12583-019-1242-9
    Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydrogeochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175–4187. https://doi.org/10.3799/dqkx.2020.401 (in Chinese with English Abstract)
    Yamanaka, T., Shimada, J., Tsujimura, M., et al., 2011. Tracing a Confined Groundwater Flow System under the Pressure of Excessive Groundwater Use in the Lower Central Plain, Thailand. Hydrological Processes, 25(17): 2654–2664. https://doi.org/10.1002/hyp.8007
    Zhu, X., Wang, G. L., Ma, F., et al., 2021. Hydrogeochemistry of Geothermal Waters from Taihang Mountain-Xiong'an New Area and Its Indicating Significance. Earth Science, 46(7): 2594–2608. https://doi.org/10.3799/dqkx.2020.207 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(7)

    Article Metrics

    Article views(140) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return